用层次分析法评选优秀学生进行数学建模
- 格式:doc
- 大小:547.50 KB
- 文档页数:6
挑选队员的策略模型摘要全国大学生建模竞赛已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,各大高校对这项比赛都很重视,那么如何挑选出优秀的队员和如何将队员进行合理的组队就至关重要了。
本文将提出的问题转化为数学的模型以及合理的假设分析给出了妥帖的解决方案。
1、对于问题一我们用多元统计分析中的层次分析法首先建立了模型1.1,给各项条件指标一个权重,来计算加权函数i i ij j i iii W P L W ∑=∑===7161,αα,再求每个队员的综合水平,用Excel 整理数据,最后淘汰8、9两名队员。
然后在模型1.1的基础上建立了模型 1.2,从理论上按照层次分析法的步骤算出权重,再按模型 1.1的加权函数计算每个队员的综合水平,得出的结果也是淘汰8、9两名队员,充分的验证了模型的合理性。
2、对于问题二我们用逐项选优法和均衡模型法,由于学校参赛的目的不同给出两种模型。
我们把这个问题转化成求竞赛水平函数i j ml k ji m l k jW a W af ∑==61,,,,),(,模型2.1目的是使学校尽可能拿更高的奖项,用逐项求优法挑选竞赛水平高的队伍,重复挑选选取最优。
模型2.2目的是使学校尽可能多的获奖,也就是期望六支队伍都获奖,用均衡模型法,先选出竞赛水平最高的一组保证能够获奖,将剩下的队员均衡分配,从而竞赛水平都达到某一高度,这样六支队伍都能获奖。
综合这两种模型我们在不同的情况下做了合理的分析,认为模型2.1优于模型2.2. 3、对于问题三我们用求价值函数和仿真的方法,模型3.1是使每个教练挑选的队员的价值函数i i k q p o i i kq p o i kW d W dg ∑==613),,(3),,(3),(达到最大,同时保证他们之间相差不大,这样才能使教练相对满意。
模型3.2是用仿真的方法,通过仿真模拟出能够满足各个教练所需求的“最优”,又能使得他们所得队员差距更小,以取得使教练都尽可能满意的结果。
数学建模竞赛成绩的评价与预测摘要本文针对对以往的数学建模工作进行总结及对未来的发展进行预测两个问题,根据附件一二中各高校安徽赛区奖和全国奖的数据,运用层次分析法、模糊综合评价和BP 神经网络等方法,建立了模糊层次模型和BP神经网络模型,借助Excel、Matlab软件,给出安徽赛区各校和全国各院校建模成绩的科学、合理的排序,并且对安徽赛区各院校2012年建模成绩进行了预测,最后将模型结果与实际结合,提出了为科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑的因素。
针对问题一,根据附件一中安徽赛区各高校的数学建模获奖数据,给出安徽赛区各校建模成绩的科学、合理的排序,并对安徽赛区各院校2012年建模成绩进行预测。
首先,统计出安徽赛区16所高校的获奖数据,引入综合评价指数概念,运用层次分析法和模糊综合评价建立了模糊层次模型,由Matlab求的全国一二等奖和安徽赛区一二三等奖对数学建模成绩的权重,将安徽赛区奖归一化得到本问题中所需要的权重,算出各校综合评价指数,进而得出安徽赛区各校建模成绩的排序,前十名依次为安徽财经大学、安徽大学、安徽师范大学、中国科学技术大学、安庆师范学院、合肥工业大学、安徽工程大学、皖西学院、滁州学院、安徽建筑工业学院、宿州学院、铜陵学院、合肥师范学院、巢湖学院、淮南师范学院、合肥学院;再建立BP神经网络模型,借助Matlab软件求得安徽赛区16所高校2012年各奖项的获奖队数,具体数据见表3。
针对问题二,根据附件二中全国各高校的数学建模获奖数据,将问题一中的模糊层次模型推广,应用于全国各高校。
在问题求解时,本本文在本科组学校中选取49所,在专科组学校中40所学校,按一定的年份间隔来统计数据,最后运用Excel软件对这些学校进行排序,得出本科组排在前十的依次为解放军信息工程大学、国防科技大学、浙江大学、武汉大学、大连理工大学、海军航空工程学院、上海交通大学、山东大学、东南大学;专科组学校前五名依次为:石家庄经济学院、成都电子机械高等专科学校、海军航空工程学院、山西工程职业技术学院、深圳职业技术学院。
数学建模队员的选拔摘要一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。
但在对参赛队员进行选拔时,往往会遇到很多难题,以致有时并不能选出真正优秀的队员代表学校参加全国竞赛。
本文通过对学生自身具备的与数学建模有关的素质的考察,解决了选拔参赛队员及确定最佳组队的问题。
本文主要采用层次分析法,通过对建模队员的综合能力以及专项能力的考察,综合考虑个人的指标以及整队的技术水平,给出了选拔队员的模型,并最终从15名队员中选出9名优秀队员组成三队,建立了最佳的组队方案。
