2011年中考数学创新思维训练(三)
- 格式:doc
- 大小:785.50 KB
- 文档页数:4
2011全国各省市中考数学真题分类汇编—猜想、规律与探索(附答案)一、选择题1.(2011赤峰市中考)8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是( )(A )2n(B )4n(C )12n + (D )22n +2.(2011山东烟台市中考)8、如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是( )3.(2011舟山市中考)9.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ▲ ) (A )2010 (B )2011(C )2012(D )20134.(2011湖北武汉市中考) 9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边图1图2图3……(第3题)… …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫长为8的正方形内部的整点的个数为( ) A.64. B.49. C.36. D.25.5.(2011潜江市 天门市 仙桃市中考)9.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A .(0,64)B .(0,128)C .(0,256) D .(0,512)6.(2011江苏常州市中考)7.在平面直角坐标系中,正方形ABCD 的顶点分别为A ()1,1、B ()1,1-、C ()1,1--、D ()1,1-,y 轴上有一点P ()2,0。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载中考数学创新思维训练题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容2011年中考数学创新思维训练(1)一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1、-2的倒数是_________, ________.2、9的平方根是__________,-8是_______的立方根.3、用四舍五入所得的数是-2.164,它精确到位.4、计算:cos45= ,tan30= .5、函数y=中,自变量x的取值范围是__________;函数y=中,自变量x的取值范围是_________.6、在实数内分解因式:x4-2x2= .7、一个多边形的每个外角都等于30,这个多边形的内角和为_________度.8、下面一组数据表示初三(1)班23位同学衣服上衣口袋的数目,若任选一位同学,则其上衣口袋的数目为5的概率为 .3,4,2,6,5,5,3,1,4,2,4,2,4,5,10,6,1,5,5,62,10,39、一个矩形的周长为60㎝,其面积为S,则S的取值不超过㎝2.10、⊙O的直径CD与弦AB交于点M,添加条件(写出一个即可)就可得到M是AB的中点.11、如下图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要枚棋子.12、如图所示是由7个完全相同的正方形拼成的图形,请你用一条直线将它分成面积相等的两部分.(在原图上作出).二、精心选一选(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)13、已知x=-1是方程x2+mx+1=0的一个实数根,则m的值是()A、0B、1C、2D、-214、下列各式中,与是同类二次根式的是()A、 B、 C、 D、15、如图所示,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是()A、B、C、D、16、在直角坐标系中,⊙O的圆心在圆点,半径为3,⊙A的圆心A的坐标为(-,1),半径为1,那么⊙O与⊙A的位置关系为()A、外离B、外切C、内切D、相交17、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛()A、平均数B、众数C、最高分数D、中位数18、在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替()A、两张扑克,“黑桃” 代替“正面”,“红桃” 代替“反面”B、两个形状大小完全相同,但一红一白的两个乒乓球C、扔一枚图钉D、人数均等的男生、女生,以抽签的方式随机抽取一人19、相信同学们都玩过万花筒,右图是某个万花筒的造型,图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG可以看成是把菱形ABCD以A 为旋转中心()A、顺时针旋转60°得到B、顺时针旋转120°得到C、逆时针旋转60°得到D、逆时针旋转120°得到20、将一张正方形的纸片按下图所示的方式三次折叠,折叠后再按图所示沿MN裁剪,则可得()A、多个等腰直角三角形B、一个等腰直角三角形和一个正方形C、四个相同的正方形D、两个相同的正方形三、认真答一答(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!)21、(本题共有3小题,每小题5分,共15分)(1)计算:(2)已知不等式5(x-2)+8<6(x-1)+7的最小整数解是方程2x-ax=4的解,求a的值.