三角形中位线培优复习上课讲义
- 格式:docx
- 大小:81.02 KB
- 文档页数:5
三角形中位线定理【学习目标】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、三角形的中位线1、(优质试题•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【答案与解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【总结升华】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.举一反三:【变式】如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为_____.【答案】5;解:∵四边形OABC是矩形,∴OA=BC,AB=OC;BA⊥OA,BC⊥OC.∵B点坐标为(3,2),∴OA=3,AB=2.∵D、E、F、G分别是线段OP、AP、BP、CP的中点,∴DE=GF=1.5; EF=DG=1.∴四边形DEFG的周长为(1.5+1)×2=5.2、如图,在△ABC中,已知点D、E、F分别是AB、BC、CA的中点,AH是高.(1)若BC=10,AH=8,则四边形ADEF的面积为.(2)求证:∠DHF=∠DEF.HF EDCBA【思路点拨】(1)由三角形面积公式可知:△BDE、△EFC的面积都等于△ABC面积的四分之一,进而可求出四边形ADEF的面积.(2)首先证明四边形ADEF是平行四边形,进而可得∠DEF=∠DAF,再利用直角三角形的中线性质得线段相等,从而得角等,最终可得到∠DAF=∠DEF,即可证出∠DHF=∠DEF.【答案解析】(1)解:∵BC=10,AH=8,∴S△ABC=×8×10=40,∵点D、E、F分别是AB、BC、CA的中点,∴△BDE、△EFC的面积都等于△ABC面积的,∴四边形ADEF的面积=40﹣20=20,故答案为:20;(2)证明:∵D、E、F分别是△ABC各边中点,∴DE∥AC,EF∥AB,∴四边形ADEF是平行四边形,∴∠DEF=∠DAF,∵AH是△ABC的高∴△ABH、△ACH是直角三角形,∵点D、点F是斜边AB、AC中点,∴DH=DA,HF=AF,∴∠DAH=∠DHA ,∠FAH=∠FHA ,∴∠DAH+∠FAH=∠FHA+∠DHA ,即∠DAF=∠DHF ,∴∠DEF=∠DHF .【总结升华】此题主要考查了平行四边形的性质与判定,三角形的中位线定理,直角三角形的性质,解决题目的关键是证明∠DHF=∠DAF 与∠DAF=∠DEF .3、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】本题中所求线段MD 与已知线段AB 、AC 之间没有什么联系,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度.【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN ,∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA)∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6,∵ D 、M 分别为BN 、BC 的中点,∴ DM =12CN =162⨯=3. 【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形. 举一反三:【变式】如图所示,四边形ABCD 中,Q 是CD 上的一定点,P 是BC 上的一动点,E 、F 分别是PA 、PQ 两边的中点;当点P 在BC 边上移动的过程中,线段EF 的长度将( ).A.先变大,后变小 B.保持不变 C.先变小,后变大 D.无法确定【答案】B;解:连接AQ.∵ E、F分别是PA、PQ两边的中点,∴ EF是△PAQ的中位线,即AQ=2EF.∵ Q是CD上的一定点,则AQ的长度保持不变,∴线段EF的长度将保持不变.4、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;(2)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.【思路点拨】(1)运用中位线的性质,找出对应相等的角;(2)根据题意易知满足条件的四边形即为第一题的四边形.【答案与解析】解:(1)取AC的中点H,连接HE、HF∵点E为BC中点∴EH为△ABC的中位线∴EH∥AB,且EH=12AB同理FH∥DC,且FH=12DC∵AB=AC,DC=AC∴AB=DC,EH=FH∴∠1=∠2∵EH∥AB,FH∥DC∴∠2=∠4,∠1=∠3∴∠4=∠3∵∠AGE+∠4=180°,∠GEC+∠3=180°∴∠AGE=∠GEC∴四边形AGEC是邻角四边形(2)存在等邻角四边形,为四边形AGHC.【总结升华】本题考查了三角形的中位线以及等腰三角形的性质的综合运用.本题较灵活,要求学生能够把题中的条件转化成角,从而找出相等的角来解题.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.类型二、中点四边形5、如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是正方形;(2)若AD=2,BC=4,求四边形EFGH的面积.【思路点拨】 (1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD 入手,进行正方形的判断.(2)连接EG ,利用梯形的中位线定理求出EG 的长,然后结合(1)的结论求出2EH =92,也即得出了正方形EHGF 的面积.【答案与解析】证明:(1)在△ABC 中,E 、F 分别是AB 、BC 的中点,故可得:EF =12AC ,同理FG =12BD ,GH =12AC ,HE =12BD , 在梯形ABCD 中,AB =DC ,故AC =BD ,∴EF=FG =GH =HE ,∴四边形EFGH 是菱形.设AC 与EH 交于点M ,在△ABD 中,E 、H 分别是AB 、AD 的中点,则EH∥BD,同理GH∥AC,又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH 是正方形.(2)连接EG .在梯形ABCD 中,∵E、G 分别是AB 、DC 的中点,∴EG=12(AD +BC )=3. 在Rt△EHG 中, ∵222EH GH EG +=,EH =GH ,∴2EH =92,即四边形EFGH 的面积为92. 【总结升华】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH =HG =GF =FE ,这是本题的突破口. 举一反三:【变式】如图,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.(1)判断四边形EFGH 的形状,并说明你的理由;(2)连接BD 和AC ,当BD 、AC 满足何条件时,四边形EFGH 是正方形.【答案】解:(1)四边形EFGH是平行四边形.理由:连接AC,∵E、F分别是AB、BC的中点,∴EF∥AC,且EF=12 AC,同理,HG∥AC,且HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH是平行四边形;(2)当BD=AC,且BD⊥AC时,EFGH是正方形.理由:连接AC,BD,∵E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=GH=12AC,EH=FG=12BD,EH∥BD,GH∥AC,∵BD=AC,BD⊥AC,∴EH=EF=FG=GH,EH⊥GH,∴四边形ABCD是菱形,∠EHG=90°,∴四边形EFGH是正方形.。
专题05 三角形中位线重难突破三角形中位线1.三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.3.相关结论:顺次连接任意四边形中点所得到的四边形是平行四边形.(连接原四边形一条对角线,由中位线定理可证)4.拓展:①梯形的中位线等于上底加下底和的一半. (连接梯形一条对角线,由中位线定理可证)②过三角形一边的中点作另一边的平行线,与第三边交于一点,则这两点之间的线段为三角形的中位线. 如图,过△ABC的边AB的中点作平行于边BC的直线,交边AC于点E,则DE为△ABC的中位线.典例1.(2018春•定兴县期末)如图所示,已知P、R分别是四边形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么EF的长()A.逐渐增大B.逐渐变小C.不变D.先增大,后变小【答案】C【解析】解:∵E、F分别是PA、PR的中点,∴EF AR,∴EF的长不变,故选:C.【点睛】根据三角形中位线定理得到EF AR,判断即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.典例2.(2018春•柳州期末)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN ⊥AE于N,若AC=6,BC=8,则MN=___.【答案】2【解析】解:延长CM交AB于G,延长CN交AB于H,∵∠ACB=90°,AC=6,BC=8,∴AB=10,在△BMC和△BMG中,,∴△BMC≌△BMG,∴BG=BC=8,CM=MG,∴AG=2,同理,AH=AC=6,CN=NH,∴GH=4,∴MN GH=2,故答案为:2.【点睛】延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可.典例3.(2018春•成都期末)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE =2,则AC的长等于______.【答案】见解析【解析】解:过D点作DF∥BE,∵AD是△ABC的中线,AD⊥BE,∴F为EC中点,AD⊥DF,∵AD=BE=2,则DF=1,AF,∵BE是△ABC的角平分线,AD⊥BE,∴△ABG≌△DBG,∴G为AD中点,∴E为AF中点,∴AE=EF=CF,∴AC AF.故答案为:.【点睛】过D点作DF∥BE,则DF BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC AF.典例4.(2018春•吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE的长.【答案】见解析【解析】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE CF4=2.【点睛】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE CF,然后求解即可.典例5.