问题一,我们给出了选拔队员时应考察的情况,并针对数学建模应具备的关键素质,给出了相关素质的权重。
问题二,我们全面考察了15名队员的六项指标,并利用层次分析法及matlab 编程求出了各指标的权重,然后根据权重得到15名队员的的综合排名,最后剔除后六名,得到前九名队员,依次是:2S ,1S ,14S ,8S ,11S ,4S 10S ,6S ,13S 。
为了组成3个队,使得这3队的整体水平最高,我们建立了求每个队竞赛水平的模型,根据题目要求,为使三名队员的技术水平可以互补,参赛学生最好来自不同专业,我们在多种组合方式下经计算比较后得到最佳组合方案。
如下表:问题三,我们如果只考察计算机而不考察其它能力,选出最佳队员S11和S13,其成绩分别为第五和第九,并非特别拔尖。
而且通过对计算机编程能力在关键素质中所占的比例24.9%分析(1/4不到),这种直接录用的选拔方式,有可能影响队伍的总体水平,而且有失公平,所以不可取。
问题四,我们在前几问的基础上,综合数学建模的关键素质所占的权重分析,给出了对数学建模教练组在选拔队员时的建议。
关键词:最佳组队;层次分析法;matlab 编程,权重一、问题重述由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。
为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):广东金融学院参赛队员(打印并签名) :1. 曾彬2. 曾庆达3. 陈佳玲指导教师或指导教师组负责人(打印并签名):日期: 2013 年8 月 22日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):高校学生评教系统改进的研究摘要本文是研究关于高等学校学生评价教师的评价系统问题,用层次分析法确定了十项指标的权值,并给出了一个新的评教分数的计分模型-模糊综合评价模型。
本文亮点在于采用基于层次分析法的模糊数学模型。
首先,建立层次分析模型,充分考虑每个指标对综合评价的贡献,并把贡献按权值进行分配;通过层次分析法中的归一化处理,得到两两指标间的相对重要性的定量描述,从而解决不同指标间的差异。
其次建立模糊综合评教模型,输入一组专家(同学)的模糊评价,通过最大隶属度原则把模糊评价输出为综合评价。
最后本文在难易程度不同的课程下(在专业必修课,专业选修课,公共选修课下进行评价),得出同一教师的综合评价,发现其在不同课程下的综合评价均相同。
于是得出结论,该模型的确能解决不同课程难易程度带来的对总体评教的影响。
因为一个教师的综合教学质量并不应该在不同的课程下得到变化较大的评教。
浅谈层次分析法摘要本文主要阐述层次分析法的定义、特点、基本步骤以及它的优缺点。
层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
关键词:层次分析多目标多准则成对比较一致性检验前言数学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。
随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。
众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。
数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。
从学术的角度来讲,数学建模就是利用数学技术去解决实际问题;从价值的角度来讲,数学建模是一个思维过程,它是一个解决问题的过程(创新),更是一个升华理论方法的过程(总结);从哲学的角度来讲,数学建模是认识世界和改造世界的过程。
1 数学建模过程和技巧数学建模的过程是通过对现实问题的简化、假设、抽象,提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。
若检验结果符合实际或基本符合,就可以用来指导实践;否则就再假设、再抽象、再修改、再求解、再应用。
构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤:⑴模型准备在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。
如何客观、合理的评价学生学习状况摘要现行的以考试成绩衡量学生学习状况的方法比较主观,且评价方式单一,忽略了不同基础水平的同学的进步程度,为了激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步,我们需要建立一个客观,合理的评价学生状况的数学模型。
考虑到以上情况,本文通过以下几步来达到目的。
