数据挖掘之专家系统
- 格式:docx
- 大小:51.19 KB
- 文档页数:5
专家系统的开发过程简介专家系统是一种模仿人类专家决策过程的人工智能系统,通过收集领域知识和规则,以及运用推理和推断技术,来解决特定领域的问题。
它主要由知识库、推理机和用户界面三个组成部分构成。
专家系统的开发过程可以分为知识获取、知识表示、知识推理以及系统评估和维护等步骤。
知识获取知识获取是专家系统开发的第一步,它是开发中最为困难和复杂的部分。
知识获取可以通过以下方法进行: 1. 领域专家访谈:与领域专家进行面对面的访谈,直接获取专家的知识和经验。
2. 文献调研:查阅相关的书籍、论文和文章,获取领域内的知识和规则。
3. 数据挖掘:通过分析大量的数据,找到其中的规律和知识。
4. 规则抽取:从现有的系统中抽取规则和知识。
知识表示知识表示是将获取到的知识进行组织和表示的过程。
常用的知识表示方法有: 1. 规则表示:基于规则的专家系统将知识表示为一系列的“如果-那么”规则,规则由前件和后件组成,前件是条件,后件是结论。
2. 框架表示:框架表示根据领域知识的特点和结构,将知识以框架的形式进行表示和存储。
3. 语义网络表示:语义网络表示将知识表示为节点和关系的网络结构,每个节点代表一个概念,关系表示概念之间的关联。
知识推理知识推理是专家系统的核心部分,通过对知识的推理和推断,来解决问题和作出决策。
常用的推理方法有: 1. 前向推理:从已知事实出发,通过匹配规则的前件条件,逐步推导出结论。
2. 后向推理:从目标结论出发,根据规则的后件条件,逆向推导出满足条件的前提。
3. 反向推理:根据用户提供的问题或目标,向后推导出满足目标的推理链。
4. 混合推理:结合前向、后向和反向推理的特点和方法,进行综合推理。
知识系统评估和维护系统评估和维护是专家系统开发过程的最后一步,它的目的是验证专家系统的有效性和可靠性,并对系统进行修正和改进。
常用的评估和维护方法有: 1. 测试和验证:对专家系统进行测试和验证,评估系统的正确性和性能。
专家系统的概述及其应用-回复什么是专家系统?专家系统是一种基于人工智能技术的计算机系统,旨在模拟人类专家在某个特定领域中的知识和推理能力。
它通过收集和组织领域专家的知识,并利用推理规则来解决特定问题,从而为用户提供专业的建议、解决方案和决策支持。
专家系统的构成和工作原理专家系统主要由三个部分组成:知识库、推理机和用户界面。
知识库存储了领域专家的知识和经验,可以分为规则库和事实库。
规则库中包含了一系列由领域专家提供的规则,规定了问题和解决方案之间的关系。
事实库则存储了用户输入的问题相关信息。
推理机是专家系统的核心,它通过运用专家提供的规则和事实库中的信息,利用推理机制对问题进行推理和决策。
用户界面则是用户与专家系统进行交互的界面,通常采用图形用户界面或自然语言界面。
专家系统的应用领域专家系统广泛应用于各个领域,以下列举几个常见的应用领域:1. 医疗领域:专家系统可以帮助医生进行疾病的诊断和治疗方案的选择。
它可以根据病人的症状和检查结果,利用医学专家提供的规则进行推理,给出专业的建议和治疗方案。
2. 金融领域:专家系统可以用于风险评估和投资决策。
它可以基于历史数据和金融专家的知识,分析市场趋势和风险因素,为投资者提供决策建议。
3. 工程领域:专家系统可以用于设计优化和故障诊断。
它可以根据工程专家的知识和经验,分析和优化设计参数,或者通过故障检测和推理,帮助工程师快速找到故障原因并提供解决方案。
4. 决策支持系统:专家系统可以作为一个决策支持工具,帮助管理者进行决策。
它可以根据专家的经验和问题的约束条件,通过推理和分析,给出最佳的决策方案。
专家系统的优势和局限专家系统具有以下几个优势:1. 提供专业的建议和解决方案:专家系统可以利用专家的知识和推理能力,为用户提供专业的建议和解决方案。