(2018春•濮阳期末)已知等边三角形ABC的边长为a分别以这个三角形的三边中点为顶点作一个三角形,记为△A1B1C1,再以△A1B1C1各边中点为顶点做三角形记为△A2B2C2,…依次做下去,求△A5B5C5的周长.【答案】见解析【解析】解:等边△ABC的边长为a,∴等边△ABC的周长为3a.∵A2、B2分别是边A1B1、B1C1的中点,∴A2B2是△A1B1C1的中位线,∴A2B2A1B1.同理,A2C2A1C1,C2B2C1B1.∴△A2B2C2的周长等边△A1B1C1的周长.同理,△A3B3C3的周长△A2B2C2的周长等边△A1B1C1的周长.…,∴△A n B n∁n的周长△A1B1C1的周长.∴△A5B5C5的周长.【点睛】据三角形中位线定理知,△A2B2C2的各边的边长是△A1B1C1的各边边长的,△A3B3C3是△A2B2C2的各边的边长的,找出规律即可得出结论.本题考查了等边三角形的性质、三角形中位线定理.三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.典例6.(2018春•南山区期末)如图,△ABC中,AB>AC,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则①EF∥AB;②∠BCG(∠ACB﹣∠ABC);③EF (AB﹣AC);④(AB﹣AC)<AE(AB+AC).其中正确的是()A.①②③④B.①②C.②③④D.①③④【答案】A【解析】解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中∴△AFG≌△AFC(ASA),∴GF=CF,∵AE为△ABC的中线,∴BE=CE,∴EF∥AB,故①正确;∵△AFG≌△AFC,∴∠AGC=∠ACB,∵∠AGC=∠B+∠BCG,∴∠ACG=∠B+∠BCG,∴∠BCG=∠ACB﹣∠ACG=∠ACB﹣(∠B+∠BCG),∴2∠BCG=∠ACB﹣∠B,∴∠BCG(∠ACB﹣∠B),故②正确;∵△AFG≌△AFC,∴AC=AG,∴BG=AB﹣AG=AB﹣AC,∵F、E分别是CG、BC的中点,∴EF BG,∴EF(AB﹣AC),故③正确;∵∠AFG=90°,∴∠EAF<90°,∵∠AFE=∠AFG+∠EFG>90°,∴∠AFE>∠EAF,∴AE>EF,∵EF(AB﹣AC),∴(AB﹣AC)<AE,延长AE到M,使AE=EM,连接BM,∵在△ACE和△MBE中∴△ACE≌△MBE(SAS),∴AC=BM,在△ABM中,AM<AB+AC,∵AE=EM,∴2AE<AB+AC,∴AE(AB+AC),即(AB﹣AC)<AE(AB+AC),故④正确;故选:A.【点睛】求出F为CG中点,根据三角形的中位线性质即可判断①,求出∠ACG=∠AGC=∠B+∠BCG,即可判断②;根据三角形中位线性质即可判断③,求出2AE<AB+BC和AE>EF,即可判断④.巩固练习1.(2018春•坪山区期末)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.12 B.11 C.10 D.9【答案】D【解析】解:∵点D,E分别AB、BC的中点,∴DE AC=3.5,同理,DF BC=3,EF AB=2.5,∴△DEF的周长=DE+EF+DF=9,故选:D.2.(2018春•抚顺期末)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是()A.100°B.120°C.130°D.150°【答案】C【解析】解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,∴PE AD,PF BC,∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=25°,∴∠EPF=130°,故选:C.3.(2018春•颍东区期末)如图在△ABC中,M是BC中点,AP是∠A平分线,BP⊥AP于P,AB=12,AC=22,则MP长为()A.3 B.4 C.5 D.6【答案】C【解析】解:延长BP交AC于N.∵AP是∠BAC的角平分线,BP⊥AP于P,∴∠BAP=∠NAP,∠APB=∠APN=90°,∴△ABP≌△ANP(ASA),∴AN=AB=12,BP=PN,∴CN=AC﹣AN=22﹣12=10,∵BP=PN,BM=CM,∴PM是△BNC的中位线,∴PM CN=5.故选:C.4.(2018春•开江县期末)如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形,……如此操作下去,那么第5个三角形直角顶点的坐标为()A.(,)B.()C.()D.()【答案】B【解析】解:由题意:第1个三角形的直角顶点坐标:(﹣2,2);第2个三角形的直角顶点坐标:(﹣1,1);第3个三角形的第1个三角形的直角顶点坐标:(,);第4个三角形的直角顶点坐标:(,);第5个三角形的直角顶点坐标:(,);故选:B.5.(2017秋•洪雅县期末)如图,在△ABC中,AB=5,AC=3,AD是角平分线,AE是中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则线段EF的长为___.【答案】1【解析】解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=5,AC=3,∴BG=2,∵AE是中线,∴BE=CE,∴EF为△CBG的中位线,∴EF BG=1 故答案为:1.。
中位线一、知识点讲解1、三角形中位线及性质(1)定义:连接三角形两边的中点的线段叫做三角形的中位线。
(2)性质:三角形的中位线平行于第三边,并且等于第三边的一半。
证明:2、三角形的重心及其性质。
(1)定义:三角形三边上的中线交于一点,这个点就是三角形的重心。
(2)性质:三角形重心与一边中点的连线的长是对应中线长的31 证明:二、典例分析题型一、运用三角形中位线的性质进行计算例1 如图,在□ABCD 中,E 为AB 的中点,F 为AD 上一点,EF 交AC 于点G ,AF =4cm ,DF =8cm ,AG =6cm ,则AC 的长为( )A 、28cmB 、20cmC 、24cmD 、30cm变式练习:1、如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论不正确的是( ) A 、BC =2DEB 、△ADE ∽△ABCC 、ACABAE AD D 、S △ABC =3S △ADE 2、如图,已知点E 、F 分别是△ABC 中AC 、AB 边的中点,BE 、CF 相交于点G ,FG =2,则CG 的长为( ) A 、4 B 、4.5 C 、5 D 、6第1题 第2题 第3题 3、如图,在△ABC 中,点E 、D 、F 分别是AB 、BC 、CA 的中点,AB =6,AC =4,则四边形AEDF 的周长是( ) A 、10 B 、20 C 、30 D 、404、如果三角形的两边分别为3和5,那么连接这个三角形三边中点的得三角形的周长可能是( ) A 、5.5 B 、5 C 、4.5 D 、45、(易错)在等腰直角三角形ABC 中,∠C =90°,AB =10cm ,D 、E 分别是AB 、BC 的中点,求DE 的长。
题型二:三角形中位线的性质的应用例2 如图,在△ABC 中,AB =AC ,点D 、E 分别是AB 、AC 的中点,F 是BC 延长线上的一点,且BC CF 21。
三角形中位线讲义【要点梳理】要点一、三角形的中位线1.定义:连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.特别说明:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.要点二、中点三角形 定义:中点三角形就是把一个三角形的三边中点顺次连接起来的一个新三角形.性质:(1)这个新三角形的各个边长分别是原来三角形三边长的一半且分别平行,角的度数与原三角形分别相等,4个三角形都全等(2)中点三角形周长是原三角形的周长一半。
(3)中点三角形面积是原三角形面积的四分之一。
补充:中点三角形与原三角形不仅相似,而且位似。
要点三、中点四边形 定义:依次连接任意四边形各边中点所得的四边形称为中点四边形。
中点四边形的形状与原四边形的对角线的数量和位置关系有关。
性质(1)不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
题型一:与三角形中位线有关的线段求解问题【例1】如图,ABCD 中,对角线AC 、BD 相交于点O ,点 E , F ,G ,H 分别是OA 、OB 、OC 、OD 的中点,顺次连接EFGH .(1)求证:四边形EFGH 是平行四边形(2)若ABCD 的周长为2(AB +BC )=32,则四边形EFGH 的周长为__________【解答】 (1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD , ∵点 E 、 F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,∴1111,,,2222OE OA OF OB OG OC OH OD ====, ∴OE =OG ,OF =OH ,1214∴四边形EFGH 是平行四边形;(2)∵点 E 、 F 、G 、H 分别是OA 、OB 、OC 、OD 的中点, ∴11,22EF AB FG BC ==, ∴()12EF FG AB BC +=+ , ∵ABCD 的周长为2(AB +BC )=32,∴16AB BC += ,∴8EF FG += ,由(1)知:四边形EFGH 是平行四边形, ∴四边形EFGH 的周长为()22816EF FG +=⨯= .【变式1-1】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若DE ∥AB 交AC 于点E ,证明:△ADE 是等腰三角形;(2)若BC =12,DE =5,且E 为AC 中点,求AD 的值.【解答】 (1)证明:∵在△ABC 中,AB =AC ,∴△ABC 为等腰三角形,∵AD ⊥BC 于点D ,∴由“三线合一”知:∠BAD=∠CAD ,∵DE ∥AB 交AC 于点E ,∴∠BAD=∠ADE ,∴∠CAD=∠ADE ,即:∠ADE=∠EAD ,∴AE=DE ,∴△ADE 是等腰三角形;(2)解:由“三线合一”知:BD=CD ,∵BC=12,∴DC=6,∵E 为AC 中点,∴DE 为△ABC 的中位线,∴AB=2DE ,∴AC=AB=2DE=10,在Rt △ADC 中,22221068AD AC DC =−−=,∴AD=8.【变式1-2】如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点(含端点,但点M 不与点B 重合),点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .5C .7D .9 【解答】解:连接DN ,∵ED =EM ,MF =FN ,∴EF =12DN ,∴DN 最大时,EF 最大,DN 最小时,EF 最小,∵N 与B 重合时DN 最大,此时DN =DB =√AD 2+BD 2=√52+122=13,∴EF 的最大值为6.5.