数分书籍推荐
- 格式:pdf
- 大小:246.76 KB
- 文档页数:7
数学分析,简称数分,主要内容是微积分,是数学专业数学学习的开端,也是通往未来更高等数学的开端。
同样,它是分析方向的基础,学好数学分析非常重要。
数分和中学数学有着非常大的区别,可以说,中学和中学以前的数学,都是在介绍各种运算法则,理论性的东西非常之少。
到了数分上,就有了非常多的理解性东西,虽然某些概念的定义仍然是用数学符号表达,但是要想完全彻底的理解概念,还是要做深入的思考,而不是像中学那样,仅仅是训练公式的熟练度。
对任何一门学科,教材和题集的选取都是至关重要的。
这里说下笔者的体会,华东师大的两本书很适合入门,也是普遍普通数学系的数分教材。
但是数分是很多后面科目的基础,包括后续的分析内容,实复分析,泛函调和分析,还有一些其他分支,例如微分几何,微分方程等等,一本好的数分教材应该稍微涉及到其他数学科目的基本概念。
这里推荐徐森林的《数学分析》。
笔者在自学这套教材之后,发现它和普通数分教材比,有很多优点,列举如下:在讲授单元积分学时,本书通过引入零测集的概念,给出可积的充要条件,这对后续学习测度论有益;在讲授多元极限前,普遍本科生已经熟悉了单元极限,本书在此引入了拓扑学的一些基本概念,拓扑,度量空间,紧致集等,首先把开集推广到一般情况,进而把极限以及连续性推广到一般拓扑空间上,最后将连续性的一些定理推广到了一般拓扑空间上,这样,单元中所接触到的单侧极限,广义极限也仅仅是特例,再讲授多元极限,自然水到渠成;在讲授傅里叶级数时,引入了傅里叶积分和傅里叶变换,它们是调和分析的内容,可以用来计算某些含三角函数的积分的简便公式;在讲授多元积分的三大公式——斯托克斯公式、高斯公式、格林公式时,本书借助微分形式和外微分算子,将他们统一成一个公式,公式的统一既深入理解了三大公式的关系,又对后续学习流形有益。
俄罗斯有一套《数微积分学教程》,国内的很多数分教材都深受本书影响,本书可以说是数分的一本工具书,它含有大量的例题,并且内容非常丰富,包含了很多普遍教材没有的内容,例如绪论的通过证明有理数的不完备性,引入无理数,再证明实数完备性的内容,是大部分数分教材没有篇幅可以介绍的;高阶导数部分介绍埃尔米特差值公式;不定积分处介绍椭圆积分;正项级数的库默尔判别法;函数项级数处的拟一致收敛等等。
数学分析高等代数参考书书单1.前言由于目前网络上数学分析与高等代数的参考书籍鱼龙混杂,特别制作一份书单,帮助学习数学分析与高等代数的学友清除认知障碍.事先声明,由于精力有限,笔者未能将书单中所有书籍细读过,只对笔者精读过的或者主流书籍做详细评价,其中部分评价是来源于网络与网友,若有不同的见解或者认为笔者的理解有误,恳请指出或补充。
2.数学分析板块以下分四个梯队介绍国内主流的数学分析读物(包含教材和习题集),最后还整理了一份硬核书单,建议读者量力而行。
梯队顺序是结合难度、应试、流畅性、流行度等等综合考虑的,并不是排在后面的一定质量不行。
同一梯队中一般不以质量设先后排名。
2.1第一梯队1.谢惠民.恽自求.易法槐.钱定边《数学分析习题课讲义》真正的数学分析习题集,数学分析的巅峰,打穿数学分析的必经之路。
正文介绍了许多在其他书中看不到的内容(如Dirichlet判别法的充要性,Gibbs现象),作者搜集了许多美国数学月刊上的问题。
思考题一针见血,正中靶心,完美诠释了初学者对一些问题的疑问;练习题多为中档题(考研难度,大量题目是考研真题),但也有些难题参杂其中;参考题整体难度偏高,许多题材来自于美国数学月刊,第二组参考题会涉及后续课程(实变泛函拓扑组合概率等等)的内容。
北大历年大一习题课教材,如果能全部独立做完足以和清北大佬谈笑风生。
唯一感觉不足的是小部分习题的选取煞风景,例如多元部分摘取了大量吉米多维奇上的繁琐计算题,又有些参考题难度的习题放在练习题,练习题难度的习题放在参考题。
当然,都是少数,瑕不掩瑜。
谢惠民也有一份讲稿,但不成气候,不作推荐。
