第三章 固体流态化技术
- 格式:ppt
- 大小:837.00 KB
- 文档页数:1
第3章非均相物系的分离和固体流态化3.1 概述本章介绍利用流体力学原理(颗粒与流体之间相对运动)实现非均相物系的分离流态化及固体颗粒的气力输送等工业过程。
1.混合物的分类自然界的大多数物质是混合物。
若物系内部各处组成均匀且不存在相界面,则称为均相混合物或均相物系,溶液及混合气体都是均相混合物。
由具有不同物理性质(如密度差别)的分散物质和连续介质所组成的物系称为非均相混合物或非均相物系。
在非均相物系中,处于分散状态的物质,如分散于流体中的固体颗粒、液滴或气泡,称为分散物质或分散相;包围分散物质且处于连续状态的物质称为分散介质或连续相。
根据连续相的状态,非均相物系分为两种类型:①气态非均相物系,如含尘气体、含雾气体等;②液态非均相物系,如悬浮液、乳浊液及泡沫液等。
2.非均相混合物的分离方法由于非均相物系中分散相和连续相具有不同的物理性质,故工业上一般都采用机械方法将两相进行分离。
要实现这种分离,必须使分散相与连续相之间发生相对运动。
根据两相运动方式的不同,机械分离可按下面两种操作方式进行。
①颗粒相对于流体(静止或运动)运动而实现悬浮物系分离的过程称为沉降分离。
实现沉降操作的作用力可以是重力,也可以是惯性离心力,因此,沉降过程有重力沉降与离心沉降之分。
②流体相对于固体颗粒床层运动而实现固液分离的过程称为过滤。
实现过滤操作的外力可以是重力、压强差或惯性离心力。
因此,过滤操作又可分为重力过滤、加压过滤、真空过滤和离心过滤。
气态非均相混合物的分离,工业上主要采用重力沉降和离心沉降方法。
在某些场合,根据颗粒的粒径和分离程度要求,也可采用惯性分离器、袋滤器、静电除尘器或湿法除尘设备等,如表3—1所示。
┘此外,还可采用其他措施.预先增大微细粒子的有效尺寸而后加以机械分离。
例如,使含尘或含雾气体与过饱和蒸汽接触,发生以粒子为核心的冷凝;又如,将气体引入超声场内,使细粒碰撞并凝聚。
这样,可使微细颗粒附聚成较大颗粒,然后在旋风分离器中除去。
流态化技术第一章定义:流态化是一种使固体颗粒通过与气体或液体(流体)接触而转变成类似流体状态的操作。
一、流态化形成的过程1.固定床阶段气流对颗粒的曳力 + 气流对颗粒的浮力 < 颗粒受到的重力床层体积固体颗粒总体积床层体积空隙率-=ε2.流态化床阶段气流对颗粒的浮力 = 颗粒受到的重力 压降△P = 单位截面积上床层物料的重量 不变不变,但P L L U ∆∴-↑↑→↑→)1(εε3.气力输送阶段 (气流床)气流对颗粒的曳力 + 气流对颗粒的浮力 > 颗粒受到的重力Umf ——临界流化速度,是指刚刚能够使固体颗粒流化起来的气体空床流化速度,也称最小流化速度。
Ut ——带出速度,当气体速度超过这一数值时,固体颗粒就不能沉降下来,而被气流带走,此带出速度也称最大流化速度。
操作速度、表观流速(U )——是指假想流体通过流化床整个截面(不考虑堆积固体粒子)时的截面平均流速(也称空塔速度或空管速度),用U 表示。
注意P2图1.2两条线不重合的原因:该页第四段(非自然堆积)二、形成流态化的条件1.有固体颗粒存在2.有流体介质存在3.固体与流体介质在特定条件下发生作用三、流态化过程具有的特点1.类似液体的特性(物性参数)2.固体颗粒的剧烈运动与迅速混合3. 强烈的碰撞与摩擦4.颗粒比表面积大5.气体与颗粒的接触时间不均匀四、流态化过程中的不正常现象1.沟流2.腾涌 3.分层 4.气泡五、气-固流化床的一般性评价1.良好的床层均温性 2.较高的传热传质速率 3.输送能力大4.可利用或加工粉末状物料流态化可以分为聚式流化态和散式流化态。
气泡相:就是内部几乎没有固体颗粒,仅在其边壁或 外表面 有固体颗粒环绕的运动空间乳化相:指的是固体颗粒与气体介质的混合区域第二章A 类: 细 大多数工业流化床反应使用的催化剂属于此类。
B 类: 粗 鼓泡床大都用此颗粒C 类: 极细 在气固催化反应中很少采用,但同相加工中采用较多,如明矾综合利用。
