力学_6(质点力学习题课)
- 格式:pdf
- 大小:339.92 KB
- 文档页数:5
第二章质点动力学单元测验题一、选择题1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动.A.3.4N;B.5.9N;C.13.4N;D.14.7N答案:A解:设沿斜面方向向下为正方向。
A、B静止时,受力平衡。
A在平行于斜面方向:F m g sin T f f 0A12B在平行于斜面方向:1sin0f mg TB静摩擦力的极值条件:f1m gcos,Bf m m g2(B A)cos联立可得使两物体运动的最小力F min满足:F min (m B m A)g sin (3m B m A )g cos=3.6N2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为A.vkt=v e m;B.v=-tktv em0;C.v=v+kmt;D.v=v-kmt答案:B解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系.牛顿第二定律:dvma mkvdt整理:d vvkmdt积分得:v=-v ektm3.质量分别为m和m(12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21上的轻绳两边往上爬。
开始时两人至定滑轮的距离都是h.质量为m的人经过t1秒爬到滑轮处时,质量为m的人与滑轮的距离为2m m1m-m11; C.1(h gt2)2h gt12A.0;B.h+; D.(+)m m2m2222答案:D解:如图建立坐标系,选竖直向下为正方向。
设人与绳之间的静摩擦力为f,当质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12分别列动力学方程。
对m:1f mg m am11m11dvm1dt对m:2f mg m am22m22dvm2dt将上两式对t求积分,可得:fdt m gt m vm11m11dym1 dtfdt m gt m vm22m22dym2 dt再将上两式对t求积分,可得:1fdt m gt 0m h221121fdt m gt m hm h222222m m1由上两式联立求得:h'21(h gt2).m224.一质量为m的物体以v0的初速度作竖直上抛运动,若受到的阻力与其速度平方成正比,大小可表示为f=kmgv2,其中k为常数。
力学练习题(一)学习目标1. 掌握描述质点运动和运动变化的物理量——位置矢量、位移、速度、加速度,理解这些物理量的矢量性、瞬时性和相对性。
2. 理解运动方程的物理意义及作用,掌握运用运动方程确定质点的位置、位移、速度和加速度的方法,以及已知质点运动的加速度和初始条件求速度、运动方程的方法。
一、 选择题1. 一运动质点在某瞬时位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)d d r t ;(2)d d r t ;(3)d d s t ;(4 ) A 只有(1)(2)正确 B 只有(2)正确 C 只有(2)(3)正确 D 只有(3)(4)正确2. 一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是( )。
A t = 4s.B t = 2s.C t = 8s.D t = 5s.3.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量) 则该质点作( )。
A 匀速直线运动. B 变速直线运动. C 抛物线运动. D 一般曲线运动. 4.下列说法哪一条正确?( )A 加速度恒定不变时,物体运动方向也不变.B 平均速率等于平均速度的大小.C 不管加速度如何,平均速率表达式总可以写成2/)(21v v v +=D 运动物体速率不变时,速度可以变化.二、 填空题1.质点p 在一直线上运动,其坐标x 与时间t 有如下关系: x = A sin ω t (SI ) A为常数)(1)任意时刻t 时质点的加速度 a =___________________;(2)质点速度为零的时间t =___________________________。
2.一人自原点出发,25s 内向东走30m ,又10s 内向南走10m ,再15s 内向正西北走18m ,设X 轴指向正东,Y 轴指向正北,求在这50s 内,(1)位移r ∆= ;(2)平均速度v = ;(3)平均速率v = 。
【郑重说明】《理论力学》课程的习题及解答方面的参考书很多,学习者可以通过各种形式阅读与学习,按照学院对教学工作的要求,为了满足学习者使用不同媒体学习的实际需要,通过各种渠道收集、整理了部分习题及参考解答,仅供学习者学习时参考。
由于理论力学的题目解答比较灵活,技巧性也比较强,下面这些解答不一定是最好的方法,也可能会存在不够完善的地方,希望阅读时注意之。
学习理论力学课程更重要的是对物理概念的掌握与理解,学习处理问题的思想与方法,仅盲目的做题目或者阅读现成的答案,很难达到理想的结果。
质点动力学思考题与习题及参考解答思考题(1) 有一质量为m 的珠子, 沿一根置于水平面内的铁丝滑动, 采用自然坐标法描述. 珠子受重力g m W=, 铁丝施与的约束力b Nb n Nn t Nt Ne F e F e F F ++=.t Nt e F 即为滑动摩擦力f F, 设动摩擦因数为μ. 试判断下列各式正误: (1) mg F f μ=; (2) Nb f F F μ= (3)Nn f F F μ=;(4) 22Nb Nnf F F F +=μ(2) 用极坐标系描述单摆的运动. 某甲如思考题(2图(a)规定θ角正向, 得到动力学方程θθsin mg ml -= ; 某乙如思考题(2图(b)规定θ角正向, 则得到θθsin mg ml += . 你认为谁的做法正确?(a) (b)思考题(2图(3) 质量为m 的质点, 由静止开始自高处自由落下. 设空气阻力f F与速度成正比, 比例系数为k . 某甲建立竖直向上的坐标如思考题(3图(a), 得到方程为y k mg y m+-=. 某乙建立竖直向下的坐标如思考题(3图(b), 得到方程为y k mg y m-=.他们列出的方程对吗?(a) (b)思考题(3(4)有人认为: 用极坐标系讨论质点的平面运动时, 如果0≡r F , 则沿径向动量守恒,==rm p r 常量;若0≡θF , 则沿横向动量守恒. 这种看法对吗? (5) 试判断以下二论断是否正确:(1) 若质点对固定点O 的角动量守恒, 则对过O 点的任意固定轴的角动量守恒. (2) 若质点对固定轴的角动量守恒, 则对该轴上任一固定点的角动量守恒.(6) 一质点动量守恒, 它对空间任一固定点的角动量是否守恒? 如质点对空间某一固定点角动量守恒, 该质点动量是否守恒?(7) 当质点做匀速直线运动时, 其动量是否守恒? 角动量是否守恒?(8) 在固定的直角坐标系Oxyz 中, 质量为m 的质点的速度k v j v i v v z y x++=, 所受合力为k F j F i F F z y x ++=. 能否将质点的动能定理r F mv d )21(d 2⋅=向x 轴方向投影而得出分量方程x F mv x x d )21(d 2= 该方程是否正确?思考题解答(1) 仅(4)式正确.(2) 甲正确. 乙错在角度不可以定义为从动线指向定线.(3) 乙的方程正确. 甲错在空气阻力亦应为yk -,y 取负值,y k -取正值. (4) 仅对固定方向才有动量守恒的分量形式. 径向和横向均不是空间固定方向. (5) (1)对;(2)错. (6) 一质点动量守恒,则对空间任一固定点角动量守恒. 质点对空间某一固定点角动量守恒,其动量不一定守恒.(7) 质点作匀速直线运动时,其动量和角动量均守恒.(8) 动能定理是标量方程,不可能投影而得出分量方程. 但xF mv x d )21(d 2=是正确的. 仿照动能定理的导出,用x t v x d d =乘牛顿第二定律的x 分量方程x xF t v m=d d 即可证明.质点动力学习题及参考解答【1】研究自由电子在沿x 轴的振荡电场中的运动. 已知电场强度i t E E)cos(0ϕω+=,ϕω,,0E 为常量. 电子电量为e -, 质量为m . 初始时, 即当0=t 时i x r00=, i v v 00=. 忽略重力及阻力, 求电子的运动学方程.【解】力为时间的函数,积分两次可得)cos(200ϕωω+++=t m eE t V X x ,其中ϕωcos 2000m eE x X -=,ϕωsin 00m eE v V +=.【2】 以很大的初速度0v自地球表面竖直上抛一质点, 设地球无自转并忽略空气阻力, 求质点能达到的最大高度. 已知地球半径为R , 地球表面处重力加速度为g .【解】以地心O 为原点,建立x 轴经抛出点竖直向上. 质点受万有引力沿x 轴负方向. 所以2x GMm xm -= . 因为2R GMmmg =,故g R GM 2=. 故有22x g R x -= . 做变换)2(d d d d d d d d 2x x x x x t x x x x ===,则x x g R x d )2(d 222-= . 积分并用0=t 时R x =,0v x = 定积分常数,得到 )11()(212202R x g R v x -=- . 质点达最大高度时H R x +=,0=x,可求出 1220)21(2--=Rg v g v H .三点讨论:(1)令∞=H ,对应Rg v 20=为第二宇宙速度.(2)若Rg v 220<<,则回到重力场模型所得结果. (3)题中不考虑地球自转及空气阻力,均不大合理,试进一步讨论之.【3】 将质量为m 的质点竖直上抛, 设空气阻力与速度平方成正比, 其大小22gv mk F R =.如上抛初速度为0v , 试证该质点落回抛出点时的速率2201v k v v +=.【解】质点运动微分方程为(Oy 轴竖直向上);上升阶段22y g mk mg y m--=,下降阶段22y g mk mg ym +-=. 【4】向电场强度为E 、磁感应强度为B 的均匀稳定电磁场中入射一电子. 已知B E⊥, 电子初速0v 与E 和B 均垂直, 如题4图所示. 试求电子的运动规律. 设电子电量为e -.题4图【解】令m eB=ω,电子运动微分方程为y xω-=, (1) m eEx y-= ω, (2)0=z . (3)对(2)式求导,利用(1)式得02=+y yω,解出)sin(αω+=t A y . 0=t 时0=y 故0=α,由t A y ωωcos = ,且0=t 时m eBv Ee y0+-= ,故B Bv E A 0+-=,则t B Bv E y ωsin 0+-= . 积分得)cos 1()(20t m eB eB Bv E m y -+-=. 代入(1)式积分可得t m eB eB Bv E m t B E x sin )(20--=.【5】 旋轮线如题5图所示, 可理解为一半径为a 的圆轮在直线上做无滑滚动时轮缘上一点P 的轨迹, 其参数方程为)sin (ϕϕ+=a x , )cos 1(ϕ-=a y . 在重力场中, 设y 轴竖直向上, 一质点沿光滑旋轮线滑动, 试证质点运动具有等时性(绕O 点运动周期与振幅无关).题5图【解】(旋轮线是如图圆轮在直线AB 上作无滑滚动时P 点的轨迹,曲线上P 点切线方向即为轮上P 点速度方向. 因无滑,0P 为瞬心,故P 点切线与P P 0垂直,因此可知P 点切线与x 轴夹角为2ϕ. )以曲线最低点(0=ϕ)为自然坐标原点,弧长正方向与t e 一致. 质点运动微分方程为2sinϕmg s m -= .对曲线参数方程求微分,得ϕϕd )cos 1(d +=a x 和ϕϕd sin d a y =,所以ϕϕd 2cos 2d d d 22a y x s =+=,积分并用0=ϕ时0=s 定积分常数,得2sin 4ϕa s =. 代入质点运动微分方程消去ϕ,得到4=+s a gs ,s 作简谐振动而具有等时性. 其解为)cos(0αω+=t A s ,a g40=ω与振幅无关.【6】 一小球质量为m , 系在不可伸长的轻绳之一端, 可在光滑水平桌面上滑动. 绳的另一端穿过桌面上的小孔, 握在一个人的手中使它向下做匀速运动, 速率为a , 如题【6图所示. 设初始时绳是拉直的, 小球与小孔的距离为R , 其初速度在垂直绳方向上的投影为0v . 试求小球的运动规律及绳的张力.题6图【解】小球运动微分方程为T F r r m -=-)(2θ , (1) 0)2(=+θθr r m , (2)a r-= . (3) 由(3)式求出at R r -=,代入(2)式求出)/(0at R t v -=θ,再由(1)式求出3220)(at R R mv F T -=.【7】 一质量为m 的珠子串在一半径为R 的铁丝做成的圆环上, 圆环水平放置. 设珠子的初始速率为0v , 珠子与圆环间动摩擦因数为μ, 求珠子经过多少弧长后停止运动 (根据牛顿第二定律求解).【解】珠子的运动微分方程为2b 2n d d N N F F t v m+-=μ, (1)n 2/N F mv =ρ, (2)mg F N -=b 0, (3)R =ρ(约束方程). (4)把(2)、(3)、(4)式代入(1)式,作变换sv t v d /)21(d d d 2=,可求出]/)ln[()2/(224020Rg g R v v R s ++=μ.【8】 质量为m 的小球沿光滑的、半长轴为a 、半短轴为b 的椭圆弧滑下, 此椭圆弧在竖直平面内且短轴沿竖直方向. 设小球自长轴端点开始运动时其初速度为零. 求小球达到椭圆弧最低点时对椭圆弧的压力 (根据牛顿第二定律求解). 【解】以椭圆最低点为自然坐标原点O ,弧长正方向指向小球初始位置,θ为切向与水平方向的夹角,小球的运动微分方程为θsin mg vm -= , (1) θρcos /2mg F mv N -=. (2)Oy 竖直向上,将s y d /d sin =θ代入(1)式得s y g s v v d /d d /d -=,积分可求出小球达最低点时gb v 22=. 由轨道方程22x a a by --=求出当0=x 时0='y ,2/a b y ='',由公式可求出22/32)1(1a b y y ='+''=ρ. 再由(2)式求出0=θ时)/21(/cos 22a b mg mv mg F N +=+=ρθ.【9】 力1F 和2F分别作用在长方体的顶角A 和B 上, 长方体的尺寸和坐标系如题【9图所示. 试计算1F 和2F对原点O 及3个坐标轴的力矩.题9图【解】11bF M x =,11aF M y -=,01=z M ,2222/b a bcF M x +=,2222/b a acF M y +-=,02=z M .【10】 已知质量为0m 的质点做螺旋运动, 其运动学方程为t r x ωcos 0=, t r y ωsin 0=,kt z =,k r ,,0ω为常量. 试求: (1)t 时刻质点对坐标原点的角动量;(2) t 时刻质点对过),,(c b a P 点, 方向余弦为),,(n m l 的轴的角动量.【解】由运动学方程求出→v ,根据定义即可求出→→→→→→++--=⨯=k r m j t t t r km i t t t r km v r m L ωωωωωωω200000000)sin (cos )cos (sin ,)]cos ()sin )([(]cos )()sin ([000000),,(a t r k t r c kt m m t r c kt b t r k l m L n m l -+-----=ωωωωωω)sin cos (00200t br t ar r n m ωωωωω--+.【11】 如题【11图所示, 质量为m 的小球安装在长为l 的细轻杆的A 端, 杆的B 端与轴21O O 垂直地固连. 小球在液体中可绕21O O 轴做定轴转动, 轴承1O 和2O 是光滑的. 转动中小球所受液体阻力与角速度成正比, ωαm F R =,α为常量. 设初始角速度为0ω,试求经多少时间后, 角速度减小为初始值的一半,以及在这段时间内小球所转圈数.(忽略杆的质量及所受阻力.)题 11图【解】由对21O O 轴的角动量定理ωαωm l ml t -=)(d d2,积分可得lt /0e αωω-=,求出α/)2ln (l t =. 将角动量定理化为l /d d θαω-=,积分可以求得αωαωθπ4/)r a d (2/00l l ==(圈)【12】 质量为m 的质点沿椭圆轨道运动, 其运动学方程为kt a x cos =, kt b y sin = (k b a ,,为常量). 用两种方法计算质点所受合力在0=t 到k t 4π=时间内所做的功.【解】(1)由动能定理)(4121212222122b a mk mv mv W -=-=.(2)用曲线积分算⎰⎰+=⋅=→→2121)d d (y ym x x m r d F W ,把轨道参数方程kt b y kt a x sin ,cos ==代入,则曲线积分化为对t 的积分,可得同样结果.【13】 试用动能定理求解7题.【解】珠子的动能定理为sF F mv N N d )21(d 2b 2n 2--=μ,参见3.7提示【14】 有一小球质量为m , 沿如题【14图所示的光滑的水平的对数螺旋线轨道滑动. 螺旋线轨道方程为θa e r r -=0, a 为常数. 已知当极角0=θ时,小球初速为0v . 求轨道对小球的水平约束力N F 的大小. (用角动量及动能定理求解, 图中δ为θe 与v 方向间夹角,a =δtg.)题14图【解】因机械能守恒,小球动能不变,因此0v v =.过O 点作z 轴竖直向上(垂直纸面向外),质点对z 轴的角动量δcos rmv L z =. 质点所受对z 轴力矩δsin N z rF M -=. 由对z 轴的角动量定理得δδsin )cos (d d0N rF rmv t -=.由于θθθθθ ar ar t r r v a r -=-===-e d d d d 0,θθ r v =. 故a v v r =-=θδtan . 将它代入角动量定理方程,得到N N arF rF rmv -=-=δtan 0 . 而δδsin sin 0v v v r r -=-== ,所以θδδδa N a r mv a r mv ar mv ar mv F e 11tan 1tan sin 2020220222020+=+=+==.【15】 已知质点所受力F 的3个分量为z a y a x a F x 131211++=,z a y a x a F y232221++=, z a y a x a F z 333231++=,系数)3,2,1,(=j i a ij 都是常量. 这些ij a 满足什么条件时与力F相关的势能存在? 在这些条件被满足的条件下, 计算其势能.【解】当0=⨯∇→F 时势能存在,要求311332232112,,a a a a a a ===. 以原点为势能零点,则)222(21132312233222211xz a zy a xy a z a y a x a V +++++-=.【16】 一带有电荷q 的质点在电偶极子的场中所受的力为3c o s 2r pq F r θ=,3sin r pq F θθ=,p 为偶极距, r 为质点到偶极子中心的距离.试证此力场为有势场.【解】)/cos (d d d )d d (d 2r pq r F r F e r e r F r F r r θθθθθ-=+=+⋅=⋅→→→→→,故为有势场 【17】 如题17图所示, 自由质点在Oxy 平面内运动, 静止中心A 和B 均以与距离成正比的力吸引质点M , 比例系数为k . 试证明势能存在并求出质点的势能.v题【17图【解】y ky x kx y ky ky x b x k b x k r F d 2d 2d )(d )]()([d --=--+--+-=⋅→→)](d [22y x k +-=.故势能存在. 以O 为势能零点,则)(22y x k V +=.【18】 试用机械能守恒定律求解8题.【解】根据机械能守恒定律,以椭圆弧最低点为势能零点,mgbmv =221,可知gb v 2=,参见3.8提示.【20】 将质量为m 的质点竖直抛上于有阻力的媒质中。
大学物理章质点动力学习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章 质点动 力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg m R αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2Ao BrDCT902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
一、 填空题1.一质点沿半径0.1米的圆周运动,其角位移θ可用下式表示342t +=θ(SI),则当2t s =时,切向加速度=τa 2/m s ;[答案:24.8/m s ] 2.一质点沿x 方向运动,其加速度随时间的变化关系为32a t =+(SI),如果初始时刻质点的速度0v 为5/m s ,则当t 为3s 时,质点的速度v = 。
[答案:23/m s ]3.一个质量为10kg 的物体,沿X 轴无摩擦地滑动,设t=0时物体静止于原点,若物体在力F=3+4t(N)的作用下运动2秒,则它的速度增加为/m s 。
[答案:1.4/m s ] 4.一个质量为7kg 的物体,沿X 轴无摩擦地滑动,设t=0时物体静止于原点,若物体在力F=3+4x (N)的作用下运动2米,则它的速度增加为 /m s 。
[答案:2/m s ]二、计算题1.已知质点运动方程为()2352r t i t j =+−K K K ,求:1)轨道方程;2)0t =到1s 的位移;3)1t s =时的速度、加速度。
解:1)2352x t y t⎧=⎨=−⎩消去t 得轨道方程为()2354x y =− 2)0t =时,()20305205r i j j =×+−×=K K K K1t =时,133r i j =+K K K1032r r r i j ∴Δ=−=−K K K K K3)62drv ti j dt ==−K K K K ,6dv a i dt==K K K1t s =时,162v i j =−K K K,6a i =K K2.已知一质点的运动方程为234r ti t j =−KKK,求质点的运动轨道、速度、加速度、切向加速度、法向加速度。
解:1)由3x t =,24y t =−得质点轨道方程为2490x y +=2)速度38drv i tj dt ==−K K K K3) 加速度8dva j dt==−K K K4)速率v ==切向加速度dv a dt τ==5)法向加速度n a =na = 3.一质点沿半径为1m 的圆周运动,它通过的弧长s 按22s t t =+的规律变化.问它在2s 末的速率、切向加速度、法向加速度各是多少? 解:1)速率14dsv t dt==+ 2s 末21429/v m s =+×=2)切向加速度4dva dtτ== 2s 末24/a m s τ=3)2s 末法向加速度228181/1n v a m s r ===4.一质点沿半径为1m 的圆周转动,其角量运动方程为323t 4t θ=+-(SI),求质点在2s 末的角位置、角速度、角加速度、速率、切向加速度、法向加速度、总加速度.解:1)2t =,角位置263224rad θ=−=+-2)角速度2312t d dtθω==- 2t =,312445/rad s ω=×=−-3)角加速度24d t dtωα==−2t =,224248/rad s α=−×=−4)速率1(45)45/v R m s ω==×−=− 5)切向加速度248/a R m s τα==−6)法向加速度2222025/n v a R m s Rω===7)总加速度22025.6/a m s ==5.一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s计,x ,y 以m计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s时刻到t =4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式). 解:(1)j t t i t r KKK)4321()53(2−+++=m (2)将1=t ,2=t 代入上式即有j i r K K K5.081−= m2114r i j =+K K Km 213 4.5r r r i j Δ=−=+K K K K Km(3)∵ 0454,1716r i j r i j =−=+K K K K KK ∴401122040435m s r r r i j v ti j −−Δ+===Δ−=+⋅K K K KK K K K(4) 1s m )3(3d d −⋅++==j t i t rv K K K K则 j i v K K K 734+= 1s m −⋅(5)∵ j i v j i v KK KK KK73,3340+=+=24041m s 44v v v ja j t −−Δ====⋅ΔK K K K K K(6) 2s m 1d d −⋅==j tva K K K6.某质点的加速度为j i t a K K K26+=,已知t =0时它从坐标原点静止开始运动(即初始位矢00=r K 、初速度00=v K),求质点在2秒时刻的位矢、速度。
质点力学综合(013)条目试题1. 选择题题号:01313001 分值:3分难度系数等级:3一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. . (B) 25 m ·s -1.(C) 0.(D) -50 m ·s -1. [ ]答案:(C )题号:01312002 分值:3分难度系数等级:2站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为 (A) 大小为g ,方向向上. (B) 大小为g ,方向向下.(C) 大小为g 21,方向向上. (D) 大小为g 21,方向向下. [ ]答案:(B )题号:01311003 分值:3分难度系数等级:1设物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,(A) 它的加速度方向永远指向圆心. (B) 它受到的轨道的作用力的大小不断增加. (C) 它受到的合外力大小变化,方向永远指向圆心. (D) 它受到的合外力大小不变.答案:(B )题号:01312004 分值:3分难度系数等级:2质量相等的两个物体甲和乙,并排静止在光滑水平面上(如图所示).现用一水平恒力F 作用在物体甲上,同时给物体乙一个与F 同方向的瞬时冲量量I,使两物体沿同一方向运动,则两物体再次达到并排的位置所经过的时间为:(A) I / F . (B) 2I / F . (C) 2 F/ I . (D) F/ I .[ ]答案:(B )题号:01313005 分值:3分难度系数等级:3竖直上抛一小球.若空气阻力的大小不变,则球上升到最高点所需用的时间,与从最高点下降到原位置所需用的时间相比(A) 前者长. (B) 前者短.(C) 两者相等. (D) 无法判断其长短. [ ]答案:(B )题号:01314006 分值:3分 难度系数等级4一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力为N .则质点自A 滑到B 的过程中,摩擦力对其作的功为(A) )3(21mg N R -. (B) )3(21N mg R -. (C) )(21mg N R -. (D))2(21mg N R -. [ ]答案:(A )题号:01314007 分值:3分难度系数等级:4质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如图所示.当它由静止开始下滑到球面上B 点时,它的加速度的大小为俯视图F I A B(A) )cos 1(2θ-=g a . (B) θsin g a =. (C) g a =. (D) θθ2222sin )cos 1(4g g a +-=. [ ]答案:(D )题号:01312008 分值:3分难度系数等级:2在以加速度a 向上运动的电梯内,挂着一根劲度系数为k 、质量不计的弹簧.弹簧下面挂着一质量为M 的物体,物体相对于电梯的速度为零.当电梯的加速度突然变为零后,电梯内的观测者看到物体的最大速度为(A) k M a /. (B) M k a /.(C) k M a /2. (D) k M a /21. [ ]答案:(A )题号:01312009 分值:3分难度系数等级:2一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为(A) Rm 2v . (B) R m 232v .(C) R m 22v . (D) Rm 252v . [ ]答案:(B )题号:01313010 分值:3分难度系数等级:3如图示.一质量为m 的小球.由高H处沿光滑轨道由静止开始滑入环形轨道.若H 足够高,则小球在环最低点时环对它的作用力与小球在环最高点时环对它的作用力之差,恰为小球重量的(A) 2倍. (B) 4倍.(C) 6倍. (D) 8倍.[ ]答案:(C )题号:01312011 分值:3分难度系数等级:2空中有一气球,下连一绳梯,它们的质量共为M .在梯上站一质量为m 的人,起始时气球与人均相对于地面静止.当人相对于绳梯以速度v 向上爬时,气球的速度为(以向上为正)(A) M m m +-v . (B) M m M +-v.(C) M m v -. (D) mM m v)(+-.[ ]答案:(A )题号:01313012 分值:3分难度系数等级:3一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]答案:(D )题号:01313013 分值:3分难度系数等级:3一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头. 不计水和空气的阻力,则在此过程中船将(A) 不动. (B) 后退L . (C) 后退L 21. (D) 后退L 31. [ ]答案:(C )题号:01315014 分值:3分难度系数等级:5质量分别为m 1、m 2的两个物体用一劲度系数为k 的轻弹簧相联,放在水平光滑桌面上,如图所示.当两物体相距x 时,系统由静止释放.已知弹簧的自然长度为x 0,则当物体相距x 0时,m 1的速度大小为 (A)120)(m x x k -. (B)220)(m x x k -.(C)2120)(m m x x k +-. (D))()(211202m m m x x km +-.[ ]答案:(D )题号:01314015 分值:3分难度系数等级:4一质量为m 的滑块,由静止开始沿着1/4圆弧形光滑的木槽滑下.设木槽的质量也是m .槽的圆半径为R ,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是(A)Rg 2. (B) Rg 2. (C)Rg .(D) Rg 21. [ ]答案:(C )题号:01311016 分值:3分难度系数等级:1一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度v 0落下,撞击弹簧后跳回到高为h 处时速度仍为v 0,以小球为系统,则在这一整个过程中小球的 (A) 动能不守恒,动量不守恒. (B) 动能守恒,动量不守恒. (C) 机械能不守恒,动量守恒. (D) 机械能守恒,动量守恒.[ ]答案:(A )题号:01313017 分值:3分难度系数等级:3两质量分别为m 1、m 2的小球,用一劲度系数为k 的轻弹簧相连,放在水平光滑桌面上,如图所示.今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的 (A) 动量守恒,机械能守恒.(B) 动量守恒,机械能不守恒.(C) 动量不守恒,机械能守恒.(D) 动量不守恒,机械能不守恒. [ ]答案:(B )题号:01313018 分值:3分难度系数等级:3如图所示,质量分别为m 1和m 2的物体A 和B ,置于光滑桌面上,A 和B 之间连有一轻弹簧.另有质量为m 1和m 2的物体C 和D 分别置于物体A 与B 之上,且物体A 和C 、B 和D 之间的摩擦系数均不为零.首先用外力沿水平方向相向推压A 和B ,使弹簧被压缩.然后撤掉外力,则在A 和B 弹开的过程中,对A 、B 、C 、D 弹簧组成的系统 (A) 动量守恒,机械能守恒. (B) 动量不守恒,机械能守恒. (C) 动量不守恒,机械能不守恒.(D) 动量守恒,机械能不一定守恒. [ ]答案:(D )题号:01314019 分值:3分难度系数等级:4一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为(A) 221v m . (B) )(222m M m +v .(C) 2222)(v M m m M +. (D) 222v M m . [ ]答案:(B )题号:01312020 分值:3分难度系数等级:2如图所示,置于水平光滑桌面上质量分别为m 1和m 2的物体A 和B 之间夹有一轻弹簧.首先用双手挤压A 和B 使弹簧处于压缩状态,然后撤掉外力,则在A 和B 被弹开的过程中 (A) 系统的动量守恒,机械能不守恒.(B) 系统的动量守恒,机械能守恒.(C) 系统的动量不守恒,机械能守恒.(D) 系统的动量与机械能都不守恒.[ ]答案:(B )题号:01311021 分值:3分难度系数等级:1在由两个物体组成的系统不受外力作用而发生非弹性碰撞的过程中,系统的 (A) 动能和动量都守恒. (B) 动能和动量都不守恒.(C) 动能不守恒,动量守恒. (D) 动能守恒,动量不守恒. [ ]答案:(C )题号:01314022 分值:3分难度系数等级:4两木块A 、B 的质量分别为m 1和m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒. (C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.1kx,总动量为零.[](D) A离开墙后,整个系统的总机械能为22答案:(B)题号:01311023分值:3分难度系数等级:1一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加.[]答案:(B)题号:01311024分值:3分难度系数等级:1两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒.[]答案:(B)题号:01313025分值:3分难度系数等级:3物体在恒力F作用下作直线运动,在时间∆t1内速度由0增加到v,在时间∆t2内速度由v增加到2 v,设F在∆t1内作的功是W1,冲量是I1,在∆t2内作的功是W2,冲量是I2.那么,(A) W1 = W2,I2 > I1.(B) W1 = W2,I2 < I1.(C) W1 < W2,I2 = I1.(D) W1 > W2,I2 = I1.[]答案:(C)题号:01312026分值:3分难度系数等级:2一质子轰击一α 粒子时因未对准而发生轨迹偏转.假设附近没有其它带电粒子,则在这一过程中,由此质子和α 粒子组成的系统,(A) 动量守恒,能量不守恒.(B) 能量守恒,动量不守恒.(C) 动量和能量都不守恒.(D) 动量和能量都守恒.[]答案:(D)题号:01312027分值:3分难度系数等级:2有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的小球分别从这两个斜面的顶点,由静止开始滑下,则(A) 小球到达斜面底端时的动量相等.(B) 小球到达斜面底端时动能相等.(C) 小球和斜面(以及地球)组成的系统,机械能不守恒.(D) 小球和斜面组成的系统水平方向上动量守恒.[]答案:(D)题号:01312028分值:3分难度系数等级:2如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O. 该物体原以角速度ω在半径为R的圆周上绕O旋转,今将绳从小孔缓慢往下拉.则物体(A) 动能不变,动量改变.(B) 动量不变,动能改变.(C)角动量不变,动量不变.(D)角动量不变,动能、动量都改变.[]答案:(D)题号:01313029分值:3分难度系数等级:3一人造地球卫星到地球中心O 的最大距离和最小距离分别是R A 和R B .设卫星对应的角动量分别是L A 、L B ,动能分别是E KA 、E KB ,则应有(A) L B > L A ,E KA > E KB .(B) L B > L A ,E KA = E KB .(C) L B < L A ,E KA = E KB . (D) L B = L A ,E KA < E KB . [ ]答案:(D )题号:01311030 分值:3分难度系数等级:1假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能也守恒. (B) 角动量守恒,动能不守恒. (C) 角动量不守恒,动能守恒.(D) 角动量守恒,动量也守恒. [ ]答案:(A )2.判断题题号:01321001 分值:2分难度系数等级:1质量为m 的质点开始时静止,在如图所示合力F 的作用下沿直线运动,已知)/2sin(0T t F F π=,方向与直线平行,在0到T 时间内,力F的冲量大小不为零.答案: 错题号:01324002 分值:2分难度系数等级:4质量为m 的质点开始时静止,在如图所示合力F 的作用下沿直线运动,已知)/2sin(0T t F F π=,方向与直线平行,在T t =时刻,质点又回到了出发点.题号:01321003 分值:2分难度系数等级:1一木块恰好能在倾角 的斜面上以匀速下滑,现在使它以初速率v 0沿这一斜面上滑,当它停止滑动时,会静止在斜面上,不再下滑.答案: 对题号:01323004 分值:2分难度系数等级:3当一质子通过质量较大带电荷为Ze 的原子核附近时,原子核可近似视为静止.质子受到原子核的排斥力的作用,如图所示,它运动的轨道为抛物线. 答案:错题号:01323005 分值:2分难度系数等级:3两个滑冰运动员A 、B 的质量均为m ,以v 0的速率沿相反方向滑行,滑行路线间的垂直距离为R ,当彼此交错时,各抓住长度等于R 的绳索的一端,然后相对旋转,在抓住绳索之前和抓住之后,两个滑冰运动员各自对绳中心的角动量守恒。