∵∠A =90°,AD =5,∴DN ≥5,∴EF ≥2.5,∴EF 长度的可能为5;故选:B .【变式1-3】如图,在△ABC 中,AB =CB =6,BD ⊥AC 于点D ,F 在BC 上且BF =2,连接AF ,E 为AF 的中点,连接DE ,则DE 的长为( )A .1B .2C .3D .4【解答】解:∵CB =6,BF =2,∴FC =6﹣2=4,∵BA =BC ,BD ⊥AC ,∴AD =DC ,∵AE =EF ,∴DE 是△AFC 的中位线,∴DE =12FC =12×4=2,故选:B . 题型二、与三角形中位线有关的面积问题【例2】如图,在ABC 中,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使12CF BC =,连接CD 和EF .(1)求证:四边形DCFE 是平行四边形.(2)若四边形DCFE 的面积为4,求ABC 的面积.【解答】()1证明:∵D ,E 分别为AB ,AC 的中点,∴DE 为ABC 的中位线,∴//DE BC ,12DE BC =. ∵12CF BC =,∴DE CF =.∵//DE CF , ∴四边形DCFE 是平行四边形; ()2解:∵四边形DCFE 是平行四边形,∴DEC 的面积ECF =的面积2=.∵E 是AC 的中点,∴ADE 的面积DEC =的面积2=.∵D 是AB 的中点,∴BDC 的面积ADC =的面积4=,∴ABC 的面积4228=++=.【变式2-1】如图1,在四边形ABCD 中,E 、F 、G 、H 分别是AD 、BC 、BD 、AC 的中点. (1)求证:四边形EGFH 是平行四边形;(2)如图2,延长BA 、CD 相交于点P ,连接PG 、PH 、GH ,若1PGH S =△,求四边形ABCD 的面积.【解答】 证明:(1),E G 分别是,AD BD 的中点,1,//2EG AB EG AB ∴=,同理可得:1,//2FH AB FH AB =, ,//EG FH EG FH ∴=,∴四边形EGFH 是平行四边形;(2)如图,连接,,,PE AG BH DH ,,E G 分别是,AD BD 的中点,//EG AB ∴,AEG PEG S S ∴=(同底等高),同理可得:DEH PEH S S =,1AEG EGH DEH PEG EGH PEH PGH AGHD S S S S S S S S ∴=++=++==四边形,又G 是BD 的中点,BG DG ∴=,,ABG ADG HBG HDG SS S S ∴==(等底同高), 2()22ABG ADG HBG HDG ADG HDG ABHD AGHD S S S S S S S S ∴=+++=+==四边形四边形,同理可得:2224ABCD ABHD S S ==⨯=四边形四边形,即四边形ABCD 的面积为4.【变式2-2】如图所示,在△ABC 中,D 是BC 边上任一点,F,G,E 分别是AD,BF,CF 的中点,连结GE ,若△FGE 的面积为6,则ABC 的面积为( )A.32B.48C.64D.72【变式2-3】如图,已知在△ABC 中,点D 、E 分别是边AB 、AC 的中点。
高斯教育学科教师辅导讲义学员姓名:年级:辅导科目:学科教师:五块石1 上课时间授课主题第04讲_三角形的中位线三角形的中位线一.三角形的中位线1.定义:连接三角形两边中点的线段叫做三角形的中位线.如图,在△ABC中,D、E分别是AB、AC边的中点,则线段DE是△ABC的中位线.2.性质:平行于三角形的第三边,且等于第三边的一半.如图,点D、E分别是三角形ABC的边AB、AC的中点,求证:DE∥BC,12DE BC证明:延长DE到F,使EF = DE,连接FC、DC、AF.知识图谱错题回顾知识精讲AB CD E3.补充说明:任一个三角形都有三条中位线,由此有下列结论:(1)三条中位线组成一个三角形,周长为原三角形周长的一半. (2)三条中位线将原三角形分割成四个全等的三角形.(3)三条中位线将原三角形划分出三个面积相等的平行四边形. (4)三角形一条中线和与它相交的中位线互相平分.(5)任意两条中位线的夹角与这夹角所对的三角形的顶角相等.4.补充说明:任意两点的中点坐标公式:对于平面直角坐标系内的任意两点()11A x y ,,()22B x y ,,线段AB 的中点坐标为121222x xy y ++⎛⎫ ⎪⎝⎭,.一.考点:1.中位线定理.二.重难点: 构造中位线,解决相关的角度线段问题.三.易错点:中线与中位线的区别.题模一:中位线定理例1.1.1如图,在Rt△ABC 中,△A=30°,BC=1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为( )A .1B .2C .D .1+【答案】A【解析】如图,△在Rt△ABC 中,△C=90°,△A=30°, △AB=2BC=2.ABCD EFABCDEF三点剖析题模精讲又△点D、E分别是AC、BC的中点,△DE是△ACB的中位线,△DE=AB=1.例1.1.2如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是____A.4B.3C.2D.1【答案】D【解析】连接DE并延长交AB于H,∵CD∵AB,∵∵C=∵A,∵CDE=∵AHE,∵E是AC中点,∵AE=CE,∵∵DCE∵∵HAE(AAS),∵DE=HE,DC=AH,∵F是BD中点,∵EF是∵DHB的中位线,∵EF=12 BH,∵BH=AB-AH=AB-DC=2,∵EF=1.故选D.例1.1.3在□ABCD中的对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点.(1)求证:四边形EFGH是平行四边形.(2)若□ABCD的周长为8,求□EFGH的周长.【答案】(1)见解析(2)4【解析】该题考查的是平行四边形的判定与性质. (1)∵四边形ABCD 是平行四边形 ∴,AB CD AD BC ==∵E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点 ∴12EF AB =,12EH AD =,12HG CD =,12FG BC = ∴EF HG =,EH FG =∴四边形EFGH 是平行四边形(2)∵8l ABCD AB BC CD AD =+++=∴()142l EFGH EF FG HG EH AB BC CD AD =+++=+++= 例 1.1.4已知,如图四边形ABCD 中,AD BC =,E 、F 分别是AB 和CD 的中点,AD 、EF 、BC 的延长线分别交于M 、N 两点.求证:AME BNE ∠=∠.【答案】见解析【解析】连接AC ,取AC 中点H ,连接FH 、EH .∵DF CF =,AH CH =,∴12FH AD ∥,12FH AD =,同理,12EH BC =,EH BC ∥∵AD BC =,∴EH FH =,∴HFE HEF ∠=∠ ∵FH AM ∥,EH BC ∥∴AME HFE ∠=∠,HEF BNE ∠=∠,∴AME BNE ∠=∠ABC DE F G HO A CDM FE N B随练1.1如图,在△ABC 中,点E ,F 分别为AB ,AC 的中点.已知EF 的长为3cm ,则BC 的长为( )A .39cm B .3cmC .2cmD .23cm【答案】D 【解析】∵点E ,F 分别为AB ,AC 的中点, ∵EF 为∵ABC 的中位线, ∵BC=2EF=23cm .故选D .随练1.2如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关 【答案】C【解析】连接AR ,∵矩形ABCD 固定不变,R 在CD 的位置不变, ∴AD 和DR 不变,A HCD M FE N B随堂练习∵由勾股定理得:AR=22AD DR , ∴AR 的长不变,∵E 、F 分别为AP 、RP 的中点, ∴EF=12AR , 即线段EF 的长始终不变,随练1.3如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,点F 是BC 延长线上一点,且CF=12BC ,连结CD 、EF .求证:CD=EF .【答案】CD=EF .【解析】证明:∵D 、E 分别是边AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∵CF=12BC , ∴DE=CF ,∴四边形DEFC 是平行四边形, ∴CD=EF .随练1.4如图所示,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,BN ⊥AN .若AB=14,AC=19,则MN 的长度为__________.【答案】2.5ABCMN【解析】延长BN 交AC 于D ,∵AN ⊥BN ,AN 平分∠BAC ,∴AN 是BD 的垂直平分线,∵点M 是BC 的中点,∴MN 是△BCD 的中位线,111 2.5222MN CD AC AD AC AB ==-=-=()() 随练 1.5(1)如图1,在四边形ABCD 中,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M 、N ,则BME CNE ∠=∠,求证:AB CD =.(提示取BD 的中点H ,连接FH ,HE 作辅助线)(2)如图2,在ABC ∆中,且O 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,直线OE 交BA 的延长线于点G ,若5AB DC ==,60OEC ∠=︒,求OE 的长度.【答案】(1)见解析(2)52【解析】连结BD ,取DB 的中点H ,连结EH 、FH . E 、F 分别是BC 、AD 的中点,∴EH AB ∥,12EH AB =,FH CD ∥,12FH CD = BME CNE ∠=∠,∴HE HF =, ∴AB CD =;(2)解:连结BD ,取DB 的中点H ,连结EH 、OH , AB CD =,∴HO HE =,∴HOE HEO ∠=∠,60OEC ∠=︒,∴60HEO AGO ∠=∠=︒, ∴OEH ∆是等边三角形, 5AB DC ==∴52OE =自我总结作业1如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8B.10C.12D.14【答案】C【解析】∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=12 AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.