一、实验目的1. 观察固体颗粒在流态化过程中的聚式和散式流化现象。
2. 测定床层的堆积密度和空隙率。
3. 测定流体通过颗粒床层时的压降与空塔气速的曲线,并确定临界流化速度。
二、实验原理固体流态化是指固体颗粒在气体或液体介质中,由静止状态逐渐过渡到具有一定流动性的状态。
在此过程中,颗粒的流动速度与气体(或液体)的流速之间存在一定的关系。
当气体(或液体)流速达到某一临界值时,颗粒开始由静止状态转变为流态化状态,此时的流速称为临界流化速度。
三、实验装置1. 实验装置流程:鼓风机→ 气体流量调节阀→ 气体转子流量计→ 温度计→ 气体分布板→ 颗粒床层→ 床层顶部。
2. 实验材料:石英砂、空气或水。
四、实验步骤1. 将石英砂装入床层,轻轻敲打床层,使床层高度均匀一致,并测量首次静床高度。
2. 打开电源,启动风机,调节气体流量,从最小刻度开始,每次增加0.5m³/h,同时记录相应的空气流量、空气温度、床层压降等上行原始数据。
最大气体流量以不把石英砂带出床层为准。
3. 调节气体量从上行的最大流量开始,每次减少0.5m³/h,直至最小流量,记录相应的下行原始实验数据。
4. 测量结束后,关闭电源,再次测量经过流化后的静床高度,比较两次静床高度的变化。
5. 在临界流化点之前,保证床层稳定,避免发生颗粒带出现象。
五、实验数据及处理1. 记录实验数据,包括空气流量、空气温度、床层压降、静床高度等。
2. 绘制压降与空塔气速的曲线。
3. 根据实验数据,确定临界流化速度。
六、实验结果与分析1. 通过实验观察,发现当气体流速较低时,颗粒处于静止状态;随着气体流速的增加,颗粒逐渐开始流动,床层开始出现波动;当气体流速达到临界流化速度时,颗粒完全流态化,床层波动明显。
2. 根据实验数据,绘制压降与空塔气速的曲线,曲线呈非线性关系。
3. 根据曲线,确定临界流化速度为0.4m/s。
七、实验结论1. 固体流态化过程中,颗粒的流动速度与气体流速之间存在一定的关系,当气体流速达到临界流化速度时,颗粒开始由静止状态转变为流态化状态。
第三章 非均相混合物分离及固体流态化1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少?解:(1)假设为滞流沉降,则:2s t ()18d u ρρμ-= 查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15⋅⨯=-μ,所以,()()()m 1276.0s m 1081.11881.9205.126501004.018523s 2t =⨯⨯⨯-⨯⨯=-=--μρρg d u 核算流型:3t 51.2050.12760.04100.3411.8110du Re ρμ--⨯⨯⨯===<⨯ 所以,原假设正确,沉降速度为0.1276 m/s 。
(2)采用摩擦数群法()()s 123t 523434 1.81102650 1.2059.81431.93 1.2050.1g Re u μρρξρ---=⨯⨯-⨯==⨯⨯ 依6.0=φ,9.431Re 1=-ξ,查出:t e t 0.3u d Re ρμ==,所以: 55e 0.3 1.8110 4.50610m 45μm 1.2050.1d --⨯⨯==⨯=⨯ (3)假设为滞流沉降,得:2s t()18d g u ρρμ-= 其中 s m 02049.0s m 32.715.0t ===θh u将已知数据代入上式得:()s Pa 757.6s Pa 02049.01881.91600790000635.02⋅=⋅⨯⨯-=μ 核算流型t 0.006350.020*******.0308116.757du Re ρμ⨯⨯===< 2.用降尘室除去气体中的固体杂质,降尘室长5 m ,宽5 m ,高4.2 m ,固体杂质为球形颗粒,密度为3000 kg/m 3。