(3)先化简,再求值:,其中x=2.22、(本题满分6分)方格纸中每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.(1)在10×10的方格中(每个小方格的边长为1个单位),画一个面积为1的格点钝角三角形ABC,并标明相应字母.(2)再在方格中画一个格点△DEF,使得△DEF∽△ABC,且相似比为,并加以证明.如图,给出五个条件:①AE平分∠BAD,②BE平分∠ABC,③E是CD的中点,④AE⊥EB,⑤AB=AD+BC(1)请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以说明;(2)请你以其中三个作为命题的条件,写出一个不一定能推出AD∥BC的正确命题,并举例说明.24、(本题满分6分)夏雪同学调查了班级同学身上有多少零用钱,将每位同学的零用钱记录下来,下面是全班40名同学的零用钱的数目(单位:元)2,5,0,5,2,5,6,5,0,5,5,52,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.(1)请你写出同学的零用钱(0元,2元,5元,6元8元)出现的频数;(2)求出同学的零用钱的平均数、中位数和众数;(3)假如老师随机问一个同学的零用钱,老师最有可能得到的回答是多少元?25、(本题满分8分)某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校. 若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得. 现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?某市的一家报刊摊点从报社买进一种晚报,其价格为每份0.30元,卖出的价格为0.50元,卖不掉的报纸可以退还给报社,不过每份退还的钱数与退还的报纸的数量关系如下:现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.(1)通过在坐标系中(以退还的钱数为纵坐标,退还的报纸数量为横坐标)描出点,分析出退还的钱数y(元)与退还的报纸数量k(份)之间的函数关系式.(2)若该家报刊摊点每天从报社买进的报纸数x份(满足100<x<150),则当买进多少报纸时,毛利润最大?最多可赚多少钱?27、(本题满分8分)在一块长16m、宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半. 下面分别是小明和小颖的设计方案.小明说:我的设计方案如图(1),其中花园四周小路的宽度相等. 通过解方程,我得到小路的宽为2m或12m.小颖说:我的设计方案如图(2),其中花园中每个角上的扇形相同.(1)你认为小明的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x(精确到0.1m).(3)你还有其他的设计方案吗?请在下边的矩形中画出你的设计草图,并加以说明.四、动脑想一想(本大题共有2小题,共18分. 开动你的脑筋,只要你勇于探索,大胆实践,你一定会获得成功的!)28、(本题满分8分)如图,在△ABC中,∠C=90°,AC=6,BC=8,M是BC的中点,P为AB上的一个动点,(可以与A、B重合),并作∠MPD=90°,PD交BC(或BC的延长线)于点D.(1)记BP的长为x,△BPM的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;(2)是否存在这样的点P,使得△MPD与△ABC相似?若存在,请求出x 的值;若不存在,请说明理由.29、(本题满分10分)如图,已知AB是⊙O的直径,AC是⊙O的弦,点D是ABC的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)图中有哪些相等的线段?(要求:不再标注其他字母,找结论的过程中所作的辅助线不能出现在结论中,不写出推理过程)(2)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由.(3)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.〖第(1)的结论可直接利用〗1、参考答案一、细心填一填1. ﹣,﹣82. ±3 ,﹣1253. 千分位4. ,5.x≠1 ,x≥3 6 . x(x+)(x-) 7. 1800 8. 9. 225 10. CD⊥AB 11. 179 12. 略二、精心选一选13. C 14. B 15. A 16. C 17. D 18. C 19. D 20. C三、认真答一答21. (1)3;(2)a=4 ;(3) 2x-1 ,3 22. 略23.(1)①②⑤AD∥BC .证明:在AB上取点M,使AM=AD,连结EM,可证△AEM≌△AED,△BEM≌△BCE,∴∠D=∠AME, ∠C=∠BME,故∠D+∠C=∠AME+∠BME=180°∴AD∥BC.(2)①②③ AD∥BC为假命题反例:△ABM中,E是内心,过E作DC⊥EM,显然有,AE平分∠BAM,BE平分∠ABM,ED=EC,但AD不平分于BC.24.(1)0元的频数是5,2元的频数是7,5元的频数是21,6元的频数是5,8元的频数是2.(2)平均数是4.125,中位数是5,众数是5.(3)5元.25.