作业2如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是____课后作业A .15°B .20°C .25°D .30° 【答案】D【解析】本题考查了三角形中位线定理及等腰三角形的性质,解题时要善于根据已知信息,确定应用的知识.根据中位线定理和已知,易证明∵EPF 是等腰三角形.∵在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点, ∵FP ,PE 分别是∵CDB 与∵DAB 的中位线, ∵PF=12BC ,PE=12AD , ∵AD=BC , ∵PF=PE ,故∵EPF 是等腰三角形. ∵∵PEF=30°, ∵∵PEF=∵PFE=30°.故选:D .作业3如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是_________.【答案】11【解析】∵BD ⊥CD ,BD=4,CD=3, ∴BC=22BD CD +=2243+=5,∵E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,∴EH=FG=12AD ,EF=GH=12BC , ∴四边形EFGH 的周长=EH+GH+FG+EF=AD+BC , 又∵AD=6,∴四边形EFGH 的周长=6+5=11.作业4如图,点A ,B 为定点,定直线l△AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤△APB 的大小.其中会随点P 的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤【答案】B【解析】△点A,B为定点,点M,N分别为PA,PB的中点,△MN是△PAB的中位线,△MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;△MN的长度不变,点P到MN的距离等于l与AB的距离的一半,△△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;△APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B作业5我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,依次连接各边中点得到的中点四边形EFGH.(1)这个中点四边形EFGH的形状是____;(2)请证明你的结论.【答案】平行四边形【解析】(1)平行四边形.(2)证明:连接AC,∵E是AB的中点,F是BC的中点,∵EF∵AC,EF=12 AC,同理HG∵AC ,HG=12AC , 综上可得:EF∵HG ,EF=HG ,故四边形EFGH 是平行四边形.作业6如图,已知ΔABC 是锐角三角形,分别以AB 、AC 为边向外侧作两个等边三角形ΔABM 和ΔCAN ,D 、E 、F 分别是MB ,BC ,CN 的中点,连结DE 、FE ,求证:DE=EF【答案】见解析【解析】该题考查的是全等三角形的判定和性质.连接MC 、AN ,∵△ABM 和△CAN 都是正三角形,∴AM AB =,AN AC =,∴60MAB CAN ∠=∠=︒,∴MAC BAN ∠=∠,∴△MAC ≌△BAN (SAS )∴MC BN =又∵MC 、BN 分别是△BMC 、△BNC 的中位线,∴12DE MC =,12EF BN =, ∴DE EF =.作业7如图所示,在梯形ABCD 中,AD BC ∥,AD BC <,F ,E 分别是对角线AC ,BD 的中点.求证:()12EF BC AD =-【答案】见解析【解析】如图所示,连接AE 并延长,交BC 于点G .AD BC ∥,∴ADE GBE ∠=∠,EAD EGB ∠=∠,又E 为BD 中点,∴AED GEB ∆∆≌.∴BG AD =,AE EG =.在AGC ∆中,F ,E 分别是对角线AC ,BD 的中点∴F 、E 是AGC ∆的为中位线,∴EF BC ∥,()()111222EF GC BC BG BC AD ==-=-,即()12EF BC AD =-。
三角形中位线知识目标:1、掌握三角形中位线的性质 2、构造三角形的中位线解题例1、 如图,在△ABC 中,AB=AC ,点D ,E 分别是AB ,AC 的中点,F 是BC 延长线上的一点,且CF=21BC . (1)求证:DE=CF ;(2)若BE=BC=5,求△BEF 的周长练习:已知三角形的三边为6、8、10,顺次连结各边中点,所得到的三角形的周长为多少?例2、如图所示,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点。
求证:四边形EFGH 是平行四边形即时练习:已知如图,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点。
求证:四边形EFGH 是平行四边形HGFEDBCA例3:如图,在△ABC 中,已知AB=6,AC=8,AD 平分∠BAC ,BD ⊥AD 于点D ,E•为BC 中点.求DE 的长.ENFAB CDM即时练习:1、如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .2、如图,在四边形ABCD 中,AB=CD,E 、F 分别是BC 、AD 的中点,连结EF 并延长,分别与BA 、CD 的延长线相交于M 、N 。
求证:∠BME=∠CNE三、专题训练1、如图,D 、E 、F 分别是△ABC 各边的中点 (1)如果EF =4cm ,那么BC =__cm 如果AB =10cm ,那么DF =___cm (2)中线AD 与中位线EF的关系是___2.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm .(1) (2) (3) (4) 3.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cm B .18cm C .9cm D .36cm4.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( )A .15mB .25mC .30mD .20m5.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、2200916.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定7.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( ) A .10 B .20 C .30 D .408.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .9.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .10.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.11.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.12.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .。
课题三角形中位线培优FMEC B APF E DCB AFN MECBA例题2:BE 、CF 是△ABC 的角平分线,AN ⊥BE 于N ,AM ⊥CF 于M 。
求证:MN ∥BC练习:如图,在∆ABC 中,AB=BC ,∠ABC=90°,F 为BC 上一点,M 为AF 的中点,BE 平分∠ABC ,且EF ⊥BE ,求证:CF=2ME 。
方法二、【取中点构造中位线】例题1:如图,在四边形ABCD 中,AD=BC ,∠CBD=20°,∠BDA=110°,E 、F 、P 分别为AB 、CD 、BD 的中点,探索PF 与EF 的数量关系.练习:如图,在∆ABC 中,∠C=90°,CA=CB ,E ,F 分别为CA ,CB 上一点,CE=CF ,M ,N 分别为AF ,BE 的中点,求证:AE=2MNNMD C B A例题2:如图,四边形ABCD 中,M ,N 分别为AD ,BC 的中点,边BD ,若AB=10,CD=8,求MN 的取值范围。
练习:已知:如图,在四边形ABCD 中,AD =BC ,E 、F 分别是DC 、AB 边的中点,FE 的延长线分别与AD 、BC 的延长线交于H 、G 点.求证:∠AHF =∠BGF .方法三、【借助平行四边形的性质】 例题:如图,(1)E 、F 为△ABC 的中点,G 、H 为AC 的两个三等分点,连接EG 、FH 并延长交于D , 连接AD 、CD. 求证:四边形ABCD 是平行四边形.练习:已知:如图,在□ABCD 中,E 是CD 的中点,F 是AE 的中点,FC 与BE 交 于G .求证:GF =GC .课后作业1.如图,在△ABC 中,AB=10,BC=7,BE 平分∠ABC ,AE ⊥BE ,点F 为AC 的中点,连接EF ,求EF 的长度.3.如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点。
9.5 三角形的中位线同步培优讲练综合三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.一、三角形中位线有关的求解问题【例1】如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得10=,则A,B之间的距离是()CD mA.5m B.10mC.20m D.40m【例2】如图,在ABC∆中,点D、E分别是边AB、AC的中点,连接DE,ABC∠的平分线BF交DE于点F,若4AB=,6BC=,则EF的长为.【例3】如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD BC =,30PEF ∠=︒,则EPF ∠的度数是 .【例4】在ABC 中,120AB AC BAC =∠=︒,,D 为ABC 形内一点,以AD 为腰作等腰DAE ,使DAE BAC ∠=∠,连接BE CD 、,若M N 、分别是DE BC 、的中点,1MN =,则CD 的长为_______.【例5】有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形面积两等分),试设计两种方案,并说明理由.(平分图案画在备用图上,保留作图痕迹)【例6】如图,在ABC ∆中,点D ,E ,F 分别是边AB ,BC ,CA 上的中点,且10AB cm =,16AC cm =,则四边形ADEF 的周长等于 cm .