低温压力容器设计应考虑的问题
- 格式:docx
- 大小:16.09 KB
- 文档页数:1
低温压力容器设计探究发布时间:2021-05-14T09:52:36.527Z 来源:《科学与技术》2021年第29卷第4期作者:张永刚[导读] 随着我国经济社会的发展和科技技术的进步张永刚北京石油化工工程有限公司西安分公司陕西西安 710075摘要:随着我国经济社会的发展和科技技术的进步,低温技术得到了迅速发展和广泛应用。
笔者就低温压力容器的使用特点及存在的失效模式,设计时低温压力容器的选材、结构设计、焊接制造要求、焊后热处理、无损检测等应注意的事项作了分类分析,为工作中低温压力容器设计给予更多的参考。
关键词:低温压力容器;设计要点;注意事项;引言随着我国经济社会的发展和科技技术的进步,低温技术得到了迅速发展和广泛应用。
低温压力容器发生失效破坏会造成出人意料的极大危害,因此在低温压力容器设计时必须科学合理,保证其质量。
1低温压力容器的失效形式由于环境低温或介质低温的影响,随着使用温度的降低,低温压力容器的失效主要形式是脆性断裂。
低温脆性断裂是金属材料在温度降低至临界值(一般为其韧脆转变温度)以下时,在没有预兆的情况下发生的,在容器结构失效之前没有明显的塑性变形,一旦发生断裂,失效速度很快,断口齐平、与最大主应力方垂直,光亮平滑,呈晶粒状,壁厚无明显塑性变薄;脆性断裂时,结构元件内部的应力水平通常低于材料的屈服强度,甚至低于材料的设计应力(材料的许用应力),因此脆性断裂具有低应力破坏特征。
在设计低温压力容器时,除了确保容器强度条件之外,还需要进行必要的防脆断设计或评定。
低温脆性断裂与材料的力学性能、操作温度、缺陷形状和大小、残余应力和是否进行热处理等诸多因素有关。
2低温压力容器设计要点 2.1确定设计温度我国对低温容器的划分是指设计温度低于-20℃的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于-196℃的奥氏体不锈钢制容器。
对于低温容器,其设计温度是指在正常工作情况下,设定的不高于可能达到的最低金属温度。
低温压力容器设计要点综述及注意事项1.材料选择:低温环境下,材料的韧性和抗裂纹扩展能力变差,因此需要选择具有良好韧性和抗裂纹能力的材料。
常用的低温材料包括低温碳钢、不锈钢和合金钢等。
2.壁厚计算:低温环境下容器的壁厚要比常温情况下的要大,因为材料的强度和刚度在低温下降低。
根据管道和容器设计规范进行壁厚计算,并考虑到温度梯度对壁厚的影响。
3.焊接和焊缝设计:焊接是低温容器制造中重要的连接方式。
在低温条件下,焊接合金的力学性能和韧性降低,容易产生焊接缺陷。
因此,需要采用合适的焊接工艺和焊接材料,并对焊缝进行非破坏性检测和超声波探伤等检测方法。
4.密封设计:低温容器的密封设计要符合严格的要求,以确保容器在低温环境下不发生泄漏。
需要采用适当的密封材料和密封结构,同时对容器进行泄露试验以保证其安全可靠。
5.附件选择:低温容器的附件如阀门、仪表等也需要选择适用于低温环境的材料和设计。
特别是阀门,在低温环境下易发生密封不良和结冰等问题,因此需要选择低温阀门并进行密封性能测试。
6.冻结防止措施:低温容器在长期运行中易受冻结影响,冻结会导致容器变形、扩展和密封失效等问题。
需要采取合适的冻结防止措施,如加热系统和隔热材料等。
7.安全性考虑:低温容器设计必须符合相关的安全规范和标准,如ASME等。
特别需要考虑容器在低温环境下可能发生的脆性断裂、泄漏、压力失控等安全问题,并采取相应的安全措施。
8.考虑工艺需求:低温容器的设计还需要考虑工艺需求,如低温液体的进出口、排放、循环和控制等。
