当前位置:文档之家› 输电线路纵联保护中光纤通信的应用

输电线路纵联保护中光纤通信的应用

输电线路纵联保护中光纤通信的应用
输电线路纵联保护中光纤通信的应用

输电线路纵联保护中光纤通信的应用

发表时间:2018-08-16T16:49:38.460Z 来源:《电力设备》2018年第13期作者:胡念恩

[导读] 摘要:为了在电网或者电气设备发生故障,或出现影响电网正常运行的异常情况时能及时切除故障,消除异常情况,保证电网的正常运行,就需要电力系统继电保护与安全自动装置发挥作用。

(西北民族大学电气工程学院甘肃兰州 730124)

摘要:为了在电网或者电气设备发生故障,或出现影响电网正常运行的异常情况时能及时切除故障,消除异常情况,保证电网的正常运行,就需要电力系统继电保护与安全自动装置发挥作用。因此本文主要介绍继电保护中的输电线路纵联保护中光纤通信的应用。

关键词:输电线路纵联保护;信息交换;光纤通信

1.输电线路纵联保护

1.1纵联保护的概念

电力系统的稳定运行与国民的生产生活有着密不可分的关系,为保证电力系统的正常运行,就需要加装电力系统继电保护装置,目前在输电线路中运用最多的是纵联保护。研究和实践表明,利用线路两侧的电气量可以快速、可靠地区分本线路内部任意点短路与外部短路,达到有选择、快速地切除全线路任意点短路的目的。为此需要将线路一侧电气量信息传到另一侧去,安装于线路两侧的保护对两侧的电气量同时比较、联合工作,也就是说在线路两侧之间发生纵向的联系,以这种方式构成的保护称之为输电线路的纵联保护[1]。

输电线路纵联保护一般构成如图1所示。图中TV为电压互感器,TA为电流互感器,它们分别获取本端的电压、电流,两端的保护根据不同的保护原理分别从中提取用来比较的电气量特征,通过通信设备将本端电气量特征传送到对端,并接收来自对端的电气量特征,将两端的电气量特征进行比较,如果满足动作条件则本端断路器跳开,并发送信号告知对端;若不符合动作条件则不会动作。

图1输电线路纵联保护结构框图

1.2输电线路纵联保护两侧信息的交换

在电力系统中输电线路的纵联保护需要相应通道和通信设备进行信息交换与传递,目前常用的通信方式有:导引线通信、电力线路载波通信、微波通信、光纤通信,利用以上通信方式构成的保护分为导引线纵联保护、电力线路载波纵联保护、微波纵联保护、光纤纵联保护[2]。

2.光纤通信

光纤通道由于其在性能和经济上的优势,逐渐成为目前在输电线路纵联保护中最常用的通信通道。

2.1光纤通信的组成

在这里以点对点单向光纤通信系统为例,图2是示意图。

图2 单向点对点光纤通信系统

2.1.1光发射机

使用光发射机可以把电信号转变为光信号进行传输。光发射机也称光发送器,包含电调制器和光调制器。一般是由铝石钕榴石激光器或砷镓铝二极管或者砷化镓发光二极管构成。发光二极管的寿命很长,能达到百万小时左右,所以是简单便宜但又可靠的光电转换元件。

2.1.2光纤

光导纤维简称光纤,是一种由玻璃或塑料制成的纤维。主要是由保护和加强光纤机械强度的包层和传输光信号的光芯组成。因其具有抗干扰能力强、节约金属材料、不易受潮、通道容量大、无感应性能等特点,所以被广泛应用于通信方面。

2.1.3中继器

信号经过光纤传输后会有一定程度的衰减,这个时候就需要用中继器对衰减信号进行放大。常用的中继器有全光中继器和光-电-光中继器,可以根据不同的需求选择相应的继电器对信号进行处理。

2.1.4光接收机

通过光纤传过来的是光信号,光接收机对接收到的光信号进行处理,将光信号转变成电信号,通常是由接收光信号的光探测器和处理信号的电解调节器组成。

2.2 继电保护中光纤通信的应用方式

光芯通信在继电保护中的通信方式主要有专用光纤通信方式和复用光纤通信方式。

2.2.1专用光纤通信方式

在继电保护光纤通信中有一种专门负责传输继电保护信息,不传输其他信息的通道,这种传输方式称为专用光纤通信方式。这种通信方式使用的光纤的光芯经过融纤技术的处理,直接连接继电保护设备的接口,没有经过任何其它中间设备,保证了其通信的可靠性。因此这种通信方式具有简单可靠、便于管理等特点。但是这种方式受到光的接发距离和敷设专用光纤费用等因素的限制,其通信距离通常限于

