材料拉伸时的力学性能
- 格式:ppt
- 大小:3.62 MB
- 文档页数:2
金属材料的拉伸、压缩实验承受轴向拉伸和压缩是工程构件最常见的受力方式之一,材料在拉伸和压缩时的力学性能也是材料最重要的力学性能之一。
常温、静载下金属材料的单向拉伸和压缩实验也是测定材料力学性能的最基本、应用最广泛、方法最成熟的试验方法。
通过拉伸实验所测定的材料的弹性指标E、μ,强度指标σs、σb,塑性指标δ、ψ,是工程中评价材质和进行强度、刚度计算的重要依据。
下面以典型的塑性材料——低碳钢和典型的脆性材料——铸铁为例介绍实验的详细过程和数据处理方法。
一、预习要求1、电子万能材料试验机在实验前需进行哪些调整?如何操作?2、简述测定低碳钢弹性模量E的方法和步骤。
3、实验时如何观察低碳钢拉伸和压缩时的屈服极限?二、材料拉伸时的力学性能测定拉伸时的力学性能实验所用材料包括塑性材料低碳钢和脆性材料铸铁。
(一)实验目的1、在弹性范围内验证虎克定律,测定低碳钢的弹性模量E。
2、测定低碳钢的屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ;测定铸铁拉伸时的强度极限σb。
3、观察低碳钢和铸铁拉伸时的变形规律和破坏现象。
4、了解万能材料试验机的结构工作原理和操作。
(二)设备及试样1、电子万能材料试验机。
2、杠杆式引伸仪或电子引伸仪。
3、游标卡尺。
4、拉伸试样。
GB6397—86规定,标准拉伸试样如图1所示。
截面有圆形(图1a)和矩形(图1b)两种,标距l0与原始横截面积A0比值为11.3的试样称为长试样,标距l0与原始横截面积A0比值为5.56的试样称为短试样。
对于直径为d0的长试样,l0=10d0;对于直径为d0的短试样,l0=5d0。
实验前要用划线机在试样上画出标距线。
(三)低碳钢拉伸实验1、实验原理与方法常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性模量E、屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ等力学性能指标。
这些指标都是工程设计中常用的力学性能参数。
现以液压式万能材料试验机为例说明其测量原理和方法。
025材料在拉伸和压缩时的力学性能解析材料在拉伸和压缩时的力学性能是指材料在外力作用下的变形和破坏行为。
这些性能参数包括弹性模量、屈服强度、延伸率、断裂强度等,这些性能参数反映了材料在受力过程中的力学行为。
材料在拉伸和压缩时的力学性能可以通过应力-应变曲线来分析。
应力-应变曲线可以描述材料在受力作用下的应变和应力之间的关系。
根据应力-应变曲线的不同形状,可以得到不同的力学性能。
材料在拉伸时的力学性能:1. 弹性模量(Young's modulus):弹性模量是指材料在拉伸过程中的应变与应力之间的比例关系。
弹性模量越大,材料的刚度越高,抗拉性能越好。
2. 屈服强度(Yield strength):屈服强度是指材料开始发生塑性变形的应力值。
材料的屈服强度越高,具有越好的抗拉性能。
3. 延伸率(Elongation):延伸率是指材料在拉伸过程中的长度增加量与原始长度之比。
延伸率越高,材料的延展性越好。
4. 断裂强度(Tensile strength):断裂强度是指材料在拉伸过程中的最大应力值。
断裂强度越高,材料的抗拉性能越好。
材料在压缩时的力学性能:需要注意的是,材料在拉伸和压缩时的力学性能往往不完全对称。
在一些材料中,其拉伸性能表现较好,而压缩性能较差,或者压缩性能表现较好,而拉伸性能较差。
因此,在设计工程结构和选择材料时,需要综合考虑材料在拉伸和压缩时的力学性能。
总之,材料在拉伸和压缩时的力学性能对于材料的应用和工程设计具有重要影响。
通过分析材料的弹性模量、屈服强度、延伸率、断裂强度等性能参数,可以更好地了解材料的力学行为,为材料选择和工程设计提供指导和参考。
§3—4 材料在拉伸和压缩时的力学性能前面的讨论中,涉及的弹性模量、泊松比等,这些指标都属于材料的力学性质。
材料的力学性质是指:材料受力时力与变形之间的关系所表现出来的性能指标。
材料的力学性质是根据材料的拉伸、压缩试验来测定的。
工程中使用的材料种类很多。
下面主要以常用的低碳钢和铸铁这两种最具有代表性的材料为例,研究它们在常温(一般指室温)、静载下(指在加载过程中不产生加速度)拉伸和压缩时的力学性能。
一、材料拉伸时的力学性能试验时采用国家规定的标准试样。
金属材料试样如图3-10a 、b 所示。
试件中间是一段等直杆,等直部分划上两条相距为l 的横线,横线之间的部分作为测量变形的工作段,l 称为标距;两端加粗,以便在试验机上夹紧。
规定圆形截面试样,标距l 与直径d 的比例为d l 10=或d l 5=,矩形截面试样标距l 与截面面积A 的比例为A l 3.11=或A l 65.5=。
拉伸试验一般在万能试验机上进行,它可以对试件加载,可以测力并自动记录力与变形的关系曲线。
图3-10a A图3-10b(一)低碳钢的拉伸试验1.拉伸图和应力应变曲线将低碳钢试件装在试验机上,缓慢加载,同时试样逐渐伸长。
记录各时刻的拉力P 以及标距l 段相应的纵向伸长l ∆,直至拉断为止。
将P 和l ∆的关系按一定比例绘制成的曲线,称为拉伸图(或l P ∆-曲线)如图3-11a 所示。
将拉力P 除以试件横截面的原面积A ,作为试件工作段的正应力σ,将试件的伸长量l ∆除以工作段的原长l ,代表试件工作段的轴向线应变ε。
按一定的比例将拉伸图转换为σ与ε关系的曲线,如图3-11b ,该曲线称为应力-应变曲线或σ-ε曲线。
图3-11a(c)图3-11b(d) 从应力-应变曲线可见,在低碳钢拉伸试验的不同阶段,应力与应变关系的规律不同。
下面介绍各个阶段的范围、特点、指标及量值。
(1)弹性阶段(图3-11b 中Ob 段) 试样应力不超过b 点所对应的应力时,材料的变形全是弹性变形,即卸除荷载时,试样的变形将全部消失。