2.徐森林.薛春华《数学分析》《数学分析精选习题全解》难度不逊于谢惠民,曾经的CMC数学类题库。
多元部分较为精彩(有较多篇幅介绍流形),高度与深度齐备,内容齐全厚实,许多题目给了多种解法。
题材上与谢惠民史济怀有大量重复,尤其是史济怀的问题基本上可以在徐森林上找到,谢惠民的一些参考难题也可以找到。
北大数学分析考研用书
北大数学分析考研用书推荐:
1. 《数学分析导引》- 张筱雨
这本教材是国内数学分析教材的经典之作,语言简洁明了,适合初学者入门。
内容包括实数与其序理论、数列与收敛理论、函数与连续理论、无穷级数等基本概念和定理。
2. 《数学分析》- 汤家凤
这是一套由北大数学系编写的教材,深入浅出地阐述了数学分析的各个方面,包括实数与数列、一致连续性、上极限与下极限、函数的极限、连续性、间断点与连续函数等内容。
3. 《数学分析教程》- 南京大学数学系编著
这本教材注重培养学生的数学思维和证明能力,内容全面、详细,适合系统学习数学分析。
包括实数与复数、极限与连续、一元函数微分学、空间中的向量值函数微分学等内容。
4. 《数学分析》- 同济大学数学系编著
这本教材以基础理论与应用分析相结合的方式讲解数学分析,内容涵盖实数与函数、数列与级数、一元函数微分学、一元函数积分学等知识点。
适合辅导复习和强化训练。
5. 《数学分析教程》-北京师范大学数学系编著
这本教材为全面介绍数学分析的常规内容,包括实数和实数系、数列和函数的极限、连续与界、微分学等。
书中还配有大量的例题和习题,便于学生巩固所学知识。
以上是几本北大数学分析考研用书的推荐,它们都是经典教材,对于备考考研的同学来说是很好的选择。
经典著作:《微积分学教程》(菲赫金哥尔茨著),第一卷两本,第二、三卷各三本,共八本。
例如,定积分sin x / x(方波在频域里形式)是如何计算出来的,给出了好几种经典、历史的方法。
《数学分析习题集》(吉米多维奇著),四千五百多题,绝大部分为计算题。
我上大学时,绝大部分都做过。
有两套题解。
一套好像是山东大学的,八本;另一套是上海交大的,二十本上下(好像是内部发行)。
上面的书,哪位能从超星做成PDF,就是功德无量了。
证明题,徐利治的《数学分析的习题与选讲》不错。
还有一本书,《绝对连续和绝对收敛》,也是总结性的好书。
如果要学实变函数和测度论,推荐你,那汤松的《实变函数论》,写得太好了。
(我有超星版的PDF。
)推荐几本很不错的考研教材吧!《数学分析题解精粹》钱吉林著《高等代数考研教案》西北工业大学出版社推荐的太早了,呵呵~/question/122767494.html?fr=qrl&cid=197&index=3★怎样才能学好数学?要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。
反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。
国内数学分析主要参考书⽬_数学分析书籍花了半天时间,对国内部分⼤学所编数学分析(/⾼等数学/微积分)教材做了个汇总,发于此,肯定有很多遗漏,(期待有兴趣的⾍友帮我⼀起补充,补充格式:⼤学名,精确书名,编写作者....)。
国内部份⼤学常⽤数学分析(⾼数,微积分)教材总汇清华⼤学《数学分析教程》常庚哲.史济怀.《数学分析》(三册).何琛史济怀徐森林《数学分析》(三册).徐森林,.⾦亚东,.薛春华《数学分析讲义》(三册).陈天权《数学分析习题课讲义》谢惠民等北京⼤学《数学分析》沈燮昌著第⼀册,⽅企勤著第⼆册,廖可⼈、李正元著第三册《数学分析习题课教材》(第⼀版)《数学分析解题指南》(第⼆版)林源渠,⽅企勤《数学分析习题集》林源渠,⽅企勤等《数学分析新讲》张筑⽣(三册)《数学分析简明教程》邓东翱,尹⼩铃著《数学分析上、下册》彭⽴中、谭⼩江著复旦⼤学《数学分析》《数学分析》陈传璋,⾦福临,朱学炎,欧阳光中著第⼆版《数学分析》欧阳光中,朱学炎,⾦福临,陈传璋著第三版《数学分析》陈纪修等著《数学分析》欧阳光中,姚允龙著同济⼤学《⾼等数学》(同济⼤学数学系第六版,上、下册)《⾼等数学讲义》樊映川等编..