220kV线路光纤通道测试作业指导书

贵州华电毕节热电有限公司 220kV线路专用光纤通道定检测试 作业指导书 批准: 审核: 编制: 2014年09月

一、适用范围: 本作业指导书适用于220kV线路保护光纤通道定检测试作业。 二、引用标准: 1、《电力安全动作规程》(发电厂和变电站电气部分)DL 408-1991 2、《继电保护和电网安全自动装置检验规程》GB/T 14285—2006 3、《继电保护和电网安全自动装置检验规程》DL/T 995—2006 4、《中国南方电网通信管理暂行规定》(南方电网调【2003】10号) 5、《中国南方电网安全自动装置管理规定》(南方电网调【2004】7号) 6、《南方电网电力调度数据网络管理办法》(调通【2005】2号) 7、《南方电网通信网络生产应用接口技术规范》(调通【2007】18号) 三、作业条件及作业现场要求 1、工作区间与带电设备的安全距离应符合《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的要求。 2、作业现场应有可靠的试验电源,且满足试验要求。 3、检验对象处于停运状态,现场安全措施完整、可靠。 4、保持现场工作环境整洁。 四、作业人员要求 1、所有作业人员必须身体健康,精神状态良好。 2、所有作业人员必须掌握《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的相关知识,并经考试合格。 3、所有作业人员应有触电急救及现场紧急救火的常识。 4、本项检验工作需要作业人员2—3人。其中工作负责人1人,工作班成员1—2人。 5、工作负责人应由从事继电保护现场检验工作3年以上的专业人员担任,必须具备工作负责人资格,熟练掌握本作业程序和质量标准,熟悉工作班成员的技术水平,组织并合理分配工作,并对整个检验工作的安全、技术等负责。 6、工作班成员应由从事继电保护现场检验工作半年以上的专业人员担任,必须具备必要的继电保护知识,熟悉本作业指导书,能掌握有关试验设备、仪器仪表的使用。 五、作业前准备工作: 1、开始工作前一天,准备好作业所需设备、仪器、仪表和工器具。主要仪器设备和工器具见下表。 主要仪器设备和工器具 序号名称数量规格备注 1 继电保护光纤通道测试仪1台ZY64520 有效期内 2 尾纤适量 3 数字万用表1只4位半有效期内 4 工具箱1套0.2级,0.5—2A 各种检修工具齐全 2、开始作业前一天,准备好图纸及资料,且图纸及资料应符合现场实际情况。具体图纸、资料见下表。 检验所需图纸资料 序号资料名称单位数量

输电线路纵联保护中光纤通信的应用

输电线路纵联保护中光纤通信的应用 发表时间:2018-08-16T16:49:38.460Z 来源:《电力设备》2018年第13期作者:胡念恩 [导读] 摘要:为了在电网或者电气设备发生故障,或出现影响电网正常运行的异常情况时能及时切除故障,消除异常情况,保证电网的正常运行,就需要电力系统继电保护与安全自动装置发挥作用。 (西北民族大学电气工程学院甘肃兰州 730124) 摘要:为了在电网或者电气设备发生故障,或出现影响电网正常运行的异常情况时能及时切除故障,消除异常情况,保证电网的正常运行,就需要电力系统继电保护与安全自动装置发挥作用。因此本文主要介绍继电保护中的输电线路纵联保护中光纤通信的应用。 关键词:输电线路纵联保护;信息交换;光纤通信 1.输电线路纵联保护 1.1纵联保护的概念 电力系统的稳定运行与国民的生产生活有着密不可分的关系,为保证电力系统的正常运行,就需要加装电力系统继电保护装置,目前在输电线路中运用最多的是纵联保护。研究和实践表明,利用线路两侧的电气量可以快速、可靠地区分本线路内部任意点短路与外部短路,达到有选择、快速地切除全线路任意点短路的目的。为此需要将线路一侧电气量信息传到另一侧去,安装于线路两侧的保护对两侧的电气量同时比较、联合工作,也就是说在线路两侧之间发生纵向的联系,以这种方式构成的保护称之为输电线路的纵联保护[1]。 输电线路纵联保护一般构成如图1所示。图中TV为电压互感器,TA为电流互感器,它们分别获取本端的电压、电流,两端的保护根据不同的保护原理分别从中提取用来比较的电气量特征,通过通信设备将本端电气量特征传送到对端,并接收来自对端的电气量特征,将两端的电气量特征进行比较,如果满足动作条件则本端断路器跳开,并发送信号告知对端;若不符合动作条件则不会动作。 图1输电线路纵联保护结构框图 1.2输电线路纵联保护两侧信息的交换 在电力系统中输电线路的纵联保护需要相应通道和通信设备进行信息交换与传递,目前常用的通信方式有:导引线通信、电力线路载波通信、微波通信、光纤通信,利用以上通信方式构成的保护分为导引线纵联保护、电力线路载波纵联保护、微波纵联保护、光纤纵联保护[2]。 2.光纤通信 光纤通道由于其在性能和经济上的优势,逐渐成为目前在输电线路纵联保护中最常用的通信通道。 2.1光纤通信的组成 在这里以点对点单向光纤通信系统为例,图2是示意图。 图2 单向点对点光纤通信系统 2.1.1光发射机 使用光发射机可以把电信号转变为光信号进行传输。光发射机也称光发送器,包含电调制器和光调制器。一般是由铝石钕榴石激光器或砷镓铝二极管或者砷化镓发光二极管构成。发光二极管的寿命很长,能达到百万小时左右,所以是简单便宜但又可靠的光电转换元件。 2.1.2光纤 光导纤维简称光纤,是一种由玻璃或塑料制成的纤维。主要是由保护和加强光纤机械强度的包层和传输光信号的光芯组成。因其具有抗干扰能力强、节约金属材料、不易受潮、通道容量大、无感应性能等特点,所以被广泛应用于通信方面。 2.1.3中继器 信号经过光纤传输后会有一定程度的衰减,这个时候就需要用中继器对衰减信号进行放大。常用的中继器有全光中继器和光-电-光中继器,可以根据不同的需求选择相应的继电器对信号进行处理。 2.1.4光接收机 通过光纤传过来的是光信号,光接收机对接收到的光信号进行处理,将光信号转变成电信号,通常是由接收光信号的光探测器和处理信号的电解调节器组成。 2.2 继电保护中光纤通信的应用方式 光芯通信在继电保护中的通信方式主要有专用光纤通信方式和复用光纤通信方式。 2.2.1专用光纤通信方式 在继电保护光纤通信中有一种专门负责传输继电保护信息,不传输其他信息的通道,这种传输方式称为专用光纤通信方式。这种通信方式使用的光纤的光芯经过融纤技术的处理,直接连接继电保护设备的接口,没有经过任何其它中间设备,保证了其通信的可靠性。因此这种通信方式具有简单可靠、便于管理等特点。但是这种方式受到光的接发距离和敷设专用光纤费用等因素的限制,其通信距离通常限于