容器的流动性能和控制能力对工艺操作的影响需要充分考虑。
总之,低温压力容器的设计要点和注意事项包括材料选择、壁厚计算、焊接和焊缝设计、密封设计、附件选择、冻结防止措施、安全性考虑和工艺需求等方面。
在设计过程中,需要充分考虑低温环境对容器和其附件的影响,并确保设计符合相关的安全要求。
第四部分问答题4.1 《锅炉压力容器安全监察暂行条例》的适用范围?哪些单位必须执行《锅炉压力容器安全监察暂行条例》?答:适用于所有承压锅炉和压力为一个表压以上的各种压力容器,这些设备的设计、制造、安装、使用、检验、修理、改造的单位,都必须执行《锅炉压力容器安全监察暂行条例》。
4.2 简答《〈锅炉压力容器安全监察暂行条例〉实施细则》的“压力容器部分”主要有哪些内容?答:⑴压力容器设计单位和设计的审批;⑵压力容器制造单位的审批;⑶压力容器产品制造质量的监督;⑷压力容器检验单位的审定和检验员资格考核;⑸压力容器使用登记。
4.3 《压力容器安全技术监察规程》适用于同时具备哪些条件的压力容器(不答仅第三章、第四章、第五章适用的压力容器?答:《压力容器安全技术监察规程》适用于同时具备下列条件的压力容器;⑴最高工作压力(P W)大于等于0.1MPa(不含液体静压力)。
⑵内直径(非圆形截面指其最大尺寸)大于等于0.15m,且容积(V)大于等于0.025m3。
⑶盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。
4.4 《压力容器安全技术监察规程》管辖的压力容器,其受管辖的范围如何划定?答:⑴本体,与外部连接时其界线划定到压力容器与外部管道或装置焊接连接的第一道环向焊缝的焊接坡口、螺纹连接的第一个螺纹接头、法兰连接的第一个法兰密封面、专用连接件或管件连接的第一个密封面;⑵压力容器开孔部分的承压盖及其紧固件;⑶非受压元件与压力容器本体连接的焊接接头;⑷压力容器上所用的安全附件。
4.5 压力容器的哪些环节须严格执行《压力容器安全技术监察规程》的规定?答:压力容器的设计、制造(组焊)、安装、使用、检验、修理和改造等七个环节。
4.6 按《压力容器安全技术监察规程》的规定,哪些压力容器划分为第二类压力容器?答:⑴中压容器;⑵低压容器(仅限毒性程度为极度和高度危害介质)⑶低压反应容器和低压储存容器(仅限易燃介质或毒性程度为中度危害介质)⑷低压管壳式余热锅炉;⑸低压搪玻璃压力容器。
低温压力容器的设计分析低温压力容器是指在低于零度的环境中工作的容器,通常用于存储和运输液态气体,液氮、液氧、液氩等均为常见的低温液体。
由于低温环境下物质的特性会发生变化,因此低温压力容器的设计必须考虑到这些因素,以确保容器在安全可靠地工作。
本文将对低温压力容器的设计要点和分析进行探讨。
一、设计要点1.材料选用2.结构设计3.绝热设计由于低温液体的蒸发潜热较高,容器内的温度会迅速下降,导致容器表面结霜。
为了减少热量的散失,提高容器的绝热性能是必要的。
可以采取增加绝热层厚度、使用保温材料等措施来提高容器的绝热性能。
4.安全阀设计低温液体具有较大的蒸气压,一旦容器内压力过高,就会导致容器爆炸。
因此,在设计中必须考虑安全阀的设置,确保在容器内压力超过设定值时能够及时安全地排放压力。
5.排水设计由于低温液体的存在,容器内部会有凝露水和结冰现象。
这些水汽会降低容器的强度和耐腐蚀性,因此必须设计合理的排水系统,定期排除容器内的凝露水和结冰。
6.储罐涂层为了保护容器免受腐蚀和低温影响,可以在容器表面涂上特殊的防腐涂层。
这些涂层能够增强容器的抗腐蚀性能,延长容器的使用寿命。
二、设计分析针对低温压力容器的设计,需要进行结构分析和性能测试,以验证容器的强度和安全性。
1.结构分析在设计初期,需要进行有限元分析等结构分析,评估容器的受力和变形情况。