华东师范⼤学《数学分析》华东师范⼤学数学系著《数学分析精读讲义》华东师范⼤学数学系著《数学分析习题精解》吴良森,⽑⽻辉等?中国科学技术⼤学《数学分析教程》常庚哲,史济怀著《简明微积分》龚昇《⾼等数学引论》华罗庚《数学分析》徐森林著《数学分析的⽅法及例题选讲》徐利治南开⼤学《数学分析上、下册》李成章,黄⽟民《在南开⼤学的演讲》陈省⾝南京⼤学《数学分析讲义》梅加强《数学分析教程》许绍浦等北京师范⼤学《简明数学分析(第⼀版)》王昆扬《简明数学分析(第⼆版)》郇中丹,刘永平,王昆扬《微积分学讲义(第⼆版)》邝荣⾬武汉⼤学《⾼等数学上、下册》(⾼等教育出版社,齐民友主编)《重温微积分》齐民友著吉林⼤学《数学分析》东北师范⼤学《数学分析讲义》刘⽟琏,傅沛仁著天津⼤学《⾼等数学上、下册》蔡⾼厅叶宗泽《⾼等数学试题精选与解答》(蔡⾼厅等编)内蒙古⼤学《微积分学简明教程》曹之江等著[ Last edited by hylpy on 2014-9-15 at 12:38 ]国内数学分析主要参考书⽬[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(下册)习题精解.合肥:中国科学技术⼤学出版社,2007. [112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007. [113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[ Last edited by hylpy on 2018-9-2 at 18:39 ][121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[ Last edited by hylpy on 2018-9-5 at 19:19 ][135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[ Last edited by hylpy on 2018-9-7 at 18:06 ][140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.国内数学分析主要参考书⽬本帖隐藏的内容[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(上册)习题精解.合肥:中国科学技术⼤学出版社,2007.[112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007.[113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.这⾥列的参考书,本论坛⼤部分都有电⼦版分享。
高等数学微积分经典教材高等数学微积分是大学数学中的重要学科之一,对于理工科学生来说,是必修的一门课程。
而经典教材在这门课程中起到了至关重要的作用,能够帮助学生更好地理解和掌握微积分的基本概念、方法和应用。
本文将为大家介绍几本被广泛认可的高等数学微积分经典教材,以供大家参考选择。
一、《数学分析》(英文名:Principles of Mathematical Analysis)《数学分析》是由美国数学家沃尔特·鲁道夫·鲍尔(Walter Rudin)所著的一本经典教材。
这本书主要介绍了实变函数、复变函数、积分理论和函数论等内容,对于微积分的学习提供了全面而系统的知识框架。
它通俗易懂的语言和深入浅出的解释,使得学生在学习过程中能够更好地理解和掌握微积分的核心概念。
二、《微积分学教程》(英文名:Advanced Calculus)《微积分学教程》是由美国数学家Lynn Harold Loomis和Shlomo Sternberg合著的经典教材。