纵联保护原理

纵联保护原理 线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。而普通的反应线路一侧电量的保护不能做到全线速动。纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。是属于直接比较两侧电量对纵联保护。目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。 先了解一下纵联差动保护: 为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。 输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连

接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路. 纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。 高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。安工作原理的不同可分为两大类:方向高频保护和相差高频保护。 光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。光纤通信广泛采用PCM调制方式。这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

纵联保护原理

纵联保护原理?我们先来瞧一下反映一侧电气量变化得保护有什么不足? 对于反映单侧电气量变化得M侧保护来说,它无法区分就是本侧线路末端故障还就是下级线路始端故障。所以在保护整定上要将它瞬时段得保护范围限制在全线得70%~80%左右,也即反映单侧电气量变化得保护不能瞬时切除本线路全长内得故障。 因此,引入了纵联保护,纵联保护就是综合反映线路两侧电气量变化得保护,对本线路全长范围内得故障均能瞬时切除。 为了使保护能够做到全线速动,有效得办法就是让线路两端得保护都能够测量到对端保护得动作信号,再与本侧带方向得保护动作信号比较、判定,以确定就是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路得任何一处发生故障,线路两侧得保护都能瞬时动作跳闸。快速性、选择性都得到了保证。?在构成保护上,就是将对侧对故障得判断量传送到本侧,本侧保护经过综合判断,来决定保护就是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障就是否在本线路正方向得判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护得方式: 1、闭锁式:也就就是说收不到高频信号就是保护动作与跳闸得必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护得正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 ? 2、允许式:也就就是说收到高频信号就是保护动作与跳闸得必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护得正方向保护范围均超过本线路全长得50%以上,但没有超出本线路全长);高频信号采

继电保护光纤通道管理规定

500kV系统继电保护光纤通道管理规定 一.总则 1.为加强继电保护光纤通道管理,进一步提高继电保护光纤通道可靠性,制定本规定。 2.本规定主要依据《继电保护和安全自动装置技术规程》(GB/T 14285-2006)、《线路保护及辅助装置标准化设计规范》(Q/GDW 161-2007)、《继电保护和电网安全自动装置检验规程》(DL/T 995—2006)和《光纤通道传输继电保护信息通用技术条件》等制定。 3.本规定适用于500kV继电保护光纤通道的调度、设计、基建、运行维护等。220千伏及以下系统可参照执行。 二.专业管理职责划分 1.专用纤芯方式 1.1保护用光纤直接由龙门架接续盒引出到线路保护装置的,接续盒至保护装置的光缆由继电保护专业负责维护。通信专业协助进行光纤的测试及熔接工作。 1.2保护用光纤由通信机房光配线架(ODF)引出到线路保护装置的,通信专业与继电保护专业以光配线架为分工界面。龙门架接续盒至通信机房光配线架的光缆及光配线架由通信专业负责维护。光配线架至保护装置的光缆由继电保护专业负责维护,通信专业协助进行光纤的测试及熔接工作。 2.复用接口方式 保护装置复用通道以配线架(数字配线架或音频配线架)作为继电保护专业和通信专业的分工界面。继电保护接口设备(保护用光电转换器)至配线架间的电

缆由保护专业维护,配线架和复用通信设备及其连接线由通信专业负责维护,继电保护接口设备由继电保护专业负责维护。 3.传输保护信号的光缆、数字电缆、音频电缆在通信侧各配线架的接线或改线方案由通信专业、继电保护专业的双方负责人签字确认,接线由通信专业人员负责。接线时,继电保护专业人员应到场配合。 三.管理规定和技术要求 1.对于配置双套光纤差动保护的线路,要求至少一套光纤差动保护使用双通道。 2.线路两套光纤纵联保护通道应使用两条完全独立的路由。 3.采用复用光纤通道的线路两侧继电保护设备,其使用的继电保护接口设备应采用同型号、同版本的产品。 4.采用2M方式传输的继电保护业务通道不得设置通道保护方式。 5.对于主干线光纤网络长度小于30km且建设有OPGW光缆的线路,宜优先采用专用纤芯作为保护通道。 6.对于传输继电保护信息的迂回光纤通道,迂回路由的站点应在500kV、220kV系统OPGW光纤通信骨干环网上。 7.传输保护的迂回光纤通道,通道传输收发延时应相同,且单向传输延时不得超过10ms,所经过的站点不宜超过6个站点,迂回所经线路长度不宜超过 1000km。 8.继电保护通道中任一设备故障,不应造成多于6条线路的一套主保护信号同时中断。