2. 可以处理复杂的问题:专家系统可以处理大量的知识和复杂的推理过程,帮助用户解决复杂的问题。
3. 可以提高工作效率:专家系统可以提供快速的问题解决方案,帮助用户提高工作效率。
专家系统是一种人工智能应用,旨在模拟和复制领域专家的知识和决策过程,以解决特定领域的问题。
以下是专家系统的基本概念:知识库(Knowledge Base):专家系统的核心是知识库,其中包含了领域专家的知识和经验。
这些知识通常以规则、事实、推理机制等形式存储在计算机中,以便系统可以使用它们进行推断和决策。
推理引擎(Inference Engine):推理引擎是专家系统的决策核心,它负责根据知识库中的规则和事实来进行推理和决策。
它能够根据用户提供的信息,推断出最合适的解决方案或答案。
用户接口(User Interface):专家系统通常需要一个用户接口,使用户能够与系统进行交互。
这个接口可以是文本界面、图形界面或自然语言界面,根据系统的目的和用户的需求而定。
知识表示(Knowledge Representation):知识库中的知识需要以计算机可以理解的方式表示。
常用的知识表示方法包括规则、产生式、框架、语义网络等。
推理机制(Inference Mechanism):推理引擎使用推理机制来处理知识库中的信息,执行规则并生成推断。
推理机制可以采用不同的推理策略,如前向推理(从事实到结论)或后向推理(从目标到事实)。
领域专家(Domain Expert):专家系统的开发通常需要与领域专家密切合作,以获取领域内的专业知识和经验,并将其转化为系统可用的规则和知识。
解释能力(Explanatory Capabilities):专家系统通常能够提供关于其决策和推断的解释,以帮助用户理解系统的工作原理和为何做出特定的决策。
学习能力(Learning Capabilities):一些专家系统具有学习能力,可以从实际使用中积累经验和知识,不断改进其性能。
应用领域:专家系统广泛应用于各个领域,包括医疗诊断、金融分析、工程设计、客户支持、决策支持等。
每个专家系统都是为特定领域或问题定制的。
局限性:专家系统的性能受限于其知识库和推理机制的质量,以及对领域的适应能力。
基于动态数据挖掘的钻井复杂诊断专家系统研究摘要传统的基于案例推理的钻井复杂诊断专家系统的知识库往往长期得不到更新呈现“死库”状态,知识的不能及时获取和知识库的不能实时更新成了影响其发展的瓶颈。
为满足实际的需求,本文提出了一种基于动态数据挖掘的案例推理钻井复杂诊断专家系统,该系统不断对数据进行实时挖掘产生了新的案例,这些新的案例又组成了一个临时案例库,从而实现了对系统原知识库的实时更新。
关键词钻井复杂情况;动态数据挖掘;案例推理;专家系统中图分类号tp 392 文献标识码a 文章编号 1674-6708(2013)96-0213-02为满足实际的需求、解决传统的基于案例推理专家系统存在的不足,本文设计了一种基于动态数据挖掘的案例推理钻井复杂情况专家系统,该系统通过不断的对钻井过程中产生的数据信息进行动态实时挖掘,挖掘的有用信息实时产生一些新的案例,这些新的案例又组成一个临时的案例库,从而实现了对系统原知识库的实时更新。
1 基于动态数据挖掘的钻井复杂诊断专家系统设计1.1 系统应用目标钻井公司统一将该专家系统配备给各个钻井队,作为各钻井队现场技术人员的计算机辅助工具。
各钻井队会将本队所处理的钻井复杂情况或钻井事故信息向事故诊断中心发送,钻井复杂情况专家系统在动态接收复杂情况数据流信息以后,实时的对数据流信息进行动态挖掘分析,挖掘出各种复杂情况的典型信息,保存在钻井复杂情况临时案例库中,作为对系统原知识库进行更新之用,各个钻井队可以根据最近的知识库对发生的各种钻井复杂情况做出预测和判断,从而找到最佳的问题解决方案。