(1);(2),;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均位黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会.26.(1)通过作图,知y=mk+n,当0<k<30,且为整数, y=﹣0.1k+0.3;当k≥30 , y=0.02.(2)S=2×0.2x+100×10×0.2-(0.3-y)(x-100)= 4x+200-0.1(x -100)=﹣0.1x+24x-800.当x=﹣=120时,即每天买进120份报纸时,可获最大毛利润为640元.27.(1)设小路的宽为xm,则(16-2x)(12-2x)=×16×12,解得x=2,或x=12(舍去). ∴x=2,故小明的结果不对.(2)四个角上的四个扇形可合并成一个圆,设这个圆的半径为rm,故有r2=×16×12,解得r≈5.5m.(3)依此连结各边的中点得如图的设计方案.28.(1)作PK⊥BC于K,BM=4,AB=10,∵PK∥AC,∴=pk=x,∴y=×4×x=x(0<x<10).(2)①∠PMB=∠B, PM=PB ,MK=KB=2 , =, x=2.5;②∠PMD=∠A, 又∠B =∠B,∴△BPM∽△BAC,∴BP·AB=BM·BC,∴10x=4×8 ,x=3.2,∴存在 x=2.5或3.2.29.(本题仅供学有余力的同学参考)(1)OA=OB,DF=EF,DE=AC,AG=DG,EG=CG.(2)ME=GM. 理由是:连EO并延长交⊙O于点N,连结DN. ∵EM是⊙O的切线,∴∠OEM=90º,∴∠GEM+∠GEN=90º. ∵EN是⊙O的直径,∠N+∠GEN=90º,∴∠N=∠GEM. ∵AB是⊙O的直径,∴∠B+∠BAC=90º,∵∠AGF+∠GAF=90º,∴∠AGF=∠B,∵∠AGF=∠CGE,∴∠CGE=∠B. ∵AC=DE,∴∠N=∠B,∴∠GEM=∠CGE,∴MG=ME.(3)答案:.。
2011年广东省初中毕业生学业考试一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数是( ) A .2 B .-2C .21D .21-2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51B .31 C .85 D .835.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.已知反比例函数xky =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____. 8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.三、解答题(一)(本大题5小题,每小题6分,共30分)A .B .D .题3图题9图 B C O A11.计算:(1)20245sin 18)12011(-︒+-. (2)()22()()14a b a b a b +--+-12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E ,F 在AC 上,AD //CB 且AD =CB ,∠D =∠B .求证:AE =CF .15.(本题满分6分)如图所示,A 、B 两城市相距100km .现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?1.732 1.414)题13图 B D A F EA第15题图BF E P45°30°数学试题 第 3 页 (共 11 页)四、解答题(二)(本大题4小题,每小题7分,共28分)16.肇庆市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,实际工作效率比原计划提高了20%,结果提前两天完成.求原计划平均每天修绿道的长度. 19.(本题7分)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍)。
2011中考数学选择专训数学选择题的常用解法(方法篇)数学选择专项训练1在中考数学试题中,选择题占相当大的比例,因此,解答选择题对考试成绩影响很大。
解数学选择题,常可以从选择支出发进行思考,充分利用选择支所提供的信息与“只有一个正确答案”的方向,改变解题策略,充分发挥直观的作用,发现其特殊的数量关系和图形位置特征,迅速解题。
下面举例谈谈解数学选择题的五种常用方法,供大家复习时参考。
一. 直接法例1. 若b ab a <0,有意义,则a b a=( )。
A.abB.-abC. -abD. --ab解:根据题设,注意到a <0,直接化简原式,可得-ab 。
选C 。
点拨:直接法就是直接从条件出发,通过合理运算和严密推理,最后推出正确的结果,再对照选择支解答的一种解题思路。
二. 特例法例2. 若a b <-<<010,,则( ) A. ab ab a 2<< B. a ab ab <<2C. ab a ab 2<<D. a ab ab <<2 解:取a b =-=-112,,很容易得到答案为D 。
点拨:特例法就是用符合已知条件的特例或考虑特殊情况、特殊位置,检验选择支或化简已知条件,得出答案。
当已知条件中有范围时可考虑使用特例法。
三. 检验法例3. 方程7312x x -+-=的解是( )A. 3B. 2C. 1D.37解:把四个选择支的数值代入方程7312x x -+-=中,很快就可知道答案为C 。