纵联保护原理

纵联保护原理 我们先来看一下反映一侧电气量变化的保护有什么不足? 对于反映单侧电气量变化的M侧保护来说,它无法区分是本侧线路末端故障还是下级线路始端故障。所以在保护整定上要将它瞬时段的保护范围限制在全线的70%~80%左右,也即反映单侧电气量变化的保护不能瞬时切除本线路全长内的故障。 因此,引入了纵联保护,纵联保护是综合反映线路两侧电气量变化的保护,对本线路全长范围内的故障均能瞬时切除。 为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。快速性、选择性都得到了保证。 在构成保护上,是将对侧对故障的判断量传送到本侧,本侧保护经过综合判断,来决定保护是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障是否在本线路正方向的判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护的方式: 1、闭锁式:也就是说收不到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护的正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 2、允许式:也就是说收到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护的正方向保护范围均超过本线路全长的50%以上,但没有超出本线路全长);高频信号

采用收发不同频率,即双频制。 3、直跳式:也就是说收到高频信号是保护跳闸的充分必要条件。一般应用于欠范围式纵联保护。 4、差动式:也就是说将对侧电气量转化为数字信号传送到本侧进行直接计算 二、故障时允许式信号、闭锁式信号的特点 闭锁式信号主要在非故障线路上传输 允许式信号主要在故障线路上传输 所以说,对于闭锁信号可以利用电力线路相-地通道构成闭锁式保护;而允许信号由于主要在故障线路上传输,则只能采用相-相通道或者是复用载波、复用微波、专用光纤通道。 三、闭锁式纵联保护原理

纵联保护分类

1 纵联保护分类 仅反应线路一侧的电气量不可能区分本线末端和对侧母线(或相邻线始端)故障,只有反应线路两侧的电气量才可能区分上述2点故障,为了达到有选择性地快速切除全线故障的目的。需要将线路一侧电气量的信息传输到另一侧去,也就是说在线路两侧之间发生纵向的联系。这种保护称为输电线的纵联保护。 1.1 按使用通道分类 为了交换信息,需要利用通道。纵联保护按照所利用通道的不同类型可以分为4种(通常纵联保护也按此命名):导引线纵联保护(简称导引线保护)、电力线载波纵联保护(简称载波保护)、微波纵联保护(简称微波保护)、光纤纵联保护(简称光纤保护)。 1.2 各种传送信息通道的特点 1.2.1 导引线通道。这种通道需要铺设电缆,其投资随线路长度而增加。当线路较长(超过10 km以上)时就不经济了。导引线越长,安全性越低。导引线中传输的是电信号。在中性点接地系统中,除了雷击外,在接地故障时地中电流会引起地电位升高,也会产生感应电压,对保护装置和人身安全构成威胁,也会造成保护不正确动作。所以导引线的电缆必须有足够的绝缘水平(例如15 kV的绝缘水平),从而使投资增大。导引线直接传输交流电量,故导引线保护广泛采用差动保护原理,但导引线的参数(电阻和分布电容)直接影响保护性能,从而在技术上也限制了导线保护用于较长的线路。 1.2.2 电力线载波通道。这种通道在保护中应用最广。载波通道由高压输电线及其加工和连接设备(阻波器、结合电容器及高频收发信机)等组成。高压输电线机械强度大,十分安全可靠。但正是在线路发生故障时通道可能遭到破坏(高频信号衰减增大),为此需考虑在此情况下高频信号是否能有效传输的问题。当载波通道采用“相-地”制,在线路中点发生单相短路接地故障时衰减与正常时基本相同,但在线路两端故障时衰减显著增大。当载波通道采用“相-相”制,在单相短路接地故障时高频信号能够传输,但在三相短路时仍然不能。为此载波保护在利用高频信号时应使保护在本线路故障信号中断的情况下仍 能正确动作。 1.2.3 微波通道。微波通道与输电线没有直接的联系,输电线发生故障时不会对微波通信系统产生任何影响,因而利用微波保护的方式不受限制。微波通信是一种多路通信系统,可以提供足够的通道,彻底解决了通道拥挤的问题。微波通信具有很宽的频带,线路故障时信号不会中断,可以传送交流电的波形。采用脉冲编码调制(PCM)方式可以进一步扩大信息传输量,提高抗干扰能力,也更适合于数字保护。微波通信是理想的通信系统,但是保护专用微波通信设备是不经济的,应当与远动等在设计时兼顾起来。同时还要考虑信号 衰耗的问题。 1.2.4 光纤通道。光纤通道与微波通道有相同的优点。光纤通信也广泛采用(PCM)调制方式。当被保护线路很短时,通过光缆直接将光信号送到对侧,在每半套保护装置中都

保护光纤通道测试报告.

附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为G.703规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用G.703同向数字接口或2Mbps透明传输接口,SDH的2Mbps 通道再定时功能不用,此项工作由通信人员负责。 2、试验仪器

三、保护通道构成 备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 4.1专用光纤方式

(A)配有光纤接线盒的专用光纤通道连接图 (B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 4.1、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功 率。 测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部 故障时,I1 与 I2 反向流入,KD的电流为1 1 TA I n - 2 2 TA I n = 1 I' - 2 I'≈0 ,故KD不会动作。当在保护 区内K2点故障时, I1与 I2 同向流入,KD的电流为: 1 1 TA I n + 2 2 TA I n = 1 I' + 2 I'=2k TA I n 当2k TA I n 大于KD的整定值时,即 1 I' - (3) max max / unb st unp i k TA I K K f I n = ≠0 ,KD动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部

故障时, 2 k TA I n ≥Iset ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达: .min .min .min ()brk brk op ork brk op I I I K I I I >≥≤+ 式中:Kst ——同型系数,取; Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。 为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop= (Krel 为可靠系数,取)。越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。对于大、中型发电机,即使轻微故障也会造成严重后果。为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。显然,图所示的