这本教材在内容编排和讲解方法上独具特色,注重对微积分概念的完备性和严谨性的讲解。
除了基础的微积分理论,它还介绍了微分几何和向量微积分等内容,使得学生对微积分的应用有更深入的了解。
三、《高等数学分析教程》(英文名:Advanced Mathematical Analysis)《高等数学分析教程》是由俄罗斯数学家A·V·斯特拉斯泰诺维奇(A. V. Strashevich)所著的一本教材。
这本书主要关注微积分的基本概念和理论,内容详尽、思路清晰。
它在讲解过程中充分考虑到学生的理解难点,为学生提供了大量的例题和习题,并给出详细的解答和解题思路,有助于学生加深对微积分知识的理解和掌握。
四、《微积分学教材》(英文名:Calculus: Early Transcendentals)《微积分学教材》是由James Stewart所著的一本经典教材。
高等数学分析教材推荐高等数学是大学数学基础课程中的重要一环,对于理工科学生而言,掌握高等数学的基本概念和方法是非常重要的。
在选择适合的高等数学分析教材时,我们需要考虑到内容的全面性、难度的适宜性以及书籍的编排和讲解方式等因素。
下面将为大家推荐几本经典的高等数学分析教材。
一、《高等数学分析教程》《高等数学分析教程》是中国著名数学家李蔚岳先生所著,该书以其严谨的逻辑思维和清晰的讲解风格而闻名。
该教材内容权威、系统,涵盖了高等数学分析的各个重要知识点,包括极限与连续、导数与微分、微分中值定理、不定积分与定积分等等。
本书在讲解概念的同时,也提供了大量的例题和习题,方便学生巩固理论知识和提高解题能力。
二、《数学分析教程》《数学分析教程》是国内外广泛采用的高等数学分析教材,该书由台湾著名数学家郑兰荪教授执笔。
该教材内容详实,思路清晰,适合初学者使用。
书中介绍了极限、连续、导数、微分、积分等的基本概念和定理,并通过实例讲解了如何应用这些概念和定理解决实际问题。
此外,该教材还包含了一些拓展内容,为有余力的学生提供了更多的学习资源。
三、《高等数学分析》《高等数学分析》是中国人民大学数学系的李桂滋教授所编写的高等数学分析教材。
该书内容丰富,重点突出,适合高校高年级学生和研究生使用。
书中的讲解风格简明扼要,理论和实例相结合,凸显了数学分析的应用价值。
此外,该教材还附有大量的习题,供学生巩固所学知识和提高解题能力。
四、《高等数学分析教程》《高等数学分析教程》是国内著名数学家李大钊教授所撰写的高等数学分析教材。
本书以其严谨的逻辑性、深入的理论推演和大量的典型例题著称。
该教材以高等数学分析的基本内容为主线,内容涵盖了极限与连续、导数与微分、积分与应用等方面。
同时,该书还附有精选习题,供学生巩固知识和提高解题能力。
五、《数学分析教程》《数学分析教程》是国内作为高等数学分析的教材之一。
该书由沈纪云教授主编,内容全面、系统,并注重理论与实践相结合。
数学书刊书名大全
1. 《数学简史》
2. 《数学之美》
3. 《数学基础教程》
4. 《线性代数与几何初步》
5. 《数学分析教程》
6. 《离散数学导论》
7. 《概率论与数理统计》
8. 《实变函数与泛函分析》
9. 《复变函数引论》
10. 《微分几何初步》
11. 《组合数学》
12. 《图论及其应用》
13. 《拓扑学基础》
14. 《数学建模入门教程》
15. 《微积分学教程》
16. 《数理逻辑基础教程》
17. 《代数学教程》
18. 《解析几何学教程》
19. 《数学物理方程教程》
20. 《数学实验教程》
21. 《应用数学导论》
22. 《运筹学导论》
23. 《数学软件教程》
24. 《数值计算方法教程》
25. 《离散概率论教程》
26. 《随机过程教程》
27. 《无穷级数与积分学教程》
28. 《常微分方程教程》
29. 《偏微分方程教程》
30. 《实分析与复分析教程》。