1.2 系统模型当钻井队遇到新问题时,技术员就会通过人机接口对新问题进行描述,汇集成目标案例,然后通过检索器在知识库里查找是否有相似案例,如果有相似案例则把相似案例传给技术人员,如果没有相似案例则重新反馈给检索器,对临时案例库进行搜索看是否有相似案例。
技术人员会根据自己的经验和知识对所搜索到的相似案例进行判定是否可用,如果不可用则直接反馈给人机接口对问题重新进行描述;如果可用,则对案例进行必要地修改,然后将修改后的案例保存在临时案例库,对案例库进行更新,以解决类似的问题。
《数据挖掘》期末总结
——专家系统
有关专家系统:
定义:
是一个(或一组)能在某特定领域内,以人类专家水平去求解该领域中困难问题的计算机智能程序系统。
构成:
完整的专家系统包括人机接口、推理机、知识库、数据库、知识获取器和解释机构六部分,如下图:
用户领域专家知识工程师
其核心在于推理机与知识库和综合数据库的交互作用,使得问题得以解决。
工作过程:
1)根据用户的问题对知识库进行搜索,寻找有关的知识;(匹配)2)根据有关的知识和系统的控制策略形成解决问题的途径,从而构成一个假设方案集合;
3)对假设方案集合进行排序,并挑选其中在某些准则下为最优的假设方案;(冲突解决)
4)根据挑选的假设方案去求解具体问题;(执行)
5)如果该方案不能真正解决问题,则回溯到假设方案序列中的下一个假设方案,重复求解问题;
6)循环执行上述过程,直到问题已经解决或所有可能的求解方案都不能解决问题而宣告“无解”为止。
企业、政府机构用的专家系统都是有严密的逻辑、也涉及大量的数据分析、并且是经过领域专家、工程师的经验校验,详细用户需求分析后的结果。
而实际上,在我们的日常生活中,也不经意的在思维过程中用到了专家系统,譬如在游戏“你来描述我来猜”的过程中,我们就可以抽取出一个专家系统——、
动物识别专家
在推理过程中,会同时推出几个结论。
如:有毛发、会吃肉、有斑点——首先推出金钱豹有黑色条纹——再推出老虎有蹄——再推出斑马
有关学科总结
一学期结束,静下心复习总结时,才发现,这一学期无数次与数据挖掘打交道。
还记得《应用统计学》第一次作业:谈谈统计学与数据挖掘的关系。
还记得《管理信息系统》中CRM(客户关系管理系统),客户细分时提到的数据挖掘;决策支持系统以及BI中用到的数据挖掘。
还记得《信息系统分析与设计》做需求分析时要用到数据挖掘。
还记得跟老师做项目,查找信息可视化及知识图谱原理时,再一次提到数据挖掘。
就像课堂上说的:“互联网的时代,我们缺的不再是数据本身,而是海量数据包含的、隐含的信息,而这一信息的获取,除了我们敏锐的观察力从数据本身看到以外,还有太多有价值的信息需要我们运用相当的工具去深入挖掘——数据挖掘,理所应当成为了时代的必须,也是我们取胜的必须”。
《数据挖掘》课程本身更多的是给我们一种思想,一种看待、解决问题的新途径。
通过课程的学习,我们不再简简单单的追求数据,我们会更多的去思考数据。
《应用统计学》也在讲数据处理,但应用统计学更多的是对已知数据分布的描述和趋势的预测,抑或是结论的检验。
而《数据挖掘》所讲的数据是更倾向于如何把表面无关的数据建立联系,并从中获取有用信息。
《应用统计学》是现状的描述和预测的检验,而《数据挖
掘》则是现状的改进和未来的创新。
随着科技的发展,高新技术的更多应用,数据挖掘也必将越来越收到欢迎。
但从我个人这个学期所接触到的,无论是从项目还是从学科学习中,就不断的在检验这一说法——信息可视化应该说是一个热门的话题,至少目前在国内还没有成形、完善的相关研究,而在这一领域,其基本原理是引用和共被引理论,而其所采用的算法都是数据挖掘中的最小生成树、决策树、K-means等。
有关ERP、CRM、KM、DSS、BI等一系列信息系统可以说是所有企业信息系统未来发展的趋势,而所有这些系统的分析设计前期的需求分析、后期的运行基础都需要数据挖掘的支持——基于数据仓库的数据集市对数据的无论是报表还是钻取、切片等分析。
总之,数据挖掘是信息社会筛选、提取并创造信息必不可少的思维、操作工具。