纵联保护方式比较分析

纵联保护方式比较分析 摘 要 对纵联保护进行了分类,分析了各类纵联保护的原理、技术特点和工作方式,并比较了各类纵联保护的优缺点。 关键词 纵联保护分类 工作方式 1 纵联保护分类 仅反应线路一侧的电气量不可能区分本线末端和对侧母线(或相邻线始端)故障,只有反应线路两侧的电气量才可能区分上述2点故障,为了达到有选择性地快速切除全线故障的目的。需要将线路一侧电气量的信息传输到另一侧去,也就是说在线路两侧之间发生纵向的联系。这种保护称为输电线的纵联保护。 1.1 按使用通道分类 为了交换信息,需要利用通道。纵联保护按照所利用通道的不同类型可以分为4种(通常纵联保护也按此命名):导引线纵联保护(简称导引线保护)、电力线载波纵联保护(简称载波保护)、微波纵联保护(简称微波保护)、光纤纵联保护(简称光纤保护)。 1.2 各种传送信息通道的特点 1.2.1 导引线通道。这种通道需要铺设电缆,其投资随线路长度而增加。当线路较长(超过10 km以上)时就不经济了。导引线越长,安全性越低。导引线中传输的是电信号。在中性点接地系统中,除了雷击外,在接地故障时地中电流会引起地电位升高,也会产生感应电压,对保护装置和人身安全构成威胁,也会造成保护不正确动作。所以导引线的电缆必须有足够的绝缘水平(例如15 kV的绝缘水平),从而使投资增大。导引线直接传输交流电量,故导引线保护广泛采用差动保护原理,但导引线的参数(电阻和分布电容)直接影响保护性能,从而在技术上也限制了导线保护用于较长的线路。 1.2.2 电力线载波通道。这种通道在保护中应用最广。载波通道由高压输电线及其加工和连接设备(阻波器、结合电容器及高频收发信机)等组成。高压输电线机械强度大,十分安全可靠。但正是在线路发生故障时通道可能遭到破坏(高频信号衰减增大),为此需考虑在此情况下高频信号是否能有效传输的问题。当载波通道采用“相-地”制,在线路中点发生单相短路接地故障时衰减与正常时基本相同,但在线路两端故障时衰减显著增大。当载波通道采用“相-相”制,在单相短路接地故障时高频信号能够传输,但在三相短路时仍然不能。为此载波保护在利用高频信号时应使保护在本线路故障信号中断的情况下仍能正确动作。 1.2.3 微波通道。微波通道与输电线没有直接的联系,输电线发生故障时不会对微波通信系

保护光纤通道测试报告

v1.0 可编辑可修改附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

v1.0 可编辑可修改 编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A 等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用同向数字接口或2Mbps透明传输接口,SDH的2Mbps通道再定 时功能不用,此项工作由通信人员负责。 2、试验仪器 三、保护通道构成

备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 专用光纤方式 (A)配有光纤接线盒的专用光纤通道连接图

(B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功率。测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立 技术档案,在继保专业存档。部检时若收信功率与投产时相比不低于 5 dBm即可,发信功率若变化超过±3dBm,请于厂家联系。 3、由于保护装置及保护接口装置的发光功率通常无法直接测量,需要借助 尾纤,测量到的发光功率实为经过尾纤后的光功率。有光纤接线盒时, 由于尾纤较短,尾纤的光衰耗较小,就将发信端口尾纤测量得到的光功 率看作装置的发光功率;无光纤接线盒时,由于尾纤较长,光衰耗较大, 测量得到的保护装置的发光功率与装置的标称发光功率就有一定的差 距,若测得的发光功率与装置的标称发光功率有较大的差距,就需要向 厂家询问,以确保装置及尾纤是否正常。 4、无光纤接线盒时,测试点1仅可以测量到保护装置的接收到的光功率,

光纤纵联电流差动保护通道异常

光纤纵联电流差动保护通道异常

作者: 日期:

1概述 光纤纵联电流差动保护是近年来发展相当快的输电线路保护之一,它借助光纤通道传送输电线路两端的信息,以基尔霍夫电流定律为依据,能简单、可靠地判断出区内、区外故障。对于线路保护来说,分相电流差动保护具有天然的选相能力和良好的网络拓扑能力,不受系统振荡、非全相运行的影响,可以反映各种类型的故障,是理想的线路主保护。光纤通信与输电线无直接联系,不受电磁干扰的影响,可靠性高,通信容量大。光纤纵联电流差动保护既利用了分相电流差动的良好判据,又克服了传统导引线方式的种种缺陷,具有其他保护无以比拟的优势,因此,近年来国内外各大公司均加强在该领域的研究开发,各自相继推出了此类保护产品。 就光纤纵差保护的应用环境来说,随着国家电力工业的发展,通讯技术的日新月异,光缆及光纤设备费用的急剧下降,光纤通讯网在电力系统的架设越来越普遍。如广东目前已建成了光缆1300km SD(Synchronous Digital Hierarchy)站点30多个,以珠江三角洲为中心的SDH自愈环电力光纤网络。目前,许多地方都把发展光纤通信主干网作为电力通信的发展方向和重要任务,这都为继电保护所需要的稳定、可靠的数字化信息传输通道创造了有利条件。在光纤网络敷设的光缆中,除提供数据共用光纤通道接口,满足数据通信、宽带多媒体、图像信息等的需求外,还提供了继电保护专用的纤芯,这为高压输电线的电流纵联差动保护提供了复用光纤通道(与SDH共用的数据通道)和专用光纤通道(利用光纤网络中继电保护用纤芯构成)。另外,由于光纤电流差动保护简单、可靠,不受线路运行方式的影响,在城网和短输电线路中大量采用。如上海电网已把采用光纤分相电流纵差保护作为电网继电保护十五”规划的一个重要配置原则来执行,目前已投运和即将投运的光纤电流差动保护达194套。因城网中输电线大多较短,光纤芯直接接入不需附加复接设备,管理也较方便,故在城网中光纤电流差动保护以专用光纤通道方式为多。 光纤传输通道的稳定与否是光纤纵联差动保护正确工作的基础,一旦光纤传输通道发生故障,光纤纵联差动保护将不能正常工作。实际上,为提高保护装置的可靠性,当光纤传输通道发生故障时,保护装置会将电流纵联差动保护自动退出。光纤通道的可靠性虽然较高,但也有损坏的可能性,如光缆断芯、熔纤质量不好、光纤跳线接头松动、光纤受潮或接头积灰导致损耗增大等。如1999年6月7日,塘镇站到机场站的2158/2159两条220kV线路光纤保护告警,故障原因是:线路龙门架上OPGWOptical Fiber Composition Ground Wire )与站内普通光缆接线盒由于雨天受潮引起一束光纤(4根芯)衰耗增大。2000年7月20 日,吴泾第二发电厂到长春站4410线的两套光纤差动保护均通道告警,原因是该线OPGV fc 缆中有几芯熔接质量不好,光纤调换到备用芯后恢复正常。 考虑光纤信息传输通道有可能损坏,为保证高压输电线的安全运行,作为主保护的纵差保护不致由于通道故障而退出运行,确实有必要为同一套纵差保护装置配置备用光纤通道。不论采用专用光纤通道或复用通道,在工程设计中,敷设的光缆要留有一定的备用芯线,当工作的纤芯由于受潮或断芯等故障导致数据传

光纤配线架验收测试报告

光纤配线架测试报告 检验记录 检验清单 主检人: 校核人: 批准人: 日期:光纤配线架测试 一、认可项目、检验类别及检验依据、流程图 1.认可项目及检验标准 产品名称:光纤配线架 检验标准:YD/T 778-2006 光纤配线架 2.检验类别 (1)产品认证型式检验 (2)产品认证复评型式检验 (3)产品认证监督检验 (4)产品认证监督检验+产品认证变更检验

(5)委托检验 上述(1)-(4)类别的检验依据除了对应产品的检验标准以外,还应依据泰尔发布的最新配线设备认证实施规则来执行。 3.检验流程图 按 委 托 方 要 求 , 不 符 合 标 准 要 求 数据处理,评判试验结果 评判、编制报告 样品检后处理 常温检验 1.外观与结构 2.材料

二、检验项目及检验方法 1、外观与结构检查 1.1用卡尺或卷尺检测机架外形尺寸。 1.2用手实际操作转动、插拔、锁定部位应感觉适度,用万能角尺,检测机架门开启角;用塞规检测其间隙的上、中、下三处。 1.3用装配工具手工检查紧固件,用裸手触摸外露和操作部位。 1.4用R量规检测光缆尾纤的弯曲半径。 1.5其它用目视方法检查。 2、功能检查 测试步骤:采用视察法和操作法检查各功能装置安装的完整齐备性及其达到的功能性。 3、光电性能测试 3.1插入损耗 3.1.1测试连接框图 3.1.2 按测试连接图连接测试光纤测试,光回波损耗测试仪 S1 光源,此时,图中S 2 回波损耗测试仪 启光源开关,预热15 3.2回波损耗 3.2.1测试连接框图 3.2.2测试步骤

反射测试尾纤末端暴露。光回损仪开机预热15min之后,将标准反射测试尾纤暴露端环绕直径为7mm左右的圆柱体8圈,对光回损仪保存设置初始值。再将标准反射测试尾纤暴露端按图4所示接上被测尾纤,在被测尾纤暴露端环绕8圈,此时光回损仪所显示的值即为被测尾纤暴露端R2的实际回波损耗值;同理,将被测尾纤暴露端R2与标准反射测试尾纤连接,另一端R1环绕8圈,即可得到R1端的实际回波损耗值。 3.3高压防护接地装置与机架间绝缘测试 用CY2679A绝缘电阻测试仪进行测试,测试前仪表应预热1h,然后校准,选择500V 测试电压×105MΩ电阻档,将被测部位接至仪表的R 端,旋钮依次从放电、充电、测试位 X 置转动,待表头指针稳定后读取绝缘电阻值,如表头指针摆动不定,则读取1min时的绝缘电阻值,然后旋钮恢复至放电状态,准备下次测试。 3.4高压防护接地装置与机架间耐电压测试 用CY2661耐压测试仪进行测试,测试前仪表应预热并可靠接地,漏电流设置为2mA,电压量程为5kV,输出电压选择直流,按启动按钮,然后旋转升压旋钮使电压升至规定的值(DC 3000V),加压时间为1min,电压撤消(复原)后,将旋钮反时针旋至零位。 4、机械耐久性试验 在对方插头插入的情况下,以通常使用的方法插入和拔出,共插拔500次,最后50次时每10次记录一次光学性能数据,同时对插针及适配器的弹性套筒进行清洁,记录5次数据,取5次数据的平均值。 5、塑料燃烧性能试验 测试步骤:先调整燃烧器的供给量和空气入口,使之产生高度为(20±2)mm蓝色火焰,然后再增加空气量直到火焰的黄尖消失,对样品施加火焰30s,试样离火后持续有焰燃烧时间应小于10s。如右图所示。 6、机械和环境试验

