综合防雷技术概述.pptx
- 格式:pptx
- 大小:3.41 MB
- 文档页数:17
综合防雷技术2这些感应正电荷在屋顶上的聚集速度取决于先导发展的速度,因为先导发展的速度约比回击速度小100倍,所以在先导发展阶段,金属屋顶上有足够的时间来聚集大量正电荷。
这些正电荷受到先导通道中负电荷的束缚,不能自由运动。
当先导发展到附近地面时,回击过程便开始,先导通道中携带的负电荷将被地面上的正电荷自上而下地迅速中和,伴随着负电荷的消失,金属屋顶上的正电荷将失去束缚,变为自由电荷,但由于屋顶金属体与地之间的电荷流散路径上存在着数值可观的电阻,这些被释放的正电荷不能以与回击发展同样的速度来消散。
在回击后的短时间内,可以近似认为金属体上仍有大量正电荷存在,于是金属体与地之间将构成一个电容器,金属体对地将具有一个高电位,它可用下式来表示:上式中的实际是金属体上感应电压的最大值。
随后,金属体上正电荷将通过建筑结构中的路径向地流散,设该流散路径的电阻为R,这种电荷流散过程本质上是一个一阶RC电路的零输入响应过程,因此建筑物金属屋顶的对地电压u将按以下规律变化:式中u——金属体电位;Q——金属体上的电荷;C——金属体对地电容。
雷电流的大小与许多因素有关,各地区有很大差别,一般平原地区比山地雷电大(图2.13),正闪击比负闪击大,第一闪击比随后闪击大。
如2.13所示的是圣萨尔瓦托山的101次负闪击,26次正闪击得到的电流峰值累积概率分布图。
101次负闪击的中值电流为30kA,而26次正闪击的中值电流为35kA。
事实上从1936年至1971年间电流超过100kA的都是正极性。
在北美州等地区得到了正极放电极其强烈的结论。
I(kA)雷电流峰值图2.13雷电流峰值的累积概率分布二、雷电流的波形1、雷电波形作图如图,先由纵轴上的0.1、0.9、和1.0三个刻度作三条横轴的平行,前两条平行线分别与波形曲线的头部分别相交于A、B两点,过A、B两点作一条直线,该直线与第三条平行线和横轴分别相交于C、D两点,由C点引横轴的垂线,其垂足E点与D点之间的时间即定义为波头时间,用t1表示。