步骤一:通过分析题目所给198名学生的整体成绩情况,包括大一两个学期每个学期的整体平均成绩、及格率、方差、标准差等多项指标有关,通过所给数据,得到图表。
分析数据充分理解学生的学习情况,更有利于以下两个模型的进行,为模型的建立提供参考.步骤二:对于全面、客观、合理的评价学生的学习状况,我们采用了二个模型:模型一:利用黑尔指数法求得的进步分数和层次分析法进行评价:设定适当的权系数,使最终成绩更为合理。
本专业为工科类专业,应更加重视专业学习能力,因此专业课程所占权系数较高,成绩也能更好的选拔专业能力强的学生。
同时为了激励进步学生,进步分也占有部分权限,能够起到很好的鼓励作用。
为此我们设置:最终成绩Y=0。
55*专业课程+0.4*其他课程+0.05*进步分数.模型二:采用成绩标准化模型对成绩进行评价:采用对数变换将负偏态的成绩分布正态化,并用Matlab进行了正态检验。
从而学生成绩的差距分布更为合理,成绩偏低的学生变换后将处于中等位置,得到适当的鼓励,改变了负偏态分布中较多学生成绩集中在高分段或低分段的现象。
然后,将正态分布归一化为标准正态分布,消除每个学期评价考核体系的不稳定性因素,得到每个学生各学期的“有效成绩”。
并基于”有效成绩"提出了等级评定子模型,确定了等级分数线,更清楚的表明了每个学生在整体位置。
关键词:黑尔指数层次分析成绩标准化有效成绩一.问题重述现行的评价方法相对比较局限、主观、有失公允,只能对学习基础好的学生产生激励作用,而不能对所有学生尤其是后进学生起到激励作用,这种评价弊端开始被越来越多的人关注。
对学生建模论文的综合评价分析摘要本文研究的是五篇建模论文的评价和比较问题。
首先,研读分析了五篇论文,并写出评语。
其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判.最后,依据所得权重大小对论文排序。
针对问题一,我们对论文进行了横向比较和纵向分析。
依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。
其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。
最后,结合横向比较和纵向分析对论文综合评价。
针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。
在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。
最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。
并在模型结束时付上了对五篇论文的评语。
关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价一、问题重述数学建模是利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见下图。
E题数学建模竞赛成绩评价与预测摘要本体是关于评价比较与预测问题,是对数学建模开展以来各高校建模水平的评价和比较以及预测。
第一,分析给出的各高校的获奖数据,统计,进行综合量化评价,运用的方法是层次分析法,综合评判和线性分析。
最后,以学校的建模水平进评比。
对于四个问题,对各高校建模获奖数据进行了统计分析。
在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的一级评判模型把所给学校的国家一等奖、国家二等奖,省一等奖、省二等奖,省三等奖,成功参赛奖作为因素集。
在用模糊综合评判方法时,确定评判矩阵和权重分配是两项关键性的工作,求权重分配时,通过往年评分标准确定数据后用层次分析法计算权重;对于评判矩阵,通过对整理的各高校每个等级奖项数目对各高校获奖总数的比重建立评价矩阵。
通过C语言编程处理得出的各高校建模水平,通过线性回归,预测十二五期间的建模水平,从而解决问题。
关键字:综合评判;层次分析法;统计分析;线性回归;C语言编程;画图软件;一、问题的重述近20年来,CUMCM的规模平均每年以20%以上的增长速度健康发展,是目前全国高校中规模最大的课外科技活动之一。
2011 年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。
在数学建模活动开展20周年之际,有必要对以往的数学建模工作进行总结及对未来的发展进行预测。
通过某高校2006-2011年数学建模成绩,建立合理的评价模型,对该校十一五期间数学建模工作进行评价,并对该校十二五期间的数学建模成绩进行预测;试建立评价模型,给出吉林赛区十一五期间各校建模成绩的科学、合理的排序;并给出吉林赛区各院校十二五期间的建模成绩进行预测;给出全国各院校的自建模竞赛活动开展以来建模成绩的科学、合理的排序;并对全国各院校十二五期间的建模成绩进行预测;你认为如果科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑那些因素?二、模型假设1、假设附表中的信息基本准确没有异常值并且数据是真实合理的。