继电保护第4章课后习题参考答案

4.7 图4—30所示系统,线路全部配置闭锁式方向比较纵联保护,分析在K点短 路时各端保护方向元件的动作情况,各线路保护的工作过程及结果。 ?? 答:当短路发生在B—C线路的K处时,保护2、5的功率方向为负,闭锁信号 持续存在,线路A—B上保护1、2被保护2的闭锁信号闭锁,线路A—B两侧 均不跳闸;保护5的闭锁信号将C—D线路上保护5、6闭锁,非故障线路保护不跳闸。故障线路B—C上保护3、4功率方向全为正,均停发闭锁信号,它们 判定有正方向故障且没有收到闭锁信号,所以会立即动作跳闸,线路B—C被切除。 答:根据闭锁式方向纵联保护,功率方向为负的一侧发闭锁信号,跳闸条件是本 端保护元件动作,同时无闭锁信号。1保护本端元件动作,但有闭锁信号,故不 动作;2保护本端元件不动作,收到本端闭锁信号,故不动作;3保护本端元件 动作,无闭锁信号,故动作;4保护本端元件动作,无闭锁信号,故动作;5保 护本端元件不动作,收到本端闭锁信号,故不动作;6保护本端元件动作,但有 闭锁信号,故不动作。 4.10 图4—30所示系统,线路全部配置闭锁式方向比较纵联保护,在K点短路时,若A—B和B—C线路通道同时故障,保护将会出现何种情况?靠什么保护 动作切除故障? ?? 答:在图4—30所示系统中K点短路时,保护2、5的功率方向为负,其余保护的功率方向全为正。3、4之间停发闭锁信号,5处保护向6处发闭锁信号,2处 保护向1处发闭锁信号。由于3、4停发闭锁信号且功率方向为正,满足跳闸条件,因此B—C通道的故障将不会阻止保护3、4的跳闸,这正是采用闭锁式保 护的优点。C—D通道正常,其线路上保护5发出的闭锁信号将保护6闭锁,非 故障线路C—D上保护不跳闸。2处保护判定为反方向不满足跳闸条件,并且发 闭锁信号,由于A—B通道故障,2处保护发出的闭锁信号可能无法传到1处, 而保护1功率方向为正,将会导致1处的保护误动作;不过非故障线路的载波通 道故障率远远低于故障线路,这也是广泛采用闭锁式载波纵联保护的原因。 4.12 输电线路纵联电流差动保护在系统振荡、非全相运行期间,会否误动,为 什么? 答:系统振荡时,线路两侧通过同一个电流,与正常运行及外部故障时的 情况一样,差动电流为量值较小的不平衡电流,制动电流较大,选取适当的制动 特性,就会保证不误动作。非全相运行时,线路两侧的电流也为同一个电流,电 流纵联差动保护也不误动作。

高压线路纵联保护基本原理

概述输电线的纵联保护,就是用某种通信通道(简称通道)将输电线两端或 各端(对于多端线路)的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将各端的电气量进行比较,以判断故障在个线路范围内还是在线路范围之外,从而决定是否切断被保护线路。因此,理论上这种纵联保护具有绝对的选择性。 基本原理利用比较两侧的电流相位或功率方向判断故障是否在区内按照纵联保护构成原理分类 单元式纵联保护 将输电线看作一个被保护单元如同变压器和发电机一样。 这种保护方式是从输电线的每一端采集电气量的测量值,通过通信通道传送到其他各端。在各端将这些测量值进行直接比较,以决定保护装置是否应该动作跳闸。如比较 电流相位的相位差动保护、比较电流波形(幅值和相位)的电流差动保护 非单元式保护 也是在输电线各端对某种或某几种电气量进行测量,但并下将测量值直接传送到其他各端,直接进行比较。而是传送根据这些测量值得到的对故障性质(如故障方向、故障位置等)的判断结果。如方向比较式纵联保护、距离纵联保护等 按照传送的通信信号分类 任何纵联保护都是依靠通信通道传送的某种信号来判断故障的位置是否在被保线路内。因此信号的性质和功能在很大程度上决定了保护的性能。 信号按其性质可分为三种; 闭锁信号、允许信号和跳闸信号。 这三种信号可用任一种通信通道产生和传送。 闭锁信号 以两端线路为例,所谓闭锁信号就是指:“收不到这种信号是保护动作跳闸的必要条件”。就是当发生外部故障时,由判定为外部故障的一端保护装置发出闭锁信号,将两端的保护闭锁。而当内部故障时,两端均不发、因而也收不到闭锁信号,保护即可动作于跳闸。 允许信号 所谓允许信号是指:“收到这种信号是保护动作跳闸的必要条件”。因此,当内部故障是,两端保护应同时向对端发出允许信号,使保护装置能够动作于跳闸。而当外部故障时,则因接近故障点端判出故障在反方向而不发允许信号,对端保护不能跳闸,本端则因判出故障在反方向也不能跳闸。 跳闸信号 跳闸信号是指:“收到这种信号是保护动作于跳闸的充要条件”。实现这种保护时,实际上是利用装设在每一端的瞬时电流速断、距离I段或零序电流瞬时速断等保护,当其保护范围内部故障而动作十跳闸的同时,还向对端发出跳