通过模拟不同工况下的受力情况,确定容器的最大受力位置和最大应力值,以确保容器在工作过程中不会发生结构破坏。
2.强度测试设计完成后,需要进行强度测试,验证容器的最大承载能力是否符合设计要求。
常见的测试方法包括液压试验、氢氦试验、抗冲击测试等。
通过这些测试,可以验证容器的强度和安全性,确保容器在工作中不会发生泄漏或爆炸等情况。
3.低温性能测试设计完成后,还需要进行低温性能测试,评估容器在低温环境下的工作性能。
通过模拟低温环境下的工作情况,测试容器在不同温度下的性能表现,验证容器的低温抗裂性能和绝热性能。
浅谈压力容器设计中的常见问题及对策压力容器是工业生产中常见的设备,用于加工、储存和输送各种气体、液体和粉末。
它们承受着高压、高温或低温等复杂的工作环境,因此在设计和制造过程中要特别注意安全性和可靠性。
在压力容器设计中常常会遇到一些问题,下面就让我们来浅谈一下这些常见问题及对策。
一、焊接质量问题焊接是压力容器制造过程中最关键的环节之一,焊接质量直接影响着容器的安全性和可靠性。
常见的焊接质量问题包括焊接缺陷、焊接接头设计不合理和焊接接头处的应力集中等。
为了解决这些问题,首先应该加强焊工的技术培训,提高他们的焊接水平和质量意识;其次要严格控制焊接工艺参数,确保焊接质量符合标准要求;最后要设计合理的焊接接头结构,减少应力集中并提高接头的疲劳寿命。
二、材料选择和损伤问题压力容器的材料选择直接关系到其抗压性能和耐腐蚀性能。
选择不当或材料损伤都会导致容器失效。
为了避免这些问题,首先应该在设计阶段就对材料进行严格筛选和检测,确保材料符合要求;其次要加强对材料的管理和保养,及时发现并处理材料损伤问题;最后要严格按照材料的使用规范来设计和制造压力容器,确保其安全性和可靠性。
三、安全阀和压力表问题安全阀和压力表是压力容器的重要保护装置,它们直接关系到容器的安全运行。
常见的问题包括安全阀和压力表的选择不当、安装位置不合理和维护不及时等。
为了解决这些问题,首先应该对安全阀和压力表的性能和使用要求有清楚的了解,确保其选择和安装符合标准要求;其次要加强对安全阀和压力表的维护保养,及时发现并处理问题;最后要加强对安全阀和压力表的使用管理,确保其在容器运行过程中起到应有的作用。
四、设备结构设计问题压力容器的结构设计直接关系到其承压性能和使用寿命。
常见的结构设计问题包括受力分析不合理、结构尺寸设计不合理和支撑方式选择不当等。
为了解决这些问题,首先应该加强对设备结构设计的理论研究和实践经验总结,确保设计合理性;其次要加强对设备结构的计算分析,确保其受力性能符合要求;最后要结合实际情况对设备结构进行合理优化,确保容器的安全运行。
低温压力容器设计要点低温压力容器是指在低温环境下工作的压力容器,通常用于储存和输送液态或气态的低温介质,如液氧、液氮、液氢等。
由于低温介质对材料和容器的设计和性能提出了严格的要求,因此低温压力容器的设计需要考虑以下关键要点:1.材料选择:低温容器的材料选择是非常重要的。
一般情况下,常用的材料有不锈钢、铝合金、铜以及特殊合金如镍基合金。
这些材料应具有良好的低温韧性和耐蚀性,以确保容器在低温下的工作稳定性。
2.结构设计:低温压力容器的结构应具备足够的强度和刚度。
特别是对于液态低温介质的容器,由于介质的自身重力会引起应力,因此容器的顶部和底部应设计为圆弧形来分散应力。
此外,还应考虑容器的热胀冷缩问题,以及在低温下容器材料的收缩和变形。
3.绝热设计:低温压力容器需要具备良好的绝热性能,以减少介质的热量损失和外界热量对容器的影响。
绝热层通常采用多层结构,并使用低导热系数的材料,如碳纤维、泡沫塑料等。
此外,还应在绝热层与内壁之间设置避免冷桥和减少热传导。
4.安全阀和泄压装置:低温压力容器应配置安全阀和泄压装置,以确保在压力超过设计限制时能够快速泄压,避免容器的破裂和爆炸。
这些装置应根据介质和工作条件的不同,选择适当的泄压压力和速度。
5.泄漏和检测:低温容器的泄漏对安全和环保都带来很大的风险。
因此,容器设计应考虑泄漏的预防和检测。
可以采用密封性能好的接口和密封件,并配置泄漏检测装置,如压力传感器和泄漏探测器,及时发现和处理潜在的泄漏问题。
6.工作温度调节:低温容器在不同的工作条件下需要能够进行温度的调节和控制。
可以采用液体循环或蒸汽加热系统来控制容器内介质的温度,避免温度过高或过低导致容器破裂。
7.安全性设计:低温压力容器应满足相关的安全规范和标准,如ASME(美国机械工程师协会)的规定。
容器的强度和可靠性应经过充分的验证和测试,并且需要进行定期的检查和维护,以确保其安全可靠的运行。
总之,低温压力容器的设计涉及材料选择、结构设计、绝热性能、安全阀和泄压装置、泄漏和检测、工作温度调节以及安全性设计等多个方面。
理论前沿与综合论坛177低温压力容器设计要点分析刘佃刚,刘康(潍坊金健钛设备有限公司)摘要:低温压力容器在使用过程中,其发生脆性破坏的可能性很高,所以要求设计人员在设计过程中,要结合容器介质、温度、压力与材料特性等多种因素综合考虑,并结合实际的应用环境,对容器的选材、强度结构、制造和检验提出全面合理的要求,在保证经济适用的前提下,设计出安全可靠的容器。
关键词:低温压力容器;设计要点;失效形式一、低温压力容器的失效形式随着使用温度的降低,低温压力容器的失效主要形式是脆性断裂。
低温脆性断裂是在没有预兆的情况下发生的,在结构失效之前没有明显的塑性变形,一旦发生断裂,失效速度很快,断口齐平、与最大主应力方垂直,光亮平滑,呈晶粒状,壁厚无明显塑性变薄;脆性断裂的应力水平通常低于壳体材料的屈服强渡,甚至低于许用应力。
因此脆性失效具有低应力破坏特征。
应力低到什么程度导致结构失效与材料的力学性能、操作温度、缺陷形状和大小、残余应力和是否进行热处理等诸多因素有关。
常温下工作的由塑性很好的碳素钢或低合金钢等低强度钢制造的薄壁压力容器,一般来说发生脆性断裂的危险性不是很大。
但是对于由中、高强度金属材料焊接制成的厚壁压力容器,发生脆性断裂的概率较大,因此在加工及使用过程中要引起重视。
在化工行业,特别是石油化工及制冷行业所用的低温压力容器,具有壁厚、尺寸大、受介质腐蚀等作用,以及通常这种容器是由高强度材料制造,因此在设计该类型的压力容器时,除了确保容器强度条件之外,还需要进行必要的防脆断设计或评定。
二、低温压力容器设计常见问题根据低温压力容器的实际应用, 例举低温压力容器设计中存在的几点问题, 汇总后做如下分析。
(一)材料问题低温压力容器所使用的材料要冲击韧性, 金属材料的低温冲击韧性是由缺口位置在低温条件下的裂纹敏感度和微观变形能力决定的, 缺口位置才能决定低温压力容器最终脆性破坏的性能。
低温压力容器的材料问题主要表现在冲击韧性不达标方面, 受压材料、非受压材料以及连接元件等, 都存在着材料设计问题。
低温压力容器设计要点及注意事项设计要点:1.材料选择:低温环境对材料的特性要求较高,常用的低温材料包括碳钢、不锈钢、合金钢、镍基合金等。
材料应具备良好的低温韧性和抗蠕变能力,以保证容器的安全性和耐久性。
2.结构设计:低温压力容器的结构设计应考虑到低温环境下的热应力和冷凝液的排放。
容器的结构应具备良好的抗拉性,以承受低温环境下的冷凝液和气体压力。
3.绝热设计:低温压力容器应具备良好的绝热性能,以避免冷凝液的形成和能量的损失。
绝热层的厚度和材料的选择应根据压力和温度的要求进行合理设计。
4.疏水设计:低温压力容器的疏水系统对于排放冷凝液和减少结冰现象十分重要。
疏水系统应设置在恰当的位置,以便及时排放冷凝液,并保持容器内部的干燥状态。
5.安全阀的选择:低温压力容器应配备可靠的安全阀,以防止因温度和压力过高而引发的爆炸。
安全阀的选型应根据容器的工作压力和温度范围进行合理选择。
注意事项:1.温度控制:低温压力容器的温度控制至关重要。
温度过低会导致材料的脆性增加,造成容器的破裂;温度过高则会导致冷凝液的形成和能量的损失。
应通过控制介质的流量和压力,以达到合理的温度范围。
2.泄漏检测:注意低温压力容器的泄漏检测,特别是在容器内压力变化较大的情况下。
泄漏的气体或液体会迅速蒸发,容易引发安全事故。
应定期进行泄漏检测,并及时处理泄漏问题。
3.排气与补液:低温压力容器中的气体和液体在低温条件下会发生相变,造成容器内部压力的升高或降低。
为避免容器的爆炸或变形,应定期对容器进行排气和补液操作。
4.定期维护:低温压力容器的定期维护十分重要,包括检查容器的外表面是否有损伤、是否有泄漏现象,以及定期更换和检修容器附件。
维护能够延长低温压力容器的使用寿命,保证容器的安全性。
5.安全操作:低温压力容器的操作人员应接受专业培训,并严格按照操作规程进行操作。
操作人员应时刻注意容器的温度和压力变化情况,并及时采取相应的措施。
总结:低温压力容器设计的要点包括材料选择、结构设计、绝热设计、疏水设计和安全阀的选择。
低温压力容器的“低温低应力工况”的判断及其设计、制造的注意事项低温压力容器是指设计温度低于-20℃的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于-196℃的奥氏体不锈钢制压力容器。
低温压力容器原则上应按照低温工况进行设计、制造、检验、使用和管理,但并不是所有设计温度低于-20℃的压力容器都按照低温压力容器进行设计、制造和检验。
GB150.3-2011《压力容器》附录E(规范性附录)《关于低温压力容器的基本设计要求》E1.4规定:对于碳素钢和低合金钢制容器,当壳体或其受压元件使用在“低温低应力工况”下,若其设计温度加50℃(对于不要求焊后热处理的容器,加40℃)后不低于-20℃,除另有规定外不必遵循关于低温压力容器的规定.从该文中可以理解为低温压力容器按照温度和应力工况可分为低温工况和低温低应力工况两类。
如何正确理解“低温低应力工况”的含义,是判断低温压力容器的工况是否属于“低温低应力工况”的基础和前提,也是进行低温容器设计、制造的前提。
本人就“低温低应力工况”下压力容器设计、制造有关事项谈一点自己的看法。
标签:低温压力容器制造注意事项一、“低温低应力工况”的含义GB150.3-2011《压力容器》附录E(规范性附录)《关于低温压力容器的基本设计要求》E1.4规定:“低温低应力工况”系指壳体或其受压元件的设计温度虽然低于-20℃,但设计压力小于或者等于钢材常温标准屈服强度的1/6,且又不大于50MPa时的工况。
(注:一次应力是为平衡压力与其他机械载荷所必须的法向应力或切向应力)压力容器的应力(GB150-89释义)分为三类:即一次应力P,二次应力σ和峰值应力F。
而一次应力P又分为三种:一次总体薄膜应力Pm,一次局部薄膜应力Pl和一次弯曲应力Pb。
一次总体薄膜应力的特点:沿壳体厚度方向均匀分布,影响范围遍及整个受压元件,一旦达到屈服点,受压元件整体产生屈服,应力不重新分布,一直到整体破坏。
低温压力容器目前我国没有专门的低温压力容器标准,JB4732都不划分低温与常温的温度界限。