篇一:数学分析学习指导(ⅲ)(未含附录)数学分析课程简要学习指导书数学分析(ⅲ)课程学习简要指导书(配套教材:《数学分析》华东师大数学系编)王石安编华南农业大学理学院应用数学系二○一二年八月1□课程的性质和任务数学分析是应用数学专业的一门重要基础课,它是一系列后继课程如微分方程,微分几何,复变函数,实变函数,泛函分析,概率论以及相关课程如普通物理,理论力学等不可缺少的基础。
学习这门课程的基本内容与方法对于培养学生的分析思维能力、学生的基本功与良好素质、培养学生掌握分析问题和解决问题的思想方法以及实际工作能力有着十分重要的作用。
其主要任务是通过教学与练习,要求学生掌握数学分析的基本概念,基本理论和基本方法和运算技能,并获得运用这些知识的能力。
□课程的内容和基本要求本课程学习数学分析(ⅲ)的基本知识,包括反常积分、多元函数的极限和连续性、多元函数微分学、隐函数定理及其应用、曲线积分、重积分及曲面积分等基本内容。
在教学上要求学生能掌握四个基本方面,即基本概念、基本理论、基本方法和基本技巧。
在教学基本要求上分为三个档次,即熟练掌握、掌握和理解。
熟练掌握--基本概念明确,能联系几何与物理的直观背景,并能从正反两方面进行理解;基本理论较扎实,具有较好的推理论证和分析问题的能力;基本方法较熟练,具备较好的运算和解决应用问题的能力,并能较灵活地运用基本技巧。
掌握--对基本概念一般只要求能从正面理解;对基本理论一般要求能应用和了解如何证明;对基本方法一般要求能掌握运用,但不要求很熟练和技巧性。
理解--对基本理论只要求能应用,不要求掌握证明方法;对基本方法一般要求会做,不要求灵活技巧。
□对学生能力的培养的要求通过理论教学,使学生熟悉数学分析的研究内容,该学科解决问题的基本原则和方法,具备较高的理论水平和计算能力。
□学习材料1、基本教材《数学分析》(华东师范大学数学系编)高等教育出版社 2、辅导教材(1)《数学分析》(面向课程教材)上、下册,陈纪修、於崇华、金路编著,高等教育出版社数学分析课程简要学习指导书(2)中国科技大学编《数学分析》(上、中、下册) 3、参考书籍《数学分析习题集》(吉米多维(苏)著) 4、授课课件□学习方法从课堂启发式教学-> 个人自学,以学生本身为主,教师引导为辅。
数学书籍推荐数学分析篇数学分析是数学的一个分支,主要研究函数、极限、连续性、微积分等概念和性质。
对于想要深入学习数学的人来说,选择合适的数学分析书籍是非常重要的。
本文将推荐几本高质量的数学分析书籍,帮助读者更好地掌握这门学科。
1.《数学分析导引》作者:柯思聪出版社:高等教育出版社这本书是中国南京大学数学系主编的教材,适合初学者。
它系统地介绍了数分的基本概念和方法,内容理论与实际应用相结合。
书中每个概念都有详细的定义和定理,配有例题和习题,方便读者进行巩固和练习。
此外,作者在书中还加入了一些历史和数学思想方面的讨论,使得读者不仅能够理解数分的具体内容,更能够了解数学的发展历程和思考方式。
2.《数学分析引论》作者:W. R. Wade出版社:机械工业出版社这本书是经典的数学分析教材,被广泛使用于世界各地的高校。
它以严谨的论证和清晰的讲解闻名,对于数学分析的基本概念和定理进行了详细而全面的介绍。
此外,书中还有大量的习题和例题,可以帮助读者巩固所学的知识。
尤其适合喜欢挑战自己的学生和对数学有浓厚兴趣的人。
3.《实分析教程》作者:Royden H.L.出版社:高等教育出版社这本书是国内外很多高校的数学分析教材,涵盖了实分析的各个方面。
书中的内容翔实且全面,适合有一定数学基础和数学思维能力的读者。
与其他教材不同的是,这本书在讲解定理和概念时,会给出详细的证明过程,并补充一些相应的推论和注释,帮助读者深入理解数学分析的思想。
4.《数学分析引论》作者:Thomas A. Apostol出版社:人民邮电出版社这本书是经典的数学分析教材,深入浅出地介绍了数学分析的各个概念和定理。
作者通过引入实例和图表,生动地解释了抽象的数学概念,使得学习者更容易理解。