点拨:检验法就是将选择支分别代入题设中或将题设代入选择支中检验,从而确定答案。
解答本题时若直接解方程,要浪费很多时间和精力。
当结论为具体值时可考虑使用检验法。
四. 排除法例4. 在同一坐标平面内,函数y m x =-()1与y mx x m =++2的图象只可能是( )解:选择支A 中抛物线肯定错误,B 中直线肯定错误(若为抛物线也错误),C 中直线和抛物线不是同时正确的,故选D 。
深圳市2011年高中阶段学校招生考试数学模拟试卷(三)说明:1.全卷22题,共8页,考试时间90分钟,满分100分.2.答题前,请将考场. 试室号. 座位号. 考生号. 姓名写在试卷密封线内,不得在试卷上作任何标记.3.做选择题时,请将选项的字母代号写在“答题表一”内;做填空题时,请将答案写在"答题表二"内;做解答题时,将解答过程写在指定的位置上.一、选择题(本大题10小题,每题3分,共30分)每小题有4个选项,其中只 有一个正确的,请把正确选项的字母代号填在.............".答题表一....".内.,.否.则.不.给.分. 答 题 表 一 1.9的算术平方根是( ) A .3 B .-3 C .±3 D .81 2.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .3.中国的国土面积为9596960平方千米,把这个数保留三个有效数字,并用科学记数法表示,应为( )A .71059.9⨯B .61060.9⨯C .6106.9⨯D .61059.9⨯4.下列图形中,既是轴对称,又是中心对称图形的是( )5. 已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,给出以下结论:① a+b+c<0;② a-b+c<0;③ b+2a<0;④ abc>0 . 其中所有正确结论的序号是( )A. ③④B. ②③C. ①④D. ①②③6.假设五个相异正整数的平均数是15,中位数是18,则这五个相异正整数中的最大数的最大值为( )A.24 B.32 C.35 D.407.三角形两边长分别是3和6,第三边是方程0862=+-xx的解,则这个三角形的周长是( )A.11 B. 13 C. 11或13 D. 11和138.如右图,滔滔发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( )A.9米 B.28米C.()37+米 D.()3214+米9.某商场将一种商品A按标价的9折出售,依然可获利10%,若商品A的标价为33 元,那么该商品的进货价为( )A.31元 B. 30.2元 C. 29.7元 D. 27元10.如下图在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan ∠DBA=51,则AD的长为( )A.2B.2C.1D.22二、填空题(本大题5小题,每小题3分,共15分)请把答案填.....在答题表二内......BDAC答 题 表 二11.在“石头、剪子、布”的游戏中,两人做同样手势的概率是_________12.关于x 的方程233xmx x =+--有增根,则m 的值为_________13.如图13,是按照一定数字规律画出的一行“树型”图.照此规律继续画下去,则图(7)应有的线段条数为_________14.如图1,在矩形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作OE ⊥BC ,垂足为E ,连结DE 交AC 于点P ,过P 作PF ⊥BC ,垂足为F ,则CB CF的值是______________15.如图2,如图,AB 是⊙O 的直径,⊙O 交BC 于D ,DE ⊥AC ,垂足为E ,要使DE 是⊙O 的切线,则图中的线段应满足的条件是___________________________________________或________________________________________三、解答题(本大题共有7小题,共55分)16.(6分)计算:2011(2008)1)tan 45π-︒-+--+-(1) (2) (3) (4) (5) (7)图13图1 D B 图217.(6分)先化简,再求值:)21(42x x x +÷-,其中2008=x .18.(7分)某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后必须立即卸货。
2011河北中考数学试题及答案2011年河北中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 如果一个数的平方等于16,那么这个数是多少?A. ±4B. ±2C. 4D. 24. 一个圆的半径是5,求这个圆的面积。
A. 25πB. 50πC. 75πD. 100π5. 一个数列的前三项是1, 3, 6,求第四项。
A. 10B. 12C. 15D. 206. 一个长方体的长、宽、高分别是2, 3, 4,求其体积。