固体流态化实验报告实验目的,通过实验观察和分析固体颗粒在气流中的流态化特性,探讨流态化过程中的规律和影响因素。
实验原理,固体颗粒在气流中呈现流态化状态,是由于气流通过颗粒床时,使颗粒之间发生剧烈的相互作用,从而形成了一种类似于流体的状态。
流态化过程包括固体颗粒的床层形成、床层的膨胀和收缩、颗粒之间的相互作用等。
实验装置,本次实验采用了一台流态化实验装置,包括气流发生器、颗粒床、气流调节装置、压力传感器和温度传感器等。
实验步骤:1. 调节气流速度和颗粒床高度,使得气流能够充分通过颗粒床并形成流态化状态。
2. 测量和记录不同气流速度下的颗粒床压力和温度变化。
3. 观察颗粒床的膨胀和收缩情况,记录流态化过程中的现象和规律。
实验结果与分析:通过实验观察和数据记录,我们得到了以下结果:1. 随着气流速度的增加,颗粒床的压力呈现出逐渐增加的趋势。
这是因为气流速度增加会导致颗粒床的膨胀,从而增加了床层的阻力,使得床层压力增加。
2. 在一定范围内,气流速度的增加对颗粒床温度影响不大。
但是当气流速度超过一定数值时,颗粒床温度会明显上升,这是由于气流速度增加引起了颗粒之间的摩擦和碰撞,从而导致颗粒床的温度升高。
3. 流态化过程中,颗粒床呈现出了明显的膨胀和收缩现象。
当气流速度增加时,颗粒床的膨胀程度增加,床层呈现出了更加松散的状态。
而当气流速度减小时,颗粒床收缩,床层变得更加紧密。
结论,通过本次实验,我们深入了解了固体颗粒在气流中的流态化特性。
实验结果表明,气流速度对固体颗粒流态化过程有着显著影响,同时也揭示了流态化过程中颗粒床的压力、温度和膨胀收缩等重要特性。
这对于工业生产中的颗粒物料输送和处理具有一定的指导意义。
实验改进和展望,在今后的实验中,我们可以进一步研究不同颗粒物料的流态化特性,探讨影响流态化过程的更多因素,以及优化流态化实验装置,提高实验数据的准确性和可靠性。
通过本次实验,我们对固体流态化的特性和规律有了更深入的认识,这对于相关领域的研究和应用具有一定的参考价值。
固体流态化的名词解释1. 引言固体流态化是一种物质在外界作用下从固态向流态转化的过程。
相较于传统的固体和液体状态,固体流态化展现了许多独特的性质和潜力。
本文将对固体流态化进行详细解释,包括其定义、机理、应用和前景。
2. 固体流态化的定义固体流态化,又称为固体颗粒流动或颗粒流动化,是指固态物质在特定条件下,颗粒之间产生流动并表现出类似流体的行为。
这种状态下,固体被视为一个可变形、流动性较高的流体。
3. 流态化机理固体流态化的机理主要涉及颗粒之间的微观相互作用力和流动条件。
通常包括以下几个关键因素:1) 颗粒表面摩擦力:颗粒之间的表面摩擦力越小,流动性越高;2) 颗粒内部结构:颗粒内部的结构和排列方式会影响流动性;3) 外界作用:外界力的引入,如振动、剪切力或液体注入等,可以激发颗粒之间的流动行为;4) 孔隙空间:颗粒之间存在的孔隙空间和通道的形状和大小也会影响固体流态化的程度。
4. 固体流态化的应用固体流态化在许多领域具有重要的应用价值。
以下是几个典型的应用示例:1) 粉末冶金:固体流态化可用于粉末冶金工艺中,以促进粉末的均匀混合以及提高成型的效果;2) 粒子分离和筛选:通过固体颗粒的流态化,可以实现粒子的分离和筛选,广泛用于颗粒物料的分级和分类;3) 化工过程中的颗粒反应器:固体流态化可以使颗粒在反应器中更好地混合并提高反应效率;4) 沉积工艺中的喷涂:固体粉末的流态化可用于金属沉积、涂覆和喷涂工艺中,以获得均匀且致密的表面涂层;5) 滑动摩擦控制:借助固体颗粒的流态化,可以改善材料表面的摩擦性能,实现摩擦的控制和减少磨损。
5. 固体流态化的前景随着科技的发展和对新材料、新工艺的需求增加,固体流态化技术在工业和科学研究中的重要性不断提升。
固体流态化既可以改善传统过程的效率和品质,又可以为新型工艺的开拓提供基础。
同时,固体颗粒流态化也是一个广阔而充满挑战的研究领域,吸引了越来越多的科学家和工程师加入研究队伍。