此外,书中还有大量的习题和答案,供读者进行练习和巩固。
无论是初学者还是已经入门的学生,都能从这本书中收获知识。
总结一下,数学分析是数学学习的基础,选择一本合适的数学分析教材对于学习的效果起着至关重要的作用。
介绍分数的书籍分数是数学中的重要概念,它在日常生活和各个领域中都有着广泛的应用。
为了帮助学生更好地理解和掌握分数,许多优秀的数学书籍被创作出来。
下面将介绍几本经典的分数教材,希望能为读者提供参考和帮助。
《分数与小数》是一本适合小学生学习分数的教材。
该书以生动有趣的故事和实例为主线,引导孩子们逐步认识分数的基本概念和运算法则。
书中运用了大量的图表和练习题,帮助学生巩固所学知识,并培养他们的思维能力和解决问题的能力。
此外,该书还注重培养学生的逻辑思维和数学思维方式,使他们能够在实际生活中运用分数知识解决问题。
《分数与百分数》是一本适合初中生学习分数的教材。
该书系统地介绍了分数和百分数的基本概念、运算法则和应用技巧。
书中以简洁明了的语言和清晰的示意图,详细解析了分数和百分数在日常生活和实际问题中的应用。
同时,该书还提供了大量的例题和练习题,帮助学生巩固所学知识,培养他们的计算能力和解决问题的能力。
此外,该书还注重培养学生的抽象思维和逻辑推理能力,使他们能够灵活运用分数和百分数解决复杂的实际问题。
《分数的化简与运算》是一本适合高中生学习分数的教材。
该书详细介绍了分数的化简和运算法则,包括通分、约分、加减乘除等运算方法。
书中以深入浅出的方式,解析了分数化简和运算过程中的关键步骤和技巧。
此外,该书还提供了大量的示例和练习题,帮助学生巩固所学知识,培养他们的计算能力和分析问题的能力。
同时,该书还注重培养学生的数学思维和创新能力,使他们能够灵活运用分数知识解决实际问题。
除了上述教材外,还有一些其他的分数教材也值得推荐。
比如《分数的比较与排序》、《分数的运算规律与应用》等。
这些教材在内容和形式上都有着独特之处,能够帮助学生更深入地理解和掌握分数知识。
分数是数学中的重要概念,学习分数对学生的数学素养和解决实际问题的能力都有着重要的影响。
通过阅读适合自己的分数教材,学生可以更好地理解和运用分数知识。
因此,选择一本适合自己的分数教材,进行有针对性的学习和练习,对学生的数学学习将会有很大的帮助。
学科数学考研主流参考书目
学科数学考研主流参考书目包括《数学分析》、《高等代数》、《数学教学论》等。
其中,《数学分析》是数学系本科必修课教材,分上下两册,共二十三章。
该书是华东师范大学数学科学学院编写,高等教育出版社出版的“十二五”普通高等教育本科国家级规划教材,第四版与第五版差异不大,推荐购买最新版第五版。
《高等代数》与上面的《数学分析》是一个系列,一共十章。
该书由北京大学数学系前代数小组编写,高等教育出版社出版,第四版与第五差异不大,推荐购买最新版第五版。
《数学教学论》:以《数学教学论》《数学教育概论》《新编数学教学论》等为主参考书,参考书内容主要需要背诵记忆,类似333。
考察题型多样,主要是名词解释、简答、论述和教学设计等,适合记忆力比较好。
以上书籍均为数分高代类主流参考书目,对于学科数学考研具有重要意义。
数学书籍的推荐列表本文旨在推荐一些数学书籍,供读者研究和提高数学知识之用。
以下是一些优秀的数学书籍,涵盖了不同层次和领域的内容。
1. 初级数学书籍- 《数学分析引论》:作者:哈代。
这本书对数学分析的基本概念和方法进行了清晰而深入的介绍,适合初学者入门。
- 《高等代数导论》:作者:阿廷,作者:麦克拉肯。
这是一本深入浅出的高等代数入门书籍,适合有一定数学基础的读者。
- 《几何学教程》:作者:哈特。
该书介绍了基本的几何学概念和定理,对几何学的理解有很大帮助。
2. 中级数学书籍- 《实变函数与泛函分析导引》:作者:柯面。
该书对实变函数和泛函分析的基本理论进行了系统的阐述,适合具有一定数学基础的读者。
