2021/7/26
25
例9.有男女各五个人,其中有3对是夫妻,沿 圆桌就座,若每对夫妻都坐在相邻的位置,问有 多少种坐法?
设3对夫妻分别为A和a,B和b,C和c,先让A,B, C三人和另外4个人沿圆桌就座的方法为6!种.
又对上述每种坐法,a坐在A的邻座的方式有左右两 种,b,c也如此.
所以共有6!*2*2*2=5760种.
将0到299的整数都看成三位数,其中数字3不 出现的,百位数字可以是0,1或2三种情况。十位 数字与个位数字均有九种,因此除去0共有
3×9×9-1=242(个).
2021/7/26
12
例10、
在小于10000的自然数中,含有数字1的数有 多少个?
不妨将0至9999的自然数均看作四位数,凡位数不到 四位的自然数在前面补0,使之成为四位数。
所以符合题意的个数为:
1× P18× P28=448
2021/7/26
19
例4、用0、1、2、3、4、5六个数字,可以 组成多少个没有重复数字的三位偶数?
1.个位为0,十位为1、2、3、4、5中的一个,百位为剩下的 四个数字中的一个,所以这样的偶数共有1×P15×P14
2.个位为2,百位为1、3、4、5中的一个,十位为剩下的四个 数字中的一个,所以这样的偶数共有1×P14×P14
2021/7/26
10
例8、求正整数1400的正因数的个
数.
因为任何一个正整数的任何一个正因数(除1外)都是这个 数的一些质因数的积,因此,我们先把1400分解成质因数的 连乘积1400=23527.所以这个数的任何一个正因数都是由2, 5,7中的若干个相乘而得到(有的可重复)。
于是取1400的一个正因数,这件事情是分如下三个步骤 完成的: