1、(1)判断晶闸管极性及好坏的方法
- 格式:doc
- 大小:21.00 KB
- 文档页数:2
单向晶闸管(可控硅)管脚极性及好坏检测方法单向晶闸管(可控硅)管脚极性及好坏检测方法单向晶闸管的检测(1)判别各电极:根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A与门极之间有两个反极性串联的PN结。
因此,通过用万用表的R×100或R×1 k Q档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。
具体方法是:将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。
若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。
在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其他电极,直到找出三个电极为止。
也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则两极即为阳极A和阴极K,而另一脚即为门极G。
普通晶闸管也可以根据其封装形式来判断出各电极。
例如:螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。
平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。
金属壳封装(T0—3)的普通晶闸管,其外壳为阳极A。
塑封(T0—220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。
图1为几种普通晶闸管的引脚排列。
(2)判断其好坏:用万用表R×1 kΩ档测量普通晶闸管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞);若测得A、K之间的正、反向电阻值为零或阻值均较小,则说明晶闸管内部击穿短路或漏电。
测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果要较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2 kΩ),反向电阻值较大(大于80 kΩ)。
若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K 极之间开路或短路。
晶闸管的基本检测方法1.判别单向晶闸管的阳极、阴极和控制极脱开电路板的单向晶闸管,阳极、阴极和控制极3个引脚一般没有特殊的标注,识别各个脚主要是通过检测各个引脚之间的正、负电阻值来进行的。
晶闸管各个引脚之间的阻值都较大,当检测出现唯一一个小阻值时,此时黑表笔接的是控制极(G),红表笔接的是阴极(K),另外一个引脚就是阳极(A)。
2.判别单向晶闸管的好坏脱开电路板的单向晶闸管,阳极(A)、阴极(K)和控制极(G)明确标示;正常的单向闸管,阳极(A)、阴极(K)两个引脚之间的正、反向电阻,阳极(A)、控制极(G)两个引脚之间的正、反向电阻的阻值应该都很大,阴极(K)、控制极(G)两个引脚之间的正向电阻应该远小于反向电阻。
并且阳极(A)、阴极(K)两个引脚之间的正向电阻越大,单向晶闸管阳极的正向阻断特性越好;反向电阻越大,单向晶闸管阳极的反向阻断特性越好。
3.判别双向晶闸管的好坏脱开电路板的双向晶闸管,第一电极(T1)、第二电极(T2)、控制极(G)明确。
判断双向晶闸管的好坏,主要是看短路前第二电极(T2)和第一电极(T1)之间阻值接近无穷大,第二电极(T2)与控制极(G)引脚短路,短路后晶闸管触发导通,第二电极(T2)·和第一电极(T1)之间的电阻变小,有固定值。
可以断定该双向晶闸管具备双向触发能力,性能基本良好。
4.晶闸管的代换原则晶闸管的品种繁多,不同的电子设备与不同的电子电路,采用不同类型的晶闸管。
选用与代换晶闸管时,主要应考虑其额定峰值电压、额定电流、正向压降、门极触发电流及触发电压、开关速度等参数,额定峰值电压和额定电流均应高于工作电路的最大工作电压和最大工作电流1.5~2倍,代换时最好选用同类型、同特性、同外形的晶闸管替换。
普通晶闸管一般被用于交直流电压控制、可控整流、交流调压、逆变电源,开关电源保护等电路。
双向晶闸管一般被用于交流开关、交流调压、交流电动机线性凋速、灯具线性调光及固态继电器、固态接触器等电路。
晶闸管检测方法与技巧。
一、判断晶闸管是单向晶闸管还是双向晶闸管通常我们认为判断晶闸管是单向晶闸管还是双向晶闸管,用万用表Rx1量程进行测量,分别测量晶闸管的任意两个管脚之间的正反向电阻,其中有两个脚,有正反向特性的是单向晶闸管。
两个管脚正反向电阻差不多大小的是双向晶闸管。
但此方法对于判断大功率可控硅将产生误判,例如常用的KP20A型晶闸管,通过测量可知该管的G、K之间并没有正反向特性,而显示100Ω左右的阻值,若根据以上方法进行判断,它应为双向晶闸管,其实大家都知道KP20A为单向晶闸管,显然产生了误判。
通过仔细测量双向晶闸管T1、G之间的电阻和大功率单向晶闸管的G、K之间的电阻可以发现,双向晶闸管的T1、G之间的电阻为非线性电阻,是由晶闸管内部的PN结产生的电阻,而像KP20A这样的大功率晶闸管G、K测量出的电阻为线性电阻,根据以上分析我们可以用万用表的Rx1、Rx10分别测量两次电阻,因为双向晶闸管T1、G之间电阻是非线性电阻,它的阻值大小是变化的,测量结果如图1所示,而大功率单向晶闸管G、K的阻值是线性电阻所以两次测量基本相同,测量结果如图2所示。
根据以上测量,我们判断晶闸管是单向晶闸管还是双向晶闸管时,两个管脚之间有正反向特性的是单向晶闸管。
两个阻止差不多大小的宜采用Rx10量程再判断一次,阻值不变的是单向晶闸管,阻值变化较大的是双向晶闸管,这样就可以确保判断的准确性。
二、判断单向晶闸管管脚对于小功率单向晶闸管,用模拟万用表Rx1量程或数字万用表量程进行测量,分别测量每个管脚和另外两个管脚的正反向电阻,其中有一个管脚对另外两个管脚的正反向电阻都是无穷大,则该管脚是阳极(A)。
其它两个管脚之间有一个PN结有正反向特性,当万用表黑表笔接K红表笔接G时不导通,如图3所示:当万用表黑表笔接G、红表笔接K时导通,如图4所示。
对于大功率晶闸管,可以从封装形式上直接区分管脚,常用大功率晶闸管管脚排列如图5所示。
几种常见的晶闸管损坏原因的判别方法晶闸管作为一种重要的半导体器件,在电力电子和电力控制中有广泛的应用。
然而,由于工作环境的恶劣和过电流、过压、过温等因素的影响,晶闸管很容易出现损坏。
为了及时准确地判断晶闸管的损坏原因,下面将介绍几种常见的晶闸管损坏原因的判别方法。
首先,晶闸管的损坏可以分为短路损坏和开路损坏。
短路损坏指的是晶闸管在工作时出现导通状态,无法关闭的情况,通常会引起过热现象。
开路损坏则是指当晶闸管工作时发生断电,无法导通的情况。
一、短路损坏的判别方法:1.观察晶闸管是否存在明显的外部损坏,如外部熔丝开断、烧焦、开裂等情况。
2.检查晶闸管的各个引脚是否存在短路现象,可以通过万用表等测试工具进行测试。
3.使用红外热像仪检测晶闸管的温度分布,如果部分温度异常高,则很可能是该部分短路导致的。
4.检查相应的电路电压是否超过晶闸管的额定工作电压,过高的电压容易导致晶闸管的击穿和短路。
二、开路损坏的判别方法:1.检查晶闸管的各个引脚是否存在断路现象,可以使用万用表等测试工具进行测试。
2.通过激励信号观察晶闸管的导通情况,如果无法导通则可能存在开路现象。
可以使用示波器等测试工具进行观察。
3.检查晶闸管的外壳是否变黑、熔化、变形等,这些现象可能是晶闸管在过流、过压等情况下发生瞬态过热导致的。
4.检查晶闸管工作的电路,检查是否存在开路的原因,如电源供电异常、外部保护电路故障等。
除了以上方法1.通过V-I特性曲线测试,观察晶闸管的正常工作点是否发生偏移。
如果工作点偏移较大,说明晶闸管可能存在故障。
2.使用暂态过电压测试仪测试晶闸管的过电压容限,判断是否发生击穿或过压故障。
3.使用电热继电器测试晶闸管的过电流容限,判断是否发生过流故障。
晶闸管的检测方法晶闸管是一种半导体器件,广泛应用于电力电子领域。
其正常工作状态对电力设备的性能和安全有着重要的影响。
晶闸管的检测工作也显得格外重要。
本文介绍了10种晶闸管的检测方法,并对每种方法进行了详细的描述。
1. 电参量测试法电参量测试法是晶闸管检测中最常用的方法之一。
该方法通过测试晶闸管在不同电压、电流下的电参量来评估晶闸管的性能情况。
典型的电参数测试包括正常导通电压、正常关断电流、反向电压、反向漏电流和门极触发电流。
正常导通电压和关断电流是晶闸管选择时最为关注的参量,它们直接影响到晶闸管的使用条件和应用场合。
反向漏电流和反向电压则关系到晶闸管的安全性能。
门极触发电流则是衡量晶闸管灵敏度的指标。
2. 静态伏安特性测试法静态伏安特性测试法是晶闸管测试中比较重要的一种方法。
该方法以电流、电压为测试对象,通过绘制伏安特性曲线来描述晶闸管的电性能。
伏安特性曲线可以显示出晶闸管在正向和反向偏置下的电压和电流关系,以及晶闸管的导通和关断特性。
通过对伏安特性曲线进行分析,可以评估晶闸管的起始触发电流、电压爬升斜率、保持电流和闸流等参数,从而判断晶闸管是否符合要求。
3. 双脉冲测试法双脉冲测试法是一种用于晶闸管动态特性测试的方法。
该方法通过给晶闸管施加两个短脉冲,以测试晶闸管的导通和关断特性。
测试时,需要使用一个高速存储示波器来记录晶闸管的电压和电流波形,然后对波形进行分析以得出晶闸管的各项参数。
双脉冲测试法可用于评估晶闸管的导通特性、关断特性、反向漏电流等参数。
4. 瞬态响应测试法瞬态响应测试法是一种用于测量晶闸管响应时间和响应速度的方法。
该方法可以测量导通时间、关断时间、反向恢复时间和反向恢复电压等参数。
测量时需要施加一定的电压和电流脉冲,以刺激晶闸管的响应,然后使用高精度的示波器记录波形,最后通过分析波形得出所需参数。
瞬态响应测试法可用于评估晶闸管的开关速度和压降等参数。
5. 电容电压测试法电容电压测试法是一种用于测量晶闸管反向电容和反向电压的方法。
晶闸管的好坏应如何判断文章出处:发布时间:2008/04/10 | 2406 次阅读| 1次推荐| 0条留言晶闸管质量好坏的判别晶闸管质量好坏的判别可以从四个方面进行。
第一是三个PN结均应完好;第二是当阴极与阳极间电压反向连接时能够阻断,不导通;第三是当控制极开路时,阴极与阳极间的电压正向连接时也不导通;第四是给控制极加上正向电流,当给阴极与阳极间加正向电压时晶闸管应当导通,把控制极电流去掉,仍处于导通状态。
用万用表欧姆挡测量晶闸管的极间电阻,就可对前三个方面的好坏进行判断。
具体方法是:用Rx1k或Rx10k挡测量阴极与阳极之间的正反向电阻(控制极不接电压),此两个阻值均应很大。
电阻值越大,表明正反向漏电电流愈小。
如果测得的阻值很低,或近于无穷大,说明晶闸管已经击穿短路或已经开路,此晶闸管不能使用了。
用Rx1k或Rx10k挡测量阳极与控制极之间的电阻,电阻值很小表明晶闸管已经损坏。
用Rx10或Rx100挡,测控制极和阴极之间的PN结的正反向电阻,如出现正向阻值接近于零值或为无穷大,表明控制极与阴极之间的PN结巴经损坏。
反向阻值应很大,但不能为无穷大。
证常情况是反向阻值明显大于正向阻值。
晶闸管是否具有晶闸管特性,仅通过电流的测量是看不出来的,应通过下面的试验电路加以判断。
首先按图1接好电路。
电源为6V直流,电阻R1、R1都为47Ω,电流表量程大于100mA。
不合开关时,电流应很小为正常,如表针指示数很大,表明管子已坏。
当合上开关K时,表针应有几十毫安以上为正常,如此时电流很小,或表针几乎不动,说明晶闸管已坏。
最后将开关S打开,这时表针的指示应与打开前一样,说明晶闸管是好的.如果打开开关S后,表针指示降为零,说明晶闸管没有维持导通的功能.图1晶闸管测试电路图。
1111
单向晶闸管是一种半导体器件,也被称为可控硅,它可以用于控制电流的导通和截止。
以下是单向晶闸管的常见检测方法:
1. 外观检查:首先,检查单向晶闸管的外观是否有明显的损坏或烧焦的痕迹。
检查引脚是否有松动或脱落的情况。
2. 万用表测量:使用万用表可以对单向晶闸管进行基本的电气测量。
将万用表调至电阻档,测量晶闸管的阳极和阴极之间的电阻值。
正常情况下,正向电阻值较小,反向电阻值较大。
如果电阻值异常或无穷大,则可能表明晶闸管损坏。
3. 触发测试:为了进一步确认单向晶闸管的功能是否正常,可以进行触发测试。
将晶闸管的阳极连接到电源正极,阴极连接到电源负极,然后将触发极通过一个电阻连接到正极。
在正常情况下,当触发极上施加一个正向电压时,晶闸管应该导通,电流可以通过;当触发极上的电压消失时,晶闸管应该截止,电流停止通过。
可以使用示波器观察触发极和阳极之间的电压波形来确认触发信号是否正常。
4. 负载测试:最后,可以将单向晶闸管连接到一个适当的负载上,如电阻或灯泡,进行负载测试。
在正常情况下,当晶闸管导通时,负载应该正常工作;当晶闸管截止时,负载应该停止工作。
需要注意的是,在进行检测时,要确保遵循安全操作规程,并使用适当的测试仪器和工具。
如果对单向晶闸管的检测结果存在疑问或不确定,建议咨询专业的电子工程师或技术人员进行进一步的分析和诊断。
1、(1)判断晶闸管极性及好坏的方法选择指针万用表R×100Ω或R×1KΩ档分别测量晶闸管的任两个极之间的正反向电阻,其中一极与其他两极之间的正反向电阻均为无穷大,则判定该极为阳极(A)。
然后选择指针万用表的R×1Ω档。
黑表笔接晶闸管的阳极(A),红表笔接晶闸管的其中一极假设为阴极(K),另一极为控制极(G)。
黑表笔不要离开阳极(A)同时触击控制极(G),若万用表指针偏转并站住,则判定晶闸管的假设极性阴极(K)和控制极(G)是正确的,且该晶闸管元件为好的晶闸管。
若万用表指针不偏转,颠倒晶闸管的假设极性再测量。
若万用表指针偏转并站住,则晶闸管的第二次假设极性为正确的,该晶闸管为好的晶闸管。
否则为坏的晶闸管。
(2)判断IGBT极性及好坏的方法判断IGBT极性:选择指针万用表R×100Ω或R×1KΩ档分别测量IGBT的任两个极之间的正反向电阻,其中一极与其他两极之间的正反向电阻均为无穷大,则判定该极为IGBT的栅极(G)。
测量另外两极的正反向电阻,在正向电阻时,红表笔接的为IGBT的集电极(C),黑表笔接的为IGBT 的发射极(E)。
判断IGBT好坏:选择指针万用表的R×10KΩ档。
黑表笔接集电极(C),红表笔接发射极(E),用手同时触击一下集电极(C)和控制极(G)。
若万用表指针偏转并站住,再用手同时触击一下发射极(E)和控制极(G),万用表指针回零,则该IGBT为好的,否则为坏的IGBT。
功率模块的好坏判断主要是对功率模块内的续流两极管的判断.对于IGBT模块我们还需判断在有触发电压的情况下能否导通和关断。
逆变器IGBT模块检测:将数字万用表拨到二极管测试档,测试IGBT模块c1 e1、c2 e2之间以及栅极G与 e1、 e2之间正反向二极管特性,来判断IGBT模块是否完好。
以六相模块为例。
将负载侧U、V、W相的导线拆除,使用二极管测试档,红表笔接P(集电极c1),黑表笔依次测U、V、W,万用表显示数值为最大;将表笔反过来,黑表笔接P,红表笔测U、V、W,万用表显示数值为400左右。
判断晶闸管好坏的简易方法
1 晶闸管的介绍
晶闸管是一种控制电流的电子元件。
它有一对PN结叠在一起,能够实现从晶体到阳极的电流的控制,因此在控制交流电压大小,调节负载功率等方面被广泛应用。
2 晶闸管的损坏原因
晶闸管会因为过电压,过电流,过热等原因而损坏。
在日常使用中也可能因为出厂质量问题,拼装质量差等原因出现损坏。
所以判断晶闸管的好坏非常必要。
3 使用万用表进行测试
我们可以通过万用表来检测晶闸管的好坏。
将万用表调到二极管(diode)测值模式(或线路由万用表正极连接晶闸管的阳极,负极连接阴极,然后读取反向电压),在晶闸管的阳极和阴极上进行测试。
这个测试过程就是将晶闸管正向极性和反向极性分别进行测试,通过测试的结果判断晶闸管是否正常工作。
如果测量到的结电压在规定的范围内,说明晶闸管正常工作。
如果测量值为无穷大或接近于零,则可以判断晶闸管已经损坏。
4 使用集成电路测试仪进行测试
对于一些规模较大的电子设备,使用万用表测试晶闸管不是一个十分高效的方式。
这时候,可以使用专门的集成电路测试仪来检测晶
闸管的好坏。
集成电路测试仪具有自动测试操作和测试结果输出等优点,对于大批量检测晶闸管的需求是比较高效的。
5 总结
判断晶闸管好坏虽然可以通过自动测试仪等专业工具来完成,但是在日常维修中,使用普通的万用表也可以进行简单的检测。
只需要准确地测试晶闸管的正反向电压,就能得出晶闸管工作正常与否的结论。
在实际操作中,还需要注意电气安全问题,确保操作人员安全。
检测晶闸管(可控硅)好坏的简单方法【原创】晶闸管(SCR)是一种可改变输出电压大小的可控电子半导体器件。
常用于对交直流执行元件调压、调速;直流转换交流的逆变等;以及可作为可控无触点的开关,使用于数控系统、PLC控制器的输出模块等高端电子产品领域。
晶闸管是双PN结硅材料制成(单相晶闸管)其外部共三个电极。
阳极(A或A1)、阴极(K或A2)、控制极(G),它的内部结构图和电子符号如下:怎样检测晶闸管(可控硅)的好坏,现以机械式指针万用表及单相晶闸管为例介绍检测方法。
1,判断控制极(G)与阴极(K或A2)性能根据被检测晶闸管的功率大小,将万用表置于合适的电阻档,小功率的选择×10;大功率选择×100。
短接两表笔较表,较对万用表指针在“0”的位置。
控制极(G)与阴极(K或A2)实际是二极管特性,因此有单向导通性能。
将万用表-黑表笔(实际是内部电池的“+” 极)搭接在控制极上。
+红表笔搭接在阴极上,万用表指针向右偏移(“0”的方向)较小位置。
一般在几欧~十几欧。
调换黑、红表笔,再次测量控制极与阴极,万用表指针因在左边的“∝”不动(微动)或向右偏移较少(一般在几千欧~几十千欧)如检测结果与上不符,说明控制极(G)与阴极(K或A2)间已损坏。
2,判断阳极(A或A1)与阴极(K或A2)性能同样根据被检测晶闸管的功率大小,将万用表置于合适的电阻档,小功率的选择×1K;大功率选择×10K。
再次较表。
短接两表笔,较对万用表指针在“0”的位置。
由于晶闸管在制造时,两PN结在结构上是串接。
当晶闸管在截止状态下时,阳极与阴极之间就像常开开关一样处于断开状态。
因此在黑表笔搭接阳极、红表笔搭接阴极,还是黑表笔搭接阴极、红表笔搭接阳极,万用表的指针应始终处于“∝”位置。
如检测结果与上不符,即万用表的指针向右偏移,说明晶闸管的一个或两个PN极性能变差或已击穿。
3,检测在控制极上加上触发电压后,阳极与阴极是否导通黑表笔搭接阳极、红表笔搭接阴极。
怎么检测和判断可控硅晶闸管的好坏硅分单向可控硅、双向可控硅。
单向可控硅有阳极A、阴极K、控制极G三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。
只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。
单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
此时A1、A2间压降也约为1V。
双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。
只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。
判断可控硅晶闸管好坏的检测方法单向可控硅的检测万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。
此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。
此时万用表指针应不动。
用短线瞬间短接阳极A和控制极G,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。
如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。
单向双向可控硅的判断
首先:可控硅(也叫晶闸管)分为单向可控硅和双向可控硅两种类型。
这两种类型都有着三个引脚,但三个引脚的种类两种类型的可控硅却不一样。
单向可控硅的三个引脚分别为:G(控制极)、A(阳极)、K(阴极);
双向可控硅的三个引脚则是:G(控制极)、T1(输入端)、T2(输出端)。
其实,双向可控硅就是由两个单向可控硅反向并联所组成的。
说一下单向可控硅与双向可控硅的区分方法:
1、区分单向、双向可控硅的方法:拿来一只万用表,用万用表的RX1档来分别对可控硅三个引脚进行两两正反的测量,这样一共需要测量这个可控硅六次,且这六次中,如果只有一次测得可控硅的数值在几十到几百欧之间,则可以判定测量的这个可控硅是单向可控硅。
万用表上的红笔所接的引脚是K极,黑笔接的则是G极,剩下的那个引脚是A极。
如果在测量当中的结果上,有两个引脚的正反值都在几十到几百欧之间的话,那么这个可控硅就是双向可控硅。
2、区分可控硅的好坏:
在单向可控硅中:把万用表打到RX1档上,红笔连接到K极,黑笔则同时连接到G极和A极上,然后,松开G极的同时,不要断开A极,这时候的万用表指针应该在几十到一百欧之间,然后在断开A极,这个时候指针就退回原位去了,这就说明这个单行可控硅是好的。
在双向可控硅中:用万用表的红笔接T1极,黑笔同时连接G、T2极,然后和单向可控硅的步骤一样,第一次指针完了之后,再次重复指针要比上一次大十几几十欧左右,则可以说明双向可控硅是正常的。
区分单向和双向可控硅的方法,你学会了吗?。
判断晶闸管好坏的简易方法晶闸管是一种常见的电子元件,它可以实现电流的控制和开关。
在电路中,晶闸管的使用非常广泛,但是在长期使用过程中,晶闸管也会出现损坏的情况。
那么,如何判断晶闸管的好坏呢?本文将介绍一些简易方法,供读者参考。
一、外观检查法首先,我们可以通过外观检查法来判断晶闸管的好坏。
晶闸管的外观通常是黑色或灰色的,表面有一些金属引脚。
如果晶闸管外观有明显的损坏,比如表面有明显的划痕、裂纹、变形等,那么这个晶闸管很可能已经损坏了。
此外,我们还可以通过观察晶闸管引脚的接触情况来判断晶闸管是否好坏。
如果引脚松动或者接触不良,那么晶闸管的工作效果也会受到影响。
因此,我们可以轻轻摇晃晶闸管,看看引脚是否牢固,以此来判断晶闸管的好坏。
二、电压测试法除了外观检查法,我们还可以通过电压测试法来判断晶闸管的好坏。
晶闸管在工作时需要承受一定的电压,因此我们可以通过测试晶闸管的电压来判断它的好坏。
在测试时,我们需要将晶闸管与电路分离开来,然后用万用表测试晶闸管的导通情况。
首先,将万用表的电压档位调整到正常电压范围内,然后将测试笔分别接到晶闸管的两个引脚上。
如果晶闸管导通,那么万用表将显示电压;如果晶闸管不导通,那么万用表将不显示电压。
通过这种方法,我们可以初步判断晶闸管的好坏。
三、电流测试法除了电压测试法,我们还可以通过电流测试法来判断晶闸管的好坏。
晶闸管在工作时需要承受一定的电流,因此我们可以通过测试晶闸管的电流来判断它的好坏。
在测试时,我们需要将晶闸管与电路分离开来,然后用万用表测试晶闸管的电流情况。
首先,将万用表的电流档位调整到正常电流范围内,然后将测试笔分别接到晶闸管的两个引脚上。
如果晶闸管导通,那么万用表将显示一定的电流;如果晶闸管不导通,那么万用表将不显示电流。
通过这种方法,我们可以初步判断晶闸管的好坏。
四、温度测试法除了以上三种方法,我们还可以通过温度测试法来判断晶闸管的好坏。
晶闸管在工作时会产生一定的热量,因此我们可以通过测试晶闸管的温度来判断它的好坏。
双向晶闸管(可控硅)的电极,好坏及触发能力检测方法(1)判别各电极:用万用表R×1或R×10档分别测量双向晶闸管三个引脚间的正、反向电阻值,若测得某一管脚与其他两脚均不通,则此脚便是主电极T2。
找出T2极之后,剩下的两脚便是主电极Tl和门极G3。
测量这两脚之间的正、反向电阻值,会测得两个均较小的电阻值。
在电阻值较小(约几十欧姆)的一次测量中,黑表笔接的是主电极T1,红表笔接的是门极G。
螺栓形双向晶闸管的螺栓一端为主电极T2,较细的引线端为门极G,较粗的引线端为主电极T1。
金属封装(To—3)双向晶闸管的外壳为主电极T2。
塑封(TO—220)双向晶闸管的中间引脚为主电极T2,该极通常与自带小散热片相连。
图5是几种双向晶闸管的引脚排列。
(2)判别其好坏:用万用表R×1或R×10档测量双向晶闸管的主电极T1与主电极T2之间、主电极T2与门极G之间的正、反向电阻值,正常时均应接近无穷大。
若测得电阻值均很小,则说明该晶闸管电极问已击穿或漏电短路。
测量主电极T1与门极G之问的正、反向电阻值,正常时均应在几十欧姆(Ω)至一百欧姆(Ω)之间(黑表笔接T1极,红表笔接G极时,测得的正向电阻值较反向电阻值略小一些)。
若测得T1极与G极之间的正、反向电阻值均为无穷大,则说明该晶闸管已开路损坏。
(3)触发能力检测:对于工作电流为8 A以下的小功率双向晶闸管,可用万用表R×1档直接测量。
测量时先将黑表笔接主电极T2,红表笔接主电极T1,然后用镊子将T2极与门极G 短路,给G极加上正极性触发信号,若此时测得的电阻值由无穷大变为十几欧姆(Ω),则说明该晶闸管已被触发导通,导通方向为T2→T1。
再将黑表笔接主电极T1,红表笔接主电极T2,用镊子将T2极与门极G之间短路,给G极加上负极性触发信号时,测得的电阻值应由无穷大变为十几欧姆,则说明该晶闸管已被触发导通,导通方向为T1→T2。
怎样用数字万用表判断单向晶闸管的极性单项晶闸管分为PNPN和NPNP两种,各有三个管脚分别为阳极、控制极、阴极!用数字式万用表的晶体管档(两个表笔接到一块会响那个档),PNPN型:用万用表分别测这三个管脚(要正反各一次,也就是说一个管最多测六次),其中这六次只有一次有数值,当显示器上有数值时红表笔(正极)接控制极,黑表(负极)笔接阴极,另外一个管脚就是阳极!NPNP型管与此步骤相同,只不过最后红表笔接阴极,黑表笔接控制极!一、可控硅符号与性能介绍可控硅符号:可控硅也称作晶闸管,它是由PNPN四层半导体构成的元件,有三个电极,阳极A,阴极K和控制极G。
可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好。
在调速、调光、调压、调温以及其他各种控制电路中都有它的身影。
可控硅分为单向的和双向的,符号也不同。
单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极。
单向可控硅有其独特的特性:当阳极接反向电压,或者阳极接正向电压但控制极不加电压时,它都不导通,而阳极和控制极同时接正向电压时,它就会变成导通状态。
一旦导通,控制电压便失去了对它的控制作用,不论有没有控制电压,也不论控制电压的极性如何,将一直处于导通状态。
要想关断,只有把阳极电压降低到某一临界值或者反向。
双向可控硅的引脚多数是按T1、T2、G的顺序从左至右排列(电极引脚向下,面对有字符的一面时)。
加在控制极G上的触发脉冲的大小或时间改变时,就能改变其导通电流的大小。
与单向可控硅的区别是,双向可控硅G极上触发脉冲的极性改变时,其导通方向就随着极性的变化而改变,从而能够控制交流电负载。
而单向可控硅经触发后只能从阳极向阴极单方向导通,所以可控硅有单双向之分。
电子制作中常用可控硅,单向的有MCR-100等,双向的有TLC336等。
这是TLC336的样子:二、向强电冲击的先锋—可控硅可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件。
各种晶闸管(可控硅)的检测方法1.单向晶闸管的检测(1)判别各电极:根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A 与门极之间有两个反极性串联的PN结。
因此,通过用万用表的R×100或R×1 k Q档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。
具体方法是:将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。
若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。
在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其他电极,直到找出三个电极为止。
也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则两极即为阳极A和阴极K,而另一脚即为门极G。
普通晶闸管也可以根据其封装形式来判断出各电极。
例如:螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。
平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。
金属壳封装(T0—3)的普通晶闸管,其外壳为阳极A。
塑封(T0—220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。
图1为几种普通晶闸管的引脚排列。
(2)判断其好坏:用万用表R×1 kΩ档测量普通晶闸管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞);若测得A、K之间的正、反向电阻值为零或阻值均较小,则说明晶闸管内部击穿短路或漏电。
测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果要较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2 kΩ),反向电阻值较大(大于80 kΩ)。
若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K极之间开路或短路。
怎样测量晶闸管的好坏
一、什幺是晶闸管
晶闸管(Thyristor)是一种开关元件,能在高电压、大电流条件下工作,并且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中,是典型的小电流控制大电流的设备。
1957年,美国通用电器公司开发出世界上第一个晶闸管产品,并于1958年使其商业化。
晶闸管导通条件为:加正向电压且门极有触发电流;其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。
它是一种大功率开关型半导体器件,在电路中用文字符号为V、VT表示(旧标准中用字母SCR表示)。
二、晶闸管结构
它是由一个P-N-P-N四层(4 layers)半导体构成的,中间形成了三个PN结。
三、晶闸管工作原理。
几种常见的晶闸管损坏原因的判别方法晶闸管是一种电子器件,广泛应用于电子电路中。
在使用晶闸管的过程中,也经常会遇到晶闸管损坏的情况。
本文将介绍几种常见的晶闸管损坏原因,并给出相应的判别方法。
1. 过流损坏过流是晶闸管损坏的常见原因。
当晶闸管承受过大的电流时,会造成其内部元件的烧坏,从而导致晶闸管无法正常工作。
判别方法:•使用万用表测量晶闸管两端的电压和电流值,如果电压陡升或电流值较大,说明晶闸管承受了过大的电流,很可能是过流损坏。
•使用示波器观察晶闸管的工作波形,如果波形突变或变形,说明晶闸管可能已经过流损坏。
2. 过压损坏过压也是晶闸管损坏的常见原因。
当晶闸管承受过大的电压时,会造成晶体管管子之间绝缘损坏,从而导致晶闸管无法正常工作。
判别方法:•使用万用表测量晶闸管两端的电压,如果超出了晶闸管的额定电压,说明晶闸管承受了过大的电压,很可能是过压损坏。
•使用示波器观察晶闸管的工作波形,如果波形突变或变形,说明晶闸管可能已经过压损坏。
3. 温度过高损坏温度过高也是晶闸管损坏的常见原因。
当晶闸管长时间处于高温环境中,会导致晶体管内部元件老化、氧化以及损坏。
判别方法:•使用红外测温仪测量晶闸管的表面温度,如果超过了晶闸管的工作温度范围,说明晶闸管承受了过高的温度,很可能是温度过高损坏。
•使用万用表测量晶闸管两端的电阻值,如果电阻异常高或开路,说明晶闸管可能已经受到了温度过高的损坏。
4. 触发信号不稳定损坏晶闸管的触发信号不稳定也会导致晶闸管损坏。
当晶闸管的触发信号波形不规则、抖动或幅度不稳定时,会造成晶闸管失去控制或触发过早、过迟,从而导致晶闸管损坏。
判别方法:•使用示波器观察晶闸管的触发信号波形是否规则、稳定,如果波形不平稳、抖动或幅度不稳定,说明晶闸管可能存在触发信号不稳定的问题。
•使用万用表测量晶闸管触发信号的幅度和频率,并与晶闸管的规格参数进行对照,是否匹配,如果不匹配很可能存在触发信号不稳定的问题。
1、(1)判断晶闸管极性及好坏的方法
选择指针万用表R×100Ω或R×1KΩ档分别测量晶闸管的任两个极之间的正反向电阻,其中一极与其他两极之间的正反向电阻均为无穷大,则判定该极为阳极(A)。
然后选择指针万用表的R×1Ω档。
黑表笔接晶闸管的阳极(A),红表笔接晶闸管的其中一极假设为阴极(K),另一极为控制极(G)。
黑表笔不要离开阳极(A)同时触击控制极(G),若万用表指针偏转并站住,则判定晶闸管的假设极性阴极(K)和控制极(G)是正确的,且该晶闸管元件为好的晶闸管。
若万用表指针不偏转,颠倒晶闸管的假设极性再测量。
若万用表指针偏转并站住,则晶闸管的第二次假设极性为正确的,该晶闸管为好的晶闸管。
否则为坏的晶闸管。
(2)判断IGBT极性及好坏的方法
判断IGBT极性:选择指针万用表R×100Ω或R×1KΩ档分别测量IGBT的任两个极之间的正反向电阻,其中一极与其他两极之间的正反向电阻均为无穷大,则判定该极为IGBT的栅极(G)。
测量另外两极的正反向电阻,在正向电阻时,红表笔接的为IGBT的集电极(C),黑表笔接的为IGBT 的发射极(E)。
判断IGBT好坏:选择指针万用表的R×10KΩ档。
黑表笔接集电极(C),红表笔接发射极(E),用手同时触击一下集电极(C)和控制极(G)。
若万用表指针偏转并站住,再用手同时触击一下发射极(E)和控制极(G),万用表指针回零,则该IGBT为好的,否则为坏的IGBT。
功率模块的好坏判断主要是对功率模块内的续流两极管的判断.对于IGBT模块我们还需判断在
有触发电压的情况下能否导通和关断。
逆变器IGBT模块检测:
将数字万用表拨到二极管测试档,测试IGBT模块c1 e1、c2 e2之间以及栅极G与 e1、 e2之间正反向二极管特性,来判断IGBT模块是否完好。
以六相模块为例。
将负载侧U、V、W相的导线拆除,使用二极管测试档,红表笔接P(集电极c1),黑表笔依次测U、V、W,万用表显示数值为最大;将表笔反过来,黑表笔接P,红表笔测U、V、W,万用表显示数值为400左右。
再将红表笔接N(发射极e2),黑表笔测U、V、W,万用表显示数值为400左右;黑表笔接P,红表笔测U、V、W,万用表显示数值为最大。
各相之间的正反向特性应相同,若出现差别说明IGBT模块性能变差,应予更换。
IGBT模块损坏时,只有击穿短路情况出现。
红、黑两表笔分别测栅极G与发射极E之间的正反向特性, 万用表两次所测的数值都为最大,这时可判定IGBT模块门极正常。
如果有数值显示,则门极性能变差,此模块应更换。
当正反向测试结果为零时,说明所检测的一相门极已被击穿短路。
门极损坏时电路板保护门极的稳压管也将击穿损坏。
2、你还可以利用参数P372选择模拟运行功能,来检查是否功率器件被损坏,或者触发脉冲的逻辑关系是否正确。
具体的操作及说明你可以参考——
/club/bbs/post.asp?b_id=16&a_id=511918&s_id=0&num=25#anc 3、另外,西门子还专门推出了用于检测IGBT好坏的IGBT测试盒,型号为——
6SE7090-0XX84-1FK0。
你可以考虑买一个试试。