- 《微分几何与拓扑学导论》:作者:李文泰。
该书介绍了微分几何和拓扑学的基本概念和方法,适合对几何学和拓扑学感兴趣的读者。
- 《概率论导论》:作者:邹民。
该书介绍了概率论的基本概念和理论,适合对概率论感兴趣的读者。
3. 高级数学书籍- 《函数解析导论》:作者:郑民定。
该书对函数分析的基本理论和方法进行了全面而深入的介绍,适合高级数学研究者。
- 《代数拓扑导论》:作者:罗伯特。
该书介绍了代数拓扑学的基本内容和研究方法,适合对代数拓扑学感兴趣的读者。
- 《微分方程与动力系统导论》:作者:霍普芙。
该书介绍了微分方程和动力系统的基本理论和研究进展,适合对微分方程和动力系统感兴趣的读者。
以上是一些值得推荐的数学书籍,希望能对读者学习和提高数学知识有所帮助。
读者可以根据自己的数学水平和兴趣选择合适的书籍进行学习。
有关分数巧算的书籍There are many books available that focus on the creative and fascinating world of mental math, particularly in relation to fraction calculations. These books provide valuable insights, techniques, and strategies for individuals looking to improve their math skills and abilities. By delving into the world of mental math and fractional calculations, readers can develop a deeper understanding of mathematics and enhance their problem-solving skills.有许多关于巧算和分数计算的书籍致力于探索创造性和引人入胜的心算世界,这些书籍为希望提高数学技能和能力的个人提供了宝贵的见解、技巧和策略。
通过深入研究心算和分数计算的世界,读者可以对数学有更深入的理解,并增强他们的问题解决能力。
One popular book on mental math and fraction calculations is "Secrets of Mental Math" by Arthur Benjamin and Michael Shermer. This book explores the power of mental math and provides readers with various techniques to perform complex mathematical calculations quickly and accurately. Through engaging examples andstep-by-step explanations, readers can learn how to improve their mental math skills and tackle fraction calculations with ease.一本关于心算和分数计算的流行书籍是由阿瑟·本杰明和迈克尔·谢默合写的《心算的秘密》。
数学提分小题教辅书有哪些数学小题一个5分,两道数学选择题就相当于一个大题了,所以数学小题真的是提分的关键哦!数学小题满分技巧 1.限时练确定做每道小题在高考中所需要的时间,平时训练时要小于该时间。
2.定量练一轮复习,每天练习定量的小题,增加题感。
二轮复习,每天练习与真题等量的小题。
3.练速度积累解答小题的方法与技巧,争取做到快解、优解,这样才能有充足的时间解答大题。
4.练准度储蓄积累错题并分析错误原因,提高解题正确率。