光纤通道在纵联保护中的应用

光纤通道在纵联保护中的应用 青海电力调度中心 蔡 杰 摘 要 随着通信技术的发展,光纤作为一种性能价格比合理、抗干扰能力强的通信介质已在各领域得到广泛应用。在电力系统,纵联差动保护的通道一直是保护装置能否正确动作的主要瓶颈之一,光纤与保护通道结合构成的光纤通道可以提高通道的可靠性。该文结合青海电力系统高压线路纵联保护的实际状况,分析了光纤通道与纵联保护配合的几种方式,提出应用过程中存在的一些问题,认为各专业之间的协调、配合是解决问题的有效途径。 关键词 光纤通道;纵联保护;通信介质;应用 中图分类号:T M773 文献标识码:E 文章编号:1006-6357(2004)06-0038-03 近几年由于西部电网与全国电网在330kV电压等级的连接,输电半径扩大,导致电网结构增强,网际间的高压线路对继电保护的要求也越来越高。当系统发生故障时,必须要求有选择性地快速切除故障线路和决不能发生保护拒动或误动的现象。因此,全线速动的纵联保护对高压电网的稳定运行起着重要的作用。 高压线路纵联保护主要是依赖于通道将线路两端的保护装置测量信息进行交换,通过交换信息的变化量以区别是区内故障,还是区外故障。根据交换信息的方式,目前在青海电网运行的纵联保护主要分为:(1)闭锁式,(2)允许式,(3)远方跳闸式,(4)电流差动保护。相应的通道类型主要有:专用载波(专用收发信机),复用载波,复用微波,专用光纤,复用光纤等方式,其中专用载波通道的运行情况比较差,主要是抗误动能力较差,运行中曾多次发生因收信间断而造成的保护误动事故;而复用载波通道情况稍好;但也存在抗干扰能力差的问题。随着通信技术的发展,在纵联保护通道的选用上,已经由原来的单一载波通道变为现在的载波、微波、光纤等多种通道方式。光纤通道与继电保护相结合所形成的全线速动纵联保护将在电网中得到越来越广泛的应用。 1 光纤通道的特性分析 光纤通道技术是基于用光导纤维作为传输介质的一种通信手段,相对于其他传统通道(如:载波、微波等)具有如下特点: (1)传输质量高,误码率低,一般在10-10以下。这种特点使得光纤通道很容易满足继电保护对通道所要求的“透明度”,使收端所看到的信息与发端原始信息完全一致。 (2)光的传输频率高,频带宽,因此光纤传输的信息量大,可使线路两端保护装置尽可能多地交换信息,从而大大提高继电保护动作的正确性和可靠性。 (3)抗干扰能力强。由于光信号可以有效地防止雷电、系统故障时产生的电磁干扰,所以光纤通道不存在传统通道的抗干扰问题。 但是,由于目前光纤技术发展的限制,光缆的抗外力破坏能力较差,当采用直埋或空中架设时,易于受到外力破坏,形成机械损伤。若采用架空地线复合光缆(OPG W),则可以有效地防止类似事件的发生。 2 光纤通道与纵联保护配合的几种方式纵联保护采用光纤通道,主要有以下几种方式: (1)专用光纤保护。光纤通道与纵联保护(如:WX B211C、LFP2901A、LFP2902C)配合构成专用光纤纵联保护。通常采用允许式,即在光纤通道上传输允许信号和直跳信号。此种方式,需要专用光纤接口(如:FOX240),使用单独的专用光芯。 优点:可避免与其他装置的联系(包括通信专业的设备),减少信号的传输环节,增加使用的可靠性。 缺点:光芯利用率降低(与复用比较),保护人员维护通道设备没有优势,若在带路操作时,必须进行本路保护与带路保护光芯的切换,操作不便, 83供 用 电第21卷第6期2004年12月

华北电力大学精品课程-电力系统继电保护(黄少锋教授)—纵联(4)

第四章 输电线路纵联保护

4.1.1 输电线纵联保护概述 仅利用线路一侧的电气量所构成的继电保护(单端电气量),无法区分本线路末端与相邻线路(或元件)的出口故障,如:电流保护、阻抗保护。 为此,设法将被保护元件两端(或多端)的电气量进行同时比较,以便判断故障在区内?还是区外? 将两端保护装置的信号纵向联结起来,构成纵联保护。——与横向故障的称谓进行对应比较(后面再用图例说明“纵、横”的区别)。

单端电气量保护: 仅利用被保护元件的一侧电气量,无法区分线路末端和相邻线路的出口短路,可以作为后备保护或出口故障的第二种保护。 (通常设计为:三段式)。 纵联保护: 利用被保护元件的各侧电气量,可以识别:内部和外部的故障,但是,不能作为后备保护。

输电线路纵联保护结构框图 在设备的“纵向”之间,进行信号交换 横向关系通信设备通信设备 通信通道 继电保护装置 继电保护装置 TA TA TV TV (如:横向故障)

纵联保护有多种分类方法,可以按照通道类型或动作原理进行分类。1)通道类型: 导引线电力线载波微波光纤 ? ???? 2)动作原理: 比较方向比较相位基尔霍夫电流定律(差电流) ?? ?? ?还可以将通道类型与动作原理结合起来进行称呼。如:光纤电流差动(简称:光差),高频距离。 通道(信号交换手段)

4.1.2 两侧电气量的特征 分析、讨论特征的目的: 寻找内部故障与其他工况(正常运行、外部故障)的特征区别和差异——>提取判据,构成继电保护原理。 当然,构成原理后,再分析影响因素;并研究消除影响因素的对策、措施(需要权衡利弊)。

相关主题
文本预览
相关文档 最新文档