【例7】如图,四边形ABCD 中,1AB =,4CD =,M 、N 分别是AD 、BC 的中点,则线段MN 的取值范围是( )A .35MN <<B .35MN <C .3522MN <<D .3522MN <【例8】如图,Rt ABC △中,90BAC ∠=︒,6AB =,10BC =,AD 、AE 分别是其角平分线和中线,过点B 作BG AD ⊥于G ,交AC 于F ,连接EG ,则线段EG 的长为( )A .12 B .1 C .32 D .2二、三角形中位线相关的面积问题【例1】如图,在ABC ∆中,D 、E 、F 分别是BC 、AC 、AD 的中点,若ABC ∆的面积是40,则四边形BDEF 的面积是( )A .10B .12.5C .15D .20【例2】E 、F 是线段AB 上的两点,且16AB =,2AE =,4BF =,点G 是线段EF 上的一动点,分别以AG 、BG 为斜边在AB 同侧作两个等腰直角三角形,直角顶点分别为D 、C ,如图所示,连接CD 并取中点P ,连接PG ,点G 从E 点出发运动到F 点,则线段PG 扫过的图形面积为______.【例3】如图,在ABC 中,D ,E ,F 分别是BC AD CE ,,的中点,22cm BCF S =,则ABC S =_____2cm【例4】如图,ABC 三边的中线AD ,BE ,CF 的公共点为G ,且:2:1AG GD =,若12ABC S =△,则图中阴影部分的面积是_____.【例5】如图,在Rt ABC △中,90BAC ∠=︒,,E F 分别是,BC AB 的中点,延长CA 到点D ,使得2AC AD =,连接,,,,DE DF AE EF AF 与DE 交于点O .5,13AB BC ==,求四边形AEFD 的面积.三、与三角形中位线有关的应用和证明【例1】在ABC ∆中,点M 是边BC 的中点,AD 平分BAC ∠,BD AD ⊥,BD 的延长线交AC 于点E ,12AB =,20AC =.(1)求证:BD DE =;(2)求DM 的长.【例2】如图,ABC ∆中,AH BC ⊥于点H ,点D ,E 分别是AB ,AC 的中点,连接DH ,EH ,DE .(1)求证:AD DH =;(2)若四边形ADHE 的周长是30,ADE ∆的周长是21,求BC 的长.【例3】如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,20PEF ∠=︒,求PFE ∠的度数.【例4】在Rt ABC 中,90BAC ∠=︒,E 、F 分别是BC 、AC 的中点,延长BA 到点D ,使2AB AD =,连接DE 、DF 、AE 、EF ,AF 与DE 交于点O .(1)试说明AF 与DE 互相平分;(2)若8AB =,12BC =,求DO 的长.四、梯形中位线【例1】已知一个梯形的中位线长为5cm ,其中一条底边的长为6cm ,那么该梯形的另一条底边的长是 cm .【例2】如图,已知直角梯形ABCD 的一条对角线把梯形分为一个直角三角形和一个边长为8cm 的等边三角形,则梯形ABCD 的中位线长为( )A. 4cm B .6cmC .8cmD .10cm【例3】如图,梯形ABCD 的两底长为6AD =,10BC =,中位线为EF ,且90B ∠=︒,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相同的两区域,则EFP ∆与梯形ABCD 的面积比为 .五、中点四边形【例1】顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( )A .平行四边形B .对角线相等的四边形C .矩形D .对角线互相垂直的四边【例2】若顺次连接四边形ABCD 各边的中点所得到的四边形是矩形,则原四边形必定是( )A .正方形B .对角线相等的四边形C .菱形D .对角线互相垂直的四边形【例3】依次连接下列四边形四条边的中点得到四边形不是菱形的是( )A .矩形B .菱形C .正方形D .等腰梯形【例4】如图,四边形ABCD 中,AC a =,BD b =.且AC BD ⊥,顺次连接四边形ABCD 各边中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222,A B C D ⋅⋅⋅,如此进行下去,得到四边形n n n n A B C D .下列结论正确的是( )①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b+,④四边形n n n n A B C D 的面积是12n ab+.A .①②③B .②③④C .①②D .②③1、如图,在Rt ABC ∆中,90C ∠=︒,5AC =,12BC =.若D ,E 分别为边AC ,BC 的中点,则DE 的长为( )A .5B .5.5C .6D .6.52、如图是屋架设计图的一部分,其中30A ∠=︒,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,16AB m =,则DE 的长为( )A. 8mB .4mC .2mD .6m3、如图,点D 、E 、F 分别是AC 、BC 、AB 中点,且BD 是ABC ∆的角平分线.求证:BE AF =.4.如图,平行四边形ABCD 中,对角线AC ,BD 相交于O ,2BD AD =,E , F , G 分别是OC , OD ,AB 的中点,下列结论中:①BE AC ⊥;②四边形BEFG 是平行四边形;③EG GF =;④EA 平分GEF ∠,正确的是( )A .①②B .①②④C .①②③D .②③④5.如图,四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD =,各边中点分别为1A ,1B ,1C ,1D ,顺次连接得到四边形1111D C B A ;再取各边中点2A ,2B ,2C ,2D ,顺次连接得到四边形2222A B C D ;依此类推,这样得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积为____.6.已知一个对角线长分别为12cm 和16cm 的菱形,顺次连接它的四边中点得到的四边形的面积是______.7.如图,在ABC 和ABD △中,90ACB ADB ∠=∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,若1DE =,则FG =________.8、如图,在ABC ∆中,90ACB ∠=︒,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使13CD BD =.连接DM 、DN 、MN .若6AB =,求DN 的长.9.如图,在四边形ABCD 中,E ,F 分别是AD BC ,的中点.(1)若102430120AB CD ABD BDC ==∠=︒∠=︒,,,,求EF 的长.(2)若90BDC ABD ∠-∠=︒,求证:2224AB CD EF +=.10.已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形(EFGH 即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是______,请证明你的结论;(2)当四边形ABCD 的对角线满足______条件时,四边形EFGH 是菱形;(3)你学过的哪种特殊的平行四边形的中点四边形是菱形?请写出一种.11.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN ______填(“是”或“不是”)“等垂线段”.(2)ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把ADE 绕点A 在平面内自由旋转,若2DE =,4BC =,请直接写出PM 与PN 的积的最大值.9.5 三角形的中位线同步培优讲练综合三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.一、三角形中位线有关的求解问题【例1】如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点CD m,则A,B之间的距离是()C,D,量得10B.5m B.10mC.20m D.40m【答案】C【解析】解:点C,D分别是OA,OB的中点,220()AB CD m ∴==,故选:C .【例2】如图,在ABC ∆中,点D 、E 分别是边AB 、AC 的中点,连接DE ,ABC ∠的平分线BF 交DE 于点F ,若4AB =,6BC =,则EF 的长为 .【答案】1【解析】解:连接AF 并延长交BC 于H ,点D 、E 分别为边AB 、AC 的中点,//DE BC ∴,132DE BC ==,FH =, 在BFA ∆和BFH ∆中,ABF HBF AFB HFB FA FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BFA BFH AAS ∴∆≅∆,4BH AB ∴==,AD DB =,AF FH =,122DF BH ∴==, 1EF DE DF ∴=-=,故答案为:1.【例3】如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD BC =,30PEF ∠=︒,则EPF ∠的度数是 .【答案】120【解析】 解:点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,12PF BC ∴=,12PE AD =,又AD BC =, PE PF ∴=,30PFE PEF ∴∠=∠=︒,120EPF ∴∠=︒,故答案为:120︒.【例4】在ABC 中,120AB AC BAC =∠=︒,,D 为ABC 形内一点,以AD 为腰作等腰DAE ,使DAE BAC ∠=∠,连接BE CD 、,若M N 、分别是DE BC 、的中点,1MN =,则CD 的长为_______.【答案】2【解析】解:如图,连接BD ,取BD 的中点F ,连接FM FN ,,∵BAC EAD ∠=∠,BAC EAD ∠=∠, ∴BAC BAD EAD BAD ∠-∠=∠-∠,即BAE CAD ∠=∠,在AEB △和ADC △中,AE AD BAE CADAB AC =⎧⎪∠=∠⎨⎪=⎩,∴AEB ADC SAS ≌(),∴BE CD =,∵M 是ED 的中点,F 是BD 的中点,∴FM 是BED 的中位线, ∴12FM BE =,FM BE ∥,∴DFM EBD ∠=∠, 同理得,1 2FN CD =,FN CD ,FM FN FNB DCB ∴=∠=∠,,∵DFN DBC FNB DBC DCB ∠=∠+∠=∠+∠,∴18012060MFN DFM DFN EBD DBC DCB ∠=∠+∠=∠+∠+∠=︒-︒=︒,∴FMN 是等边三角形,∴1MN FN ==,∴2CD =.故答案为:2.【例5】有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形面积两等分),试设计两种方案,并说明理由.(平分图案画在备用图上,保留作图痕迹)【答案】见解析【解析】解:设梯形上、下底分别为a 、b ,高为h .