★低温管壳式换热器见GB151-1999附录A★低温压力容器见GB150.3-2011附录E(老版150为附录C)●为什么低温压力容器需要关注:温度低,材料的韧性降低,会产生低温脆性破坏,而低温脆性破坏前应力远未到达材料的屈服极限(或许用应力),破坏时没有明显的征兆,所以低温压力容器的设计、选材、制造和检验等各个环节要求都有不同程度的提高。
●低温压力容器的定义设计温度为<-20℃(新标准GB150-2011第3.1.15条定义,老标准为≤-20℃)的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于-196℃的奥氏体不锈钢制容器。
相关两个定义●最低设计金属温度(MDMT)GB150.1-2011第4.3.4d条:在确定最低设计金属温度时,应当充分考虑在运行过程中,大气环境低温条件对容器金属温度的影响。
大气环境低温条件系指历年来月平均最低气温(指当月各天的最低气温值之和除以当月天数)的最低值。
●低温低应力工况GB150.3-2011附录E第E1.4条:低温低应力工况系指壳体或其受压元件的设计温度虽然低于-20℃,但设计应力(在该设计条件下,容器元件实际承受的最大一次总体薄膜和弯曲应力)小于或等于钢材标准常温屈服强度的1/6,且不大于50Mpa时的工况。
(注:一次应力为平衡压力与其他机械载荷所必须的法向应力或且应力)这个定义与老标准有差别,设计应力与环向应力的区别,用设计应力更严谨。
新标准明确了在进行容器的“低温低应力工况”判定时,除了对壳体元件进行一次总体薄膜应力的核定外,还应对承受一次弯曲应力的容器元件进行考查,如平封头、管板、法兰等。
●关于低温低应力工况下,选材按照设计温度加50℃(或者,加40℃)的规定GB150.3-2011附录E第E2.2条:当壳体或受压元件使用在“低温低应力工况”下,可以按设计温度加50℃(对于不要求焊后热处理的设备,加40℃)后的温度值选择材料,但不适用于:a) Q235系列钢材;b) 标准抗拉强度下限值Rm≥540Mpa的钢材;c) 螺栓材料。
机械设计与机械制造专业55道压力容器、压力管道设计考试题(问答题、分析题)1、什么叫设计压力?什么叫计算压力?如何确定?答:设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为载荷条件,其值不低于工作压力。
确定设计压力时,应考虑:容器上装有超压泄放装置时,应按附录B(标准的附录)的规定确定设计压力。
对于盛装液化气体的容器,在规定的充装系数范围内,设计压力应根据工作条件下可能达到的最高金属温度确定。
确定外压容器的设计压力时,应考虑到在正常工作情况下可能出现的最大内外压力差。
确定真空容器的壳体厚度时,设计压力按承受外压考虑。
当装有安全控制装置(如真空泄放阀)时,设计压力取1.25倍最大内外压力差或0.1MPa两者的低值;当无安全控制装置时,取0.1MPa。
由两室或两个以上压力室组成的容器,如夹套容器,确定设计压力时,应考虑各室之间的最大压力差。
计算压力指在相应的设计温度下,用以确定元件厚度的压力,其中包括液柱静压力。
当元件所承受的液柱静压力小于5%设计压力时,可忽略不计。
2、固定式液化气体容器设计时,如何确定设计压力?答:盛装临界温度大于等于50℃的液化气体的压力容器,如设计有可靠保冷设施,其设计压力应为所盛装液化气体在可能达到的最高工作温度下的饱和蒸汽压力;如无保冷设施,其设计压力不得低于该液化气体在50℃时的饱和蒸汽压力。
盛装临界温度小于50℃的液化气体压力容器,如设计有可靠的保冷设施,并且能确保低温储存的,其设计压力不得低于试验实测的最高温度下的饱和蒸汽压力;没有实测数据或没有保冷设施的压力容器,其设计压力不得低于所装液化气体在规定的最大充装量时,温度为50℃时的气体压力。
3、压力容器的常规设计法与分析设计法有何主要区别?答:目前压力容器的主要设计方法有常规设计法与分析设计法两种。
常规设计法:是以弹性失效为准则,以薄膜应力为基础,来计算元件的厚度。
限定最大应力不超过一定的许用值(通常为1倍许用应力)。
低温压力容器设计方法及要点探析摘要:在工业生产过程中,压力容器的应用较为广泛,当贮存或是运输的介质温度较低时,普通的压力容器无法满足使用需要,对此可选用低温压力容器。
为最大限度发挥出低温压力容器的作用,应对相关的设计方法及要点加以了解和掌握。
基于此,从选材、温度的确定以及结构设计等方面,对低温压力容器设计方法及要点展开分析论述,期望能够对低温压力容器设计水平的提升有所帮助。
关键词:低温压力容器;设计方法;要点低温压力容器的英文缩写为LTPV,归属于低温容器的范畴,规范规定此类容器的设计温度在-20℃以下,主要用途为贮存和运输低温液体。
通常情况下,当使用温度降低时,低合金钢、碳素钢的状态会发生改变,即从原本的延性转变为脆性,此时它们的抗冲击性能将大幅度下降。
为提高低温压力容器的整体性能,应当对相关的设计方法及要点加以了解和掌握。
1低温压力容器设计中的选材要点材料的选择是低温压力容器设计中较为重要的环节之一,与压力容器的性能密切相关。
为此,要对选材予以重视。
根据低温压力容器的主要用途,在设计选材时,应当对如下因素予以综合考虑:设计温度、低温冲击韧性、拉应力水平、焊接、热处理、使用安全性等[1]。
由于钢材生产厂家的技术水平高低不同,从而使得生产出来的钢材成品质量和性能存在一定的差别,当低温压力容器的使用安全性比较高时,要在设计文件中,对钢材的供货渠道加以注明,确保材料满足要求。
1.1钢材的选择低温压力容器设计选择材料时,应满足以下要求:受压元件应当选用完全脱氧的钢,确保氧的质量分数在0.01%以内;非受压元件需要承受荷载时,应选用韧性高、焊接性能好的钢材;用于低温压力容器的钢材的热处理方式应当为正火;以碳素钢或是低合金钢作为低温压力容器的主要材料时,必须进行夏比冲击试验,以此来测定钢材的低温韧性;当低温压力容器的壳体选用的是碳素钢板或低合金钢板时,应确保钢板厚度在20mm以上,并且要进行超声波检测[2],确认检测结果达到现行规范标准的规定后方可使用。
技术与市场技术应用2019年第26卷第12期低温压力容器设计要点综述及注意事项王建成(吉林市厦林化工分离机械工业有限公司,吉林吉林132000)摘 要:在工业装置中气体的液化、液化气体的生产、储运和应用日趋广泛,低温技术的发展促进了各种低温压力容器的运用。
低温压力容器设计较常温容器设计复杂,笔者就低温压力容器的使用特点及存在的的失效模式,设计时低温压力容器的选材、结构设计和制造工艺检验应注意的事项作了分类分析,为在工作中低温压力容器设计给予更多的参考。
关键词:低温压力;容器;设计要点;注意事项doi:10.3969/j.issn.1006-8554.2019.12.058 引言低温技术是在液态空气工业上发展起来的,随着科学技术的进步,低温技术得到了迅速发展和广泛应用。
而低温压力容器是低温工业过程的关键设备,极大促进了低温压力容器建造的发展。
低温压力容器使用温度低,钢材在低温下使用其韧性和塑性与常温相比会不同程度地下降,脆性增大。
当低温压力容器的使用温度低于一定温度时,在有足够尖锐的缺口或缺陷处,就可能导致低应力下的脆性断裂,这种断裂会突然发生。
在生产装置中有许多压力容器、化工设备、管道等多次发生脆性断裂,造成巨大损失。
为了避免发生事故,这就需要在设计时,从低温容器设计温度的确定、材料的合理选择、结构设计、焊接材料选择、制造检验、焊后消除应力热处理等方面做出合理的设计。
设计温度的确定设计温度低于-20℃是判定碳素钢、低合金钢、双相不锈钢和铁素体不锈钢容器是否是低温容器的关键;设计温度低于-196℃是判定奥氏体不锈钢容器是否是低温容器的关键。
在进行设计时,要对影响容器温度的相关因素进行全面了解和分析,容器的使用地点、安装位置是室内还是室外、正常工作环境温度下对容器壳体金属温度的影响以及容器内介质温度对金属的影响。
材料选择要点由于低温压力容器主要的失效模式为脆性断裂,而钢材在低温下脆性增大,韧性降低。
低温压力容器设计应考虑的问题
一、选材。
低温压力容器应选用低温压力容器用材料(低温低应力工况除外),选材原则:
1)低温容器受压元件用钢材应是镇静钢,承受载荷的非受压元件也应该是具有相当韧性且焊接性能良好的钢材;
2)一般低温用钢都要求正火处理,正火处理不仅可以细化晶粒,还可以减少由于终轧温度和冷却速率不同而引起的显微组织不均匀,可降低钢材无塑性转变温度;
3)对低温用碳素钢和低合金钢各类钢材,要求进行低温夏比V型缺口冲击试验;
4)C2.1.2 δs>20mm逐张UT Ⅲ;C2.1.4 对不同温度进行冲击试验。
二、容器的结构设计要求均应有足够的柔性需充分考虑下列问题GB150附录C3.2
1)尽可能简单,减少约束。
2)应避免产生过大的温度梯度。
3)应尽量避免结构形状突变,以减少局部高应力,接管、凸缘端部应打磨成圆角,圆滑过渡。
4)容器的鞍座、耳座、支腿应设置垫板或连接板,避免与容器壳体相焊。
垫板或连接板按低温材料考虑。
垫片要选择在低温下有良好弹性的材料。
5) 容器与非受压元件或附件的连接焊缝应采用连续焊。
6)接管补强应尽可能采用整体补强或厚壁管补强,若采用补强板,应为截面全焊透结构,且焊缝圆滑过渡。
7)在结构上应避免焊缝的集中和交叉。
8)容器焊有接管及载荷复杂的附件,需焊后消除应力而不能整体进行热处理时,应考虑部件单独热处理的可能性。
三、焊缝的结构设计:GB150附录C3.3
1)A类焊缝应采用双面对接焊,或采用保证焊透、与双面焊具有同等质量的单面对接焊。
2)B类焊缝也应采用与A类焊缝相同的全焊透对接焊缝。
除非结构限制不得已时,允许采用不拆除垫板的带垫板单面焊。
3)C类、D类焊缝,原则均要求采用截面全焊透结构。
对于一般平焊法兰的截面非全焊透结构,规定仅用于压力较低(设计压力不大于 1.0MPa)、较高温度(设计温度不低于-30℃)的场合,且标准抗拉强度下限值低于540MPa的材料。
四、焊接接头的无损检测(NDT/NDE)
C4.6.1 容器的对接接头(A、B类)凡符合下列条件之一者应进行100%RT or UT:
A)容器设计温度低于-40℃;
B)容器设计温度虽高于-40℃,但接头厚度大于25mm;
C)10.8.2.1和10.8.2.2者
1)无损检测比例为100%、50%。
2)凡按规定做100RT or UT的容器,其T形对接接头,角焊缝均需做100%MT or PT。
五、焊接要求 GB150附录C4.3
1)焊接前按JB4708进行焊接工艺评定试验,包括焊缝和热影响区的低温夏比(V)冲击试验。
2)当焊缝两侧母材具有不同冲击试验要求时,焊接金属的冲击试验温度应低于或等于母材中较高者,其冲击功按σb的较低者。
热影响区按相应母材要求确定。
接头的拉伸和弯曲性能按两侧母材中的较低要求。
拉伸2块,面弯2块,背弯2块,冲击试验焊缝和热影响区各3块,当焊缝两侧母材的钢号不同时,每侧热影响区都应取3个冲击试样。
3)应严格控制焊接线能量及焊缝质量。
4)焊接区域内,包括对接接头和角接接头的表面不得有裂纹、气孔、咬边等缺陷,不应有急剧的形状变化,呈圆滑过渡。
六、热处理
GB150 附录C4.4.1 钢板厚度>16mm的碳素钢和低合金钢制容器或受压元件,应进行焊后热处理。