数学提分小题教辅书推荐《蝶变小题必刷》蝶变家的小题共分为50组,每组40题,一共2000道典型题,题量大、题型全,考点覆盖整个高中系统,做到各个考点、各种题型不遗漏,并结合高考命题新规律精心编排。
这本数学小题的难度由易到难。
由浅入深,适合基础薄弱的考生进行数学小题的巩固训练。
内容紧贴高考数学题型,适合中等及以下的考生进行数学小题的专项训练哦,而且蝶变家的答案真的很详细,对于基础不好的同学真的不要太友好了。
《小题狂练》小题狂练”系列全称是《金考卷·高考命题新动向·小题狂练》,这本数学教辅书和接下来要介绍的《小题狂做》可要分清了,两本题长得相似,但是却是两家出版的哦。
不适合“零基础”或者冲击压轴题的学霸。
如果你是那种数学小题过失性失分比较多的同学,可以选择这本小题帮助你巩固练习。
《小题狂做》数学小题狂做系列众多,不过总体的排版和思路大致还是一样的。
大部分系列都把每次练习的量控制在60分钟以内,一般为十几个选择、填空。
但是这本数学小题只标明了试卷的地方,没有标明考试时间。
它家的小题主要是针对数学有一定的基础的同学。
数分高代考研复习规划说明:适用于普通985高校和好点的211高校。
大三上学期
复习第一遍教材,数分用华师四版,即
高代用北大四版,即
大三下学期
复习第二、三遍教材(如果有时间尽量多复习几遍),若从大三下学期开始准备的话,只有更加用功把教材复习两遍。
大三暑假
习题集第一遍,推荐三套厚度适中的(若有足够的毅力把丘维声的《高等代数学习指导书》和裴礼文的《数学分析中的典型问题与方法》复习两遍以上,首推这套),挑其中一套即可(多了反而不好)
一、曲阜师范大学的辅导书(考研神校,值得拥有)
二、通过精选的名校真题,讲解典型问题的方法和技巧
三、这套习题集没有详细的解答,想挑战一下的可以选这套
说明:习题集还有很多不错的,我们只是抛砖引玉式的列举以上三套。
大四开学至国庆节(习题集第二遍)
国庆节至考前
研读历年真题(3到5遍),复习以前的错题和重点题,(如果有时间,大致翻翻其余习题集,不用细看,只是增加知识面)。
注意:千万不要边做题边看答案!
来自一个英语学渣的提醒:英语一定要重视,从现在就开始背单词吧!!!。
高中生提升考分的有效课外书籍推荐在高中阶段,提升考分的旅程常常需要额外的支持与资源,尤其是课外书籍。
这些书籍不仅提供了必要的知识点,还能帮助学生们提高综合能力。
选择合适的课外书籍,可以是让学习事半功倍的关键。
让我们从数学开始探讨。
数学不仅仅是公式的堆砌,更是一种思维的训练。
对于高中生来说,《数学之美》是一本极具启发性的书籍。
它通过浅显易懂的语言讲述了数学在日常生活中的应用,激发了学生们对数学的兴趣,帮助他们从不同角度理解复杂的问题。
此外,《高考数学总复习》系列书籍则提供了大量的例题和详细的解答解析,是学生进行高效复习的理想选择。
在英语方面,阅读《英语语法新讲》能够帮助学生系统化地理解英语语法的规则。
这本书不仅讲解了基本的语法点,还通过大量的练习题帮助学生巩固知识。
与此同时,《词汇的奥秘》这本书能够有效提高学生的词汇量,并且通过有趣的词汇故事,激发学习英语的热情。
这些书籍不仅提高语言能力,还为考试中的阅读理解和写作部分打下了坚实的基础。
对于文科类科目,《历史的细节》是一本值得推荐的书籍。
它将历史事件以生动的叙述呈现,帮助学生建立对历史的全面理解,并在考试中运用这些知识。
另一方面,《写作的艺术》可以帮助学生提高写作能力,通过各种写作技巧和范文的分析,使学生在语文考试中的作文部分表现更为出色。
在科学领域,《物理学的乐趣》是一本非常适合高中的书籍。
它将复杂的物理原理转化为易于理解的故事,使学生能够在轻松的阅读中掌握重要概念。
而《化学的奇迹》则通过趣味性的实验和案例,激发学生对化学的兴趣,并帮助他们在考试中更好地理解化学反应及其应用。
总之,这些书籍不仅仅是单纯的知识补充工具,更是帮助学生提高考分、增强综合能力的重要资源。
通过深入阅读这些书籍,学生们可以在提升学术成绩的同时,培养良好的学习习惯和思维能力,为最终的考试目标做好充足的准备。