方案一:如图1,连接梯形上、下底的中点E 、F ,则()4ABFE EFCD a b h S S +==四边形四边形;方案二:如图2,连接AC ,取AC 的中点E ,连接BE ED 、,则图中的四边形ABED 的面积=梯形ABCD 的面积的一半,∵AE EC =,∴ABE BEC S S =,AED ECD S S =, ∴ABE AED BEC ECD S S S S +=+,∴四边形ABED 的面积=梯形ABCD 的面积的一半.方案三:如图3,分别量出梯形上、下底a 、b 的长,在下底BC 上截取2a b BE +=,连接AE , ∴()1•24ABE a b h S BE h +==,()()()244ABE AECD ABCD a b h a b h a b h S S S +++=-=-=四边形梯形,则()4ABE AECD a b h S S +==四边形.【例6】如图,在ABC ∆中,点D ,E ,F 分别是边AB ,BC ,CA 上的中点,且10AB cm =,16AC cm =,则四边形ADEF 的周长等于 cm .【答案】26【解析】解:点D ,E ,F 分别是边AB ,BC ,CA 上的中点,DE ∴,EF 都是ABC ∆的中位线,182DE AC cm ∴==,//DE AC ,152EF AB cm ==,//EF AB , ∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长2()21326()DE EF cm =+=⨯=.故答案为:26.【例7】如图,四边形ABCD 中,1AB =,4CD =,M 、N 分别是AD 、BC 的中点,则线段MN 的取值范围是( )A .35MN <<B .35MN <C .3522MN <<D .3522MN < 【答案】D【解析】解:连接AC ,取AC 的中点H ,连接MH 、NH ,M 、H 分别是AD 、AC 的中点,122MH CD ∴==, 同理可得,1122NH AB ==, 在MHN ∆中,MH NH MN MH NH -<<+,即3522MN <<, 当H 在MN 上时,52MN MH NH =+=,∴3522MN <, 故选:D .【例8】如图,Rt ABC △中,90BAC ∠=︒,6AB =,10BC =,AD 、AE 分别是其角平分线和中线,过点B 作BG AD ⊥于G ,交AC 于F ,连接EG ,则线段EG 的长为( )A .12 B .1 C .32 D .2【答案】B【解析】解:Rt ABC △中,6AB =,10BC =,∴8AC ==,∵BG AD ⊥,∴AGB AGF ∠=∠.∵AD 平分BAC ∠,∴BAG FAG ∠=∠, 在AGB 和AGF 中BAG FAG AG AGAGB AGF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AGB AGF ≌∴6,AB AF BG FG ===,∴2CF =,∵AE 是ABC 的中线,∴BE CE =,∴EG 是BCF △的中位线,∴112EG CF ==,故选:B .二、三角形中位线相关的面积问题【例1】如图,在ABC ∆中,D 、E 、F 分别是BC 、AC 、AD 的中点,若ABC ∆的面积是40,则四边形BDEF 的面积是( )A .10B .12.5C .15D .20 【答案】C【解析】解:D 、E 、F 分别是BC 、AC 、AD 的中点,12ADE ADC S S ∆∆∴=,12ADC ABC S S ∆∆=,12DEF ADE S S ∆∆=, 1140588DEF ABC S S ∆∆∴==⨯=, D 、E 、F 分别是BC 、AC 、AD 的中点,11402022ABD ABC S S ∆∆∴==⨯=, 11201022BDF ADB S S ∆∆∴==⨯=, ∴四边形BDEF 的面积15BDF DEF S S ∆∆=+=,故选:C .【例2】E 、F 是线段AB 上的两点,且16AB =,2AE =,4BF =,点G 是线段EF 上的一动点,分别以AG 、BG 为斜边在AB 同侧作两个等腰直角三角形,直角顶点分别为D 、C ,如图所示,连接CD 并取中点P ,连接PG ,点G 从E 点出发运动到F 点,则线段PG 扫过的图形面积为______.【答案】30【解析】解:分别延长AD 、BC 相交于点H ,连接PH ,EH ,FH ,∵ADG △、GCB △为等腰直角三角形,∴45DGA CGB A B ∠=∠=∠=∠=︒,∴90DGC ∠=︒,∴AH GC ∥,又∵90HCG ∠=︒,∴90HCG DGC ∠=∠=︒,∴DG HB ∥,∴四边形DGCH 为矩形,∵点P 为DC 中点,∴点G 、P 、H 三点共线,且P 为HG 的中点,过P 作MN AB ∥分别交EH 、FH 与M 、N ,∴MN 为HEF 的中位线,且MN 即为点P 的运动轨迹, ∴GP 扫过的图形即为梯形MEFN ,∵16AB =,2AE =,4BF =,∴162410EF =--=, ∴152MN EF ==,过点H 作HO 垂直AB 于O ,∵45A B ∠=∠=︒,∴AH BH =,180454590AHB ∠=︒-︒-︒=︒, ∴182HO AO BO AB ====,∵MN 为HEF 的中位线, ∴118422PO HO ==⨯=,即梯形的高为4, ∴()14105302MEFN S =⨯⨯+=梯形,即线段PG 扫过的图形面积为30.故答案为:30.【例3】如图,在ABC 中,D ,E ,F 分别是BC AD CE ,,的中点,22cm BCF S =,则ABC S =_____2cm【答案】8【解析】解:如图,连接BE ,∵E 是AD 的中点, ∴12ABE ABD S S =△△,12ACE ACD S S =, ∴()11112222ABE ACE ABD ACD ABD ACD ABC S S S S S S S +++===, ∴12CBE ABC S S =,∵F 是CE 的中点, ∴1124FBC EBC ABC S S S ==, 而22cm BCF S =, ∴28cm ABC S =. 故答案为:8.【例4】如图,ABC 三边的中线AD ,BE ,CF 的公共点为G ,且:2:1AG GD =,若12ABC S =△,则图中阴影部分的面积是_____.【答案】4【解析】解:∵ABC 的三条中线AD ,BE ,CF 交于点G ,:2:1AG GD =,∴AE CE =, ∴13CGE AGE ACF S S S ==△△△,13BGF BGD BCF S S S ==,∵1112622ACF BCF ABC S S S ===⨯=△△△,∴231316CGE ACF S S ==⨯=,231316BGF BCF S S ==⨯=, ∴4CGE BGF S S S +==阴影.故答案为:4.【例5】如图,在Rt ABC △中,90BAC ∠=︒,,E F 分别是,BC AB 的中点,延长CA 到点D ,使得2AC AD =,连接,,,,DE DF AE EF AF 与DE 交于点O .5,13AB BC ==,求四边形AEFD 的面积.【答案】15【解析】解:∵,E F 分别是,BC AB 的中点,∴EF 是ABC 的中位线,∴EF AC ∥,2AC EF =,∵2AC AD =,∴AD EF =,又∵AD EF ∥,∴四边形ADFE 是平行四边形,在Rt ABC △中,90BAC ∠=︒,5,13AB BC ==,∴12AC =,162EF AC AD ===, ∴1522AF AB ==, ∴56152ADFE S AD AF ==⨯=⨯平行四边形.与三角形中位线有关的应用和证明【例1】在ABC ∆中,点M 是边BC 的中点,AD 平分BAC ∠,BD AD ⊥,BD 的延长线交AC 于点E ,12AB =,20AC =.(1)求证:BD DE =;(2)求DM 的长.【答案】见解析【解析】(1)证明:AD 平分BAC ∠,BAD DAE ∴∠=∠.AD BD ⊥,90ADB ADE ∴∠=∠=︒.在ADB ∆与ADE ∆中,BAD EAD AD ADADB ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩ADB ADE ∴∆≅∆,BD DE ∴=.(2)ADB ADE ∆≅∆,12AE AB ∴==,8EC AC AE ∴=-=. M 是BC 的中点,BD DE =,142DM EC ∴==. 【例2】如图,ABC ∆中,AH BC ⊥于点H ,点D ,E 分别是AB ,AC 的中点,连接DH ,EH ,DE .(1)求证:AD DH =;(2)若四边形ADHE 的周长是30,ADE ∆的周长是21,求BC 的长.【答案】见解析【解析】解:(1)AH BC ⊥,90AHB ∴∠=︒,点D 是AB 的中点,12AD DH AB ∴==; (2)AH BC ⊥,90AHB AHC ∴∠=∠=︒,点D ,E 分别是AB ,AC 的中点,12AD DH AB ∴==,12AE HE AC ==, 四边形ADHE 的周长是30,130152AD AE ∴+=⨯=, ADE ∆的周长是21,21156DE ∴=-=,点D ,E 分别是AB ,AC 的中点,DE ∴是ABC ∆的中位线,212BC DE ∴==.【例3】如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,20PEF ∠=︒,求PFE ∠的度数.【答案】20【解析】解:P 是BD 的中点,E 是AB 的中点,PE ∴是ABD ∆的中位线,12PE AD ∴=, 同理,12PF BC =, AD BC =,PE PF ∴=,20PFE PEF ∴∠=∠=︒.【例4】在Rt ABC 中,90BAC ∠=︒,E 、F 分别是BC 、AC 的中点,延长BA 到点D ,使2AB AD =,连接DE 、DF 、AE 、EF ,AF 与DE 交于点O .(1)试说明AF 与DE 互相平分;(2)若8AB =,12BC =,求DO 的长.【答案】(1)见解析 【解析】(1)∵E 、F 分别是BC 、AC 的中点,∴EF 是ABC 的中位线,∴EF AB ∥且12EF AB =.又2AB AD =,即12AD AB =, ∴AD EF ,AD EF =,∴四边形AEFD 是平行四边形,∴AF 与DE 互相平分;(2)∵在Rt ABC 中,90BAC ∠=︒,8AB =,12BC =,∴由勾股定理得AC又由(1)知,OA OF =,且AF CF =,∴14OA AC =∴在AOD △中,90DAO ∠=︒,142AD AB ==,OA∴由勾股定理得 DO ==三、梯形中位线【例1】已知一个梯形的中位线长为5cm ,其中一条底边的长为6cm ,那么该梯形的另一条底边的长是 cm .【答案】4【解析】解:设梯形的另一条底边为xcm ,由题意得:625x +=⨯,解得4x =.即梯形的另一条底边的长为4cm .故答案为:4.