用层次分析法评选优秀学生
一.实验目的
运用层次分析法,建立指标评价体系,得到学生的层次结构模型,然后构造判断矩阵,求得各项子指标的权重,最后给出大学生综合评价得分计算公式并进行实证分析,为优秀大学生的评选提出客观公正,科学合理的评价方法。
二.实验内容
4.用层次分析法解决一两个实际问题;
(1)学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。
可分为相对评价和绝对评价两种情况讨论。
解:层次分析发法基本步骤:建立一套客观公正、科学合理的素质评价体系,对于优秀大学生的评选是至关重要的。
在此我们运用层次分析法(AHP),以德、智、体三个方面作为大学生综合评价的一级评价指标,每个指标给出相应的二级子指标以及三级指标,然后构造判断矩阵,得到各个子指标的权重,结合现行的大学生评分准则,算出各项子指标的得分,将这些得分进行加权求和得到大学生综合评价得分,根据分配名额按总分排序即可选出优秀大学生。
大学生各项素质的指标体系。
如下表所示:
11P =(1x ,2x ) 12P =(3x ,4x ) 21P =(5x ,6x ,7x )
22P =(8x ,9x ,10x ) 31P =(11x ,12x ) 31P =(13x ,14x )
建立两两比较的逆对称判断矩阵 从1x ,2x .....n x 中任取i
x 与
j
x ,令
=ij a i x /j
x ,比较它们对上一层某个因素的重要性时。
若=ij a 1,认为
i
x 与
j
x 对上一层因素的重要性相同; 若=ij a =3,认为i
x 比
j
x 对上一层因素的重要性略大;
若=ij a 5,认为i x 比j x 对上一层因素的重要性大; 若=ij a 7,认为i x 比
j
x 对上一层因素的重要性大很多;
若=ij a 9,认为
i
x 对上一层因素的重要性远远大于
j
x ;
若
=
ij a 2n ,n=1,2,3,4,元素
i
x 与
j
x 的重要性介于
=
ij a 2n − 1与
=
ij a 2n + 1之间;
用已知所有的
i x /j
x ,i ,j =1,2 ... n ,建立n 阶方阵P=n m j i x x ⨯)
/(,矩阵P 的第i 行与
第j 列元素为i x /j x
,而矩阵P 的第j 行与第i 列元素为j x /i x ,它们是互为倒数的,而对
角线元素是1。
判断矩阵
⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡
=11/51/4P 51341/31P P P 321
321P P P
0858.3max =λ 0740.0CI = 0359.6max =λ 0758.0=CI
max λ=6.2255 CI =0.0364 max λ=6.0359 CI =0.0758
max λ=15.1382 CI =0.0558 max λ=14.2080 CI =0.0102 max λ=14.3564 CI =0.0175 max λ=15.1972 CI =0.0758
max λ=14.1043 CI =0.0051 max λ=14.2017 CI =0.0099
利用加法迭代计算权重
即取判断矩阵ne 个列向量的归一化的算术平均值近似作为权重向量 具体为求向量迭代序列:
10/1...../1/1⨯⎥
⎥
⎥
⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n n n e
1-'k k Pe e =
'
k
e 为
1-P k e 分量之和 k
e =
'k e
/'k e k=1、2、.....
可以证明,迭代的n 维列向量序列{
k
e }收效,记其极限为e,且
1
21.....a ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=
n n a a e 则权系数可取:
i i a w =,i=1,2,...n
计算时,当 k e =1-k e ,就取
k e e = 针对本问题中爱国守法, 集体观念等各项指标对学生评价的影响大小, 我们得出一个14 x14 的成对比较矩阵, 最终求得权系数分别为:
各评价指标对学生的影响程度公式为:
=
y ∑=n
i i
i x w 1
方案层中班主任考评, 学生自评, 班级考评对各评价指标的决策权重比例如下:
则方案层中各方案对学生评价的决策权为:
=j y ∑=n
i j
j w x 1i =1,2,....,14 j =1,2,3 1y =0.3064 2y =0.3532 3y =0.2864。