【例2】如图,已知直角梯形ABCD 的一条对角线把梯形分为一个直角三角形和一个边长为8cm 的等边三角形,则梯形ABCD 的中位线长为( )B. 4cmB .6cmC .8cmD .10cm【答案】B【解析】解:DBC ∆是等边三角形,8DB DC BC cm ∴===,60DBC ∠=︒,90ABC ∠=︒,30ABD ∴∠=︒,90A ∠=︒,142AD BD cm ∴==,∴梯形ABCD 的中位线是11()(48)622AD BC cm cm cm +=⨯+=, 故选:B .【例3】如图,梯形ABCD 的两底长为6AD =,10BC =,中位线为EF ,且90B ∠=︒,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相同的两区域,则EFP ∆与梯形ABCD 的面积比为 .【答案】1:16【解析】 解:梯形ABCD 的两底长为6AD =,10BC =,11()(610)822EF AD BC ∴=+=⨯+=,()()11610822ABCD S AD BC AB AB AB ∴=+⨯=⨯+⨯=梯形.()()1117682242AFED S AD EF AB AB AB =+⨯=+⨯=梯形,1714222EFP ABCD AFED S S S AB AB AB ∆∴=-=-=梯形梯形,1::81:162EFP ABCD S S ∆∴==梯形.故答案为:1:16.四、中点四边形【例1】顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是() A .平行四边形 B .对角线相等的四边形C .矩形D .对角线互相垂直的四边【答案】B【解析】 解:四边形EFGH 是菱形,1122EH FG EF HG BD AC ∴=====,故AC BD =.故选:B .【例2】若顺次连接四边形ABCD 各边的中点所得到的四边形是矩形,则原四边形必定是()A .正方形B .对角线相等的四边形C .菱形D .对角线互相垂直的四边形【答案】D【解析】 解:如图, 四边形EFGH 是矩形90FEH ∴∠=︒点E 、F 的分别是AD 、AB 的中点EF ∴是ABD ∆的中位线EF BD ∴∥90FEH OMH ∴∠=∠=︒点E 、H 的分别是AD 、CD 的中点EH ∴是ACD ∆的中位线EH AC ∴90OMH COB ∴∠=∠=︒AC BD ∴⊥.故选:D【例3】依次连接下列四边形四条边的中点得到四边形不是菱形的是( )A .矩形B .菱形C .正方形D .等腰梯形【答案】B【解析】解:如图所示,依次连接四边形四条边的中点,∵矩形ABCD ,∴AB CD ,AD BC ∥,AB CD =,AD BC =,且点E ,F ,G ,H 分别为四边的中点,∴AEF BGF CGH DEH △≌△≌△≌△, ∴EF GF GH EH ===,∴EFGH 是菱形;∴A 选项不符合题意;如上图所示,由A 选项结论得菱形EFGH ,点O ,P ,Q ,R 分别为四边的中点,∴EO OF FP PG QG QH HR ER =======,且菱形的对角相等,∴(SAS)EOR GPQ △≌△,(SAS)OFP HQR △≌△,∴OR PQ =,OP QR =,∴四边形OPRQ 是平行四边形,不一定是菱形;∴B 选项符合题意;如下图所示,正方形ABCD ,点E ,F ,G ,H 分别为四边的中点,∴AE AF FB BG GC CH HD DE =======,且90A B C D ∠=∠=∠=∠=︒,∴AEF BGF CGH DEH △≌△≌△≌△, ∴EF GF GH EH ===,∴EFGH 是菱形;∴C 选项不符合题意;如下图所示,等腰梯形ABCD ,点E ,F ,G ,H 分别为四边的中点,∴AE DE =,AF DH =,A D ∠=∠,∴(SAS)AEF DEH △≌△,∴EF EH =,同理可得,FG GH =,连接AC ,在ACD ,ACB △中,点E ,F ,G ,H 分别为四边的中点,根据三角形的中位线的性质可知,FG AC ,12FG AC =,EH AC ,12EH AC =,∴FG EH =,FG EH ∥,∴四边形EFGH 是平行四边形,又∵EF EH =,FG GH =,∴EFGH 是菱形;∴D 选项不符合题意.故选:B .【例4】如图,四边形ABCD 中,AC a =,BD b =.且AC BD ⊥,顺次连接四边形ABCD 各边中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222,A B C D ⋅⋅⋅,如此进行下去,得到四边形n n n n A B C D .下列结论正确的是( )①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b+,④四边形n n n n A B C D 的面积是12n ab+.A .①②③B .②③④C .①②D .②③【答案】B【解析】解:①连接A 1C 1,B 1D 1.∵在四边形ABCD 中,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,∴A 1D 1∥BD ,B 1C 1∥BD ,C 1D 1∥AC ,A 1B 1∥AC ;∴A 1D 1∥B 1C 1,A 1B 1∥C 1D 1,∴四边形A 1B 1C 1D 1是平行四边形;∵AC ⊥BD ,∴四边形A 1B 1C 1D 1是矩形,∴B 1D 1=A 1C 1(矩形的两条对角线相等);∴A 2D 2=C 2D 2=C 2B 2=B 2A 2(中位线定理),∴四边形A 2B 2C 2D 2是菱形;故①错误;②由①知,四边形A2B2C2D2是菱形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故②正确;③根据中位线的性质易知,A 5B 5=12A 3B 3=1122⨯A 1B 1=111222⨯⨯AC , B 5C 5=12B 3C 3=1122⨯B 1C 1=111222⨯⨯BD , ∴四边形A 5B 5C 5D 5的周长是()1284a b a b +⨯+=故③正确;④∵四边形ABCD 中,AC=a ,BD=b ,且AC ⊥BD ,∴S 四边形ABCD=12ab ; 由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形AnBnCnDn 的面积是12n ab+故④正确;综上所述,②③④正确.故选:B .1、如图,在Rt ABC ∆中,90C ∠=︒,5AC =,12BC =.若D ,E 分别为边AC ,BC 的中点,则DE 的长为( )A .5B .5.5C .6D .6.5【答案】D【解析】解:90C ∠=︒,5AC =,12BC =,13AB ∴=,AD DC =,CE EB =,1 6.52DE AB ∴==, 故选:D .2、如图是屋架设计图的一部分,其中30A ∠=︒,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,16AB m =,则DE 的长为( )B. 8mB .4mC .2mD .6m 【答案】B【解答】解:30A ∠=︒,16AB m =,1116822BC AB m ∴==⨯=, BC 、DE 垂直于横梁AC ,//BC DE ∴,点D 是斜梁AB 的中点,118422DE BC m ∴==⨯=. 故选:B .3、如图,点D 、E 、F 分别是AC 、BC 、AB 中点,且BD 是ABC ∆的角平分线.求证:BE AF =.【答案】见解析【解析】【解答】证明:连接DE ,点D 、E 、F 分别是AC 、BC 、AB 中点.//DE AB ∴,//EF AC ,∴四边形ADEF 是平行四边形,AF DE ∴=, BD 是ABC ∆的角平分线,ABD DBE ∴∠=∠,DBE BDE ∴∠=∠,BE DE ∴=,BE AF ∴=.4.如图,平行四边形ABCD 中,对角线AC ,BD 相交于O ,2BD AD =,E , F , G 分别是OC ,OD ,AB 的中点,下列结论中:①BE AC ⊥;②四边形BEFG 是平行四边形;③EG GF =;④EA 平分GEF ∠,正确的是( )A .①②B .①②④C .①②③D .②③④【答案】B【解析】解:如图,四边形ABCD 是平行四边形BO DO ∴==12BD ,AD BC =,AB CD =,又2BD AD =,OB BC OD DA ∴===,且点E 是OC 中点,BE AC ∴⊥,故①正确,E 、F 分别是OC 、OD 的中点,∴EF CD ∥,EF =12CD ,点G 是Rt ABE △斜边AB 上的中点,GE ∴=12AB AG BG ==EG EF AG BG ∴===,无法证明GE GF =,故③错误,BG EF =,BG EF CD ∥∥∴四边形BEFG 是平行四边形故②正确,EF CD AB ∥∥,BAC ACD AEF ∠∠∠∴==,AG GE =,GAE AEG ∠∠∴=,EF CD ∥AEF ACD ∴∠=∠,AB CD ∥,GAE ACD ∴∠=∠,AEG AEF ∠∠∴=,AE ∴平分GEF ∠,故④正确;故选:B .5.如图,四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD =,各边中点分别为1A ,1B ,1C ,1D ,顺次连接得到四边形1111D C B A ;再取各边中点2A ,2B ,2C ,2D ,顺次连接得到四边形2222A B C D ;依此类推,这样得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积为____.【答案】162n【解析】∵四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD = ∴11841622=⨯⨯=⨯⨯=ABCD S AC BD∵中点四边形的面积是原四边形面积的一半 ∴11111162==⨯A B C D ABCD S S222221162==⨯A B C D ABCD S S 以此类推,1161622==⨯=n n n n A B C D ABCD n n S S6.已知一个对角线长分别为12cm 和16cm 的菱形,顺次连接它的四边中点得到的四边形的面积是______.【答案】48【解析】解:E 、F 、G 、H 分别为各边中点,EF GH AC ∴∥∥,2EF GH AC ==,12EH FG BD ==,EH FG BD ∥∥,DB AC ⊥, EF EH ∴⊥,∴四边形EFGH 是矩形, 16cm 2EH BD ==,18cm 2EF AC ==,∴矩形EFGH 的面积26848cm EH EF =⨯=⨯=,故答案为:248cm .7.如图,在ABC 和ABD △中,90ACB ADB ∠=∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,若1DE =,则FG =________.【答案】1【解析】解:Rt ABC 中,点E 是AB 的中点,1DE =,22AB DE ∴==,点F 、G 分别是AC 、BC 中点, ∴112FG AB ==,故答案为:18、如图,在ABC ∆中,90ACB ∠=︒,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使13CD BD =.连接DM 、DN 、MN .若6AB =,求DN 的长.【答案】3【解析】解:连接CM ,90ACB ∠=︒,M 是AB 的中点,132CM AB ∴==, M 、N 分别是AB 、AC 的中点,12MN BC ∴=,//MN BC , 13CD BD =,MN CD ∴=,又//MN BC ,∴四边形NDCM 是平行四边形,3DN CM ∴==.9.如图,在四边形ABCD 中,E ,F 分别是AD BC ,的中点.(1)若102430120AB CD ABD BDC ==∠=︒∠=︒,,,,求EF 的长.(2)若90BDC ABD ∠-∠=︒,求证:2224AB CD EF +=.【答案】(1)13 (2)见解析【解析】(1)如图,取BD 的中点P ,连接EP FP 、,∵E ,F 分别是AD BC 、的中点,1024AB CD ==,,∴PE AB ∥,且152PE AB ==,PF CD ∥,且1122PF CD ==.又∵30120ABD BDC ∠=︒∠=︒,,∴3018060EPD ABD DPF BDC ∠=∠=︒∠=︒-∠=︒,,∴90EPF EPD DPF ∠=∠+∠=︒.在Rt EPF中,13EF ===.(2)证明:如图,取BD 的中点P ,连接EP FP 、.∵E ,F 分别是AD BC 、的中点,∴PE AB ,且12PE AB =,PF CD ∥,且12PF CD =.∴180EPD ABD DPF BDC ∠=∠∠=︒-∠,.∵90BDC ABD ∠-∠=︒,∴90∠=︒+∠BDC ABD ,∴180EPF EPD DPF ABD BDC ∠=∠+∠=∠+︒-∠180(90)90ABD ABD =∠+︒-︒+∠=︒, ∴222221122PE PF AB CD EF ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, ∴2224AB CD EF +=.10.已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形(EFGH 即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是______,请证明你的结论;(2)当四边形ABCD 的对角线满足______条件时,四边形EFGH 是菱形;(3)你学过的哪种特殊的平行四边形的中点四边形是菱形?请写出一种.【答案】(1)平行四边形.证明见解析(2)AC BD =;(3)矩形的中点四边形是菱形.【解析】(1)四边形EFGH 的形状是平行四边形.理由如下:如图1,连接BD .E 、H 分别是AB 、AD 中点,EH BD ∴∥,12EH BD =,同理FG BD ∥,12FG BD =,EH FG ∴∥,EH FG =,∴四边形EFGH 是平行四边形;故答案为:平行四边形;(2)当四边形ABCD 的对角线满足AC BD =的条件时,四边形EFGH 是菱形.理由如下: 如图2,连接AC 、BD .E 、F 、G 、H 分别为四边形ABCD 四条边上的中点,EH BD ∴∥,HG AC ∥,1=2EH BD ,12HG AC =,AC BD =,EH HG ∴=, 又四边形EFGH 是平行四边形∴平行四边形EFGH 是菱形;故答案为:AC BD =;(3)矩形的中点四边形是菱形.理由如下:连接AC 、BD .E 、F 、G 、H 分别为四边形ABCD 四条边上的中点,EH BD ∴∥,HG AC ∥,FG BD ∥,EF AC ∥,12FG EH BD ==,12EF HG AC ==,四边形ABCD 是矩形,AC BD ∴=,EH BD HG AC ===,∴四边形EFGH 是菱形.11.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN ______填(“是”或“不是”)“等垂线段”.(2)ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把ADE 绕点A 在平面内自由旋转,若2DE =,4BC =,请直接写出PM 与PN 的积的最大值.【答案】】(1)是(2)是,答案见解析(3)92【解析】(1)解:线段PM 与PN 是“等垂线段”.理由如下:∴12MP EC =,12PN BD =,∵AB AC =,AD AE =,∴AB AD AC AE -=-,即BD CE =,∴MP PN =.∵点M 、P 、N 分别为DE 、DC 、BC 的中点,∴MP EC ∥,PN BD ∥,∵在Rt ABC △中,90A ∠=,AB AC =,∴45B ACB ∠=∠=︒,∴45ACD DCB ∠=︒-∠,180135BDC B DCB DCB ∠=︒-∠-∠=︒-∠,∵MP EC ∥,PN BD ∥,∴45MPD ACD DCB ∠=∠=︒-∠,()180********DPN BDC DCB DCB ∠=︒-∠=︒-︒-∠=︒+∠, ∴454590MPD DPN DCB DCB ∠+∠=︒-∠+︒+∠=︒,∴MP PN ⊥,即线段PM 与PN 是“等垂线段”,故答案为:是.(2)解:线段PM 与PN 是“等垂线段”,理由如下:∵ADE 绕点A 按逆时针方向旋转到图2所示的位置,∴AD AE =,=90DAE ∠︒,∵90BAC ∠=︒,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD △与ACE △中,∵AB AC BAD CAE DA EA =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABD ACE △≌△, ∴BD CE =,∴12MP EC =,12PN BD =,∵BD CE =,∴MP PN =.∵点M 、P 、N 分别为DE 、DC 、BC 的中点,∴MP EC ∥,PN BD ∥,∵在Rt ABC △中,90BAC ∠=,AB AC =,∴45ABC ACB ∠=∠=︒,∴45ACD DCB ∠=︒-∠,45DBC ABD ∠=︒-∠,()180********BDC DBC DCB ABD DCB ABD DCB ∠=︒-∠-∠=︒-︒-∠-∠=︒+∠-∠ ∵MP EC ∥,PN BD ∥,∴MPD ECD ECA ACD ∠=∠=∠+∠,∵()SAS ABD ACE △≌△,∴ABD ACE ∠=∠,即MPD ECD ABD ACD ∠=∠=∠+∠()18018045DPN BDC ABD DCB ABD DCB ∠=︒-∠=︒-︒+∠-∠=︒-∠+∠, ∴45454590MPD DPN ABD ACD ABD DCB ∠+∠=∠+∠+︒-∠+∠=︒+︒=︒, ∴MP PN ⊥.∵MP PN =,MP PN ⊥.故线段PM 与PN 是“等垂线段”.(3)解:由(2)可知,MP PN =,MP PN ⊥, 故222MN PM PN PM ⨯==, 当MN 取最大值时,PM 与PN 的积有最大值.∵把ADE 绕点A 在平面内自由旋转,∴当N 、A 、M 三点共线,且点A 在NM 之间时,MN 取最大值.∴此时MN NA AM =+.∵在Rt ABC △中,90BAC ∠=,AB AC =,4BC =,N 为BC 的中点, ∴122NA BC ==, 同理可得,112MA DE ==, ∴MN 的最大值为3,PM 与PN 的积有最大值92.。
三角形中位线1、三角形的中位线定义:连结三角形两边中点的线段叫做三角形的中位线。
2、三角形中位线的性质:三角形的中位线平行于第三边,并且等于它的一半。
⑴顺次连接任意四边形四边中点所得的四边形是.⑵顺次连接矩形的四边中点所得的四边形是.⑶顺次连接菱形的四边中点所得的四边形是.1、如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.2、如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为.3、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.4、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H 分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.5、如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是;四边形A2013B2013C2013D2013的周长是.6、如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为.7、如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG= (BC-AD);⑤四边形EFGH是菱形.其中正确的是.。
三角形中位线培优复
习
课题三角形中位线培优
F M E C B A P F E D C B A F N M E C B A
例题2:BE 、CF 是△ABC 的角平分线,AN ⊥BE 于N ,AM ⊥CF 于M 。
求证:MN ∥BC
练习:如图,在∆ABC 中,AB=BC ,∠ABC=90°,F 为BC 上一点,M 为AF 的中点,BE 平分∠ABC ,且EF ⊥BE ,求证:CF=2ME 。
方法二、【取中点构造中位线】
例题1:如图,在四边形ABCD 中,AD=BC ,∠CBD=20°,∠BDA=110°,E 、F 、P 分别为AB 、CD 、BD 的中点,探索PF 与EF 的数量关系.
练习:如图,在∆ABC 中,∠C=90°,CA=CB ,E ,F 分别为CA ,CB 上一点,CE=CF ,M ,N 分别为AF ,BE 的中点,求证:AE=2MN
N
M D C B A 例题2:如图,四边形ABCD 中,M ,N 分别为AD ,BC 的中点,边BD ,若AB=10,CD=8,求MN 的取值范围。
练习:已知:如图,在四边形ABCD 中,AD =BC ,E 、F 分别是DC 、AB 边的中点,FE
的延长线分别与AD 、BC 的延长线交于H 、G 点.求证:∠AHF =∠BGF .
方法三、【借助平行四边形的性质】
例题:如图,(1)E 、F 为△ABC 的中点,G 、H 为AC 的两个三等分点,连接EG 、FH 并延长交于D , 连接AD 、CD. 求证:四边形ABCD 是平行四边形.
练习:已知:如图,在□ABCD 中,E 是CD 的中点,F 是AE 的中点,FC 与BE 交
于G .求证:GF =GC .
课后作业
1.如图,在△ABC 中,AB=10,BC=7,BE 平分∠ABC ,AE ⊥BE ,点F 为AC 的中点,连接EF ,求EF 的长度.
3.如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点。
求证:2AF= FC
E F B
A C。