A. 24B. 26C. 28D. 327. 一个分数的分子是5,分母是8,这个分数化简后是多少?A. 5/8B. 1/2C. 5/4D. 1/18. 一个二次方程x^2 - 5x + 6 = 0的解是什么?A. x = 2, 3B. x = -2, -3C. x = 2, -3D. x = -2, 39. 一个函数f(x) = 2x + 3的反函数是什么?A. f^(-1)(x) = (x-3)/2B. f^(-1)(x) = (x+3)/2C. f^(-1)(x) = (x-2)/3D. f^(-1)(x) = (x+2)/310. 一个正弦函数y = sin(x)的图像,当x增加π时,图像如何变化?A. 向左平移π个单位B. 向右平移π个单位C. 向上平移π个单位D. 向下平移π个单位二、填空题(每题2分,共20分)11. 圆的周长公式是_________。
12. 一个数的绝对值是它到0的距离,例如|-5|=_______。
13. 一个多项式3x^2 - 5x + 2的首项系数是_______。
14. 一个三角形的内角和是_______度。
15. 一个数的对数函数log_a(x),当a=10时,称为_______。
一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1.3的相反数是_________,-2的绝对值是___________. 2.4的算术平方根是__________,-8的立方根是___________.3.据中新社报道:2010年我国粮食产量将达到540 000 000 000千克,这个粮食产量用科学记数法可表示为______________________千克.4.分解因式:x 2-4=_________________. 5.函数y =12x +中,自变量x 的取值范围是___________________; 函数y中,自变量x 的取值范围是___________________.6.如图,已知a ∥b ,∠1=40?,则∠2=_________?.7.一n 边形的内角和等于1080?,那么这个正n 边形的边数n =_________.8.为发展农业经济,致富奔小康,养鸡专业户王大伯2004年养了2000只鸡. 上市前,他随机抽取了10只鸡,称得重量统计如下:根据统计知识,估计王大伯这批鸡的总重量约为_____________千克.9.如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30?,则⊙O 的直径 为__________cm.10.有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm , ∠D =120?,则该零件另一腰AB 的长是___________cm.11.两个完全相同的长方体的长、宽、高分别为5cm 、4cm 、3cm , 把它们叠放在一起组成一个新的长方体,在这些长方体中,表 面积最大是__________cm 2.12.一串有黑有白,其排列有一定规律的珠子,被盒子遮住了一部分 (如图),则这串珠子被盒子遮住的部分有_________粒. 二、精心选一选(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)13.如图,a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论正确的是 ( )A.ab <0B. a -b >0C. abc <0D. c (a -b )<014)A B C D 15.下列各式中,与分式x y x--的值相等的是( )A .x x y + B .x x y -- C .x x y -+ D .x x y- 16.已知一次函数y =kx +b 的图像如图所示,则当x <0时,y 的取值范围是( )A. y >0B. y <0C. -2<y <0D. y <-2(第6题)ba c21AB C D(第10题)B AC (第13题)(第9题)17.下面的平面图形中,是正方体的平面展开图的是( )1819 )A B .为了了解全国中学生的睡眠状况,采用普查方式 C .为了了解人们保护水资源的意识,采用抽样调查的方式D .对栽人航天器“神州五号”零部件的检查,采用抽样调查的方式20.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14 B .15C .16D .320三、认真答一答(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!) 21.(本题共有3小题,每小题5分,共15分)(1)计算:(-2)3+12(2004)0tan60?.(2)解不等式: 12(x -2)<3-x .(3)解方程组:{4,2 5.x y x y -=+=22.(本题满分6分)在如图的12×24的方格形纸中(每个小方格的边长都是1个单位)有一ΔABC . 现先把ΔABC 分别向右、向上平移8个单位和3个单位得到ΔA 1B 1C 1;再以点O 为旋转中心把ΔA 1B 1C 1按顺时针方向旋转90o 得到ΔA 2B 2C 2. 请在所给的方格形纸中作出ΔA 1B 1C 1和 ΔA 2B 2C 2.23.(本题满分8分)如图,给出四个等式:①AE =AD ;②AB =AC 件,另一个作为结论.(1(2)请你至少写出三个这样的正确命题. 24.(本题满分6分)某产品每件成本10间的关系如下表:若日销量y (件)是销售价x (元)的一次函数.(1)求出日销量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定位多少元?此时每日的销售利润是多少? 25.(本题满分6分)如图,有两个可以自由转动的均匀转盘A 、B ,转盘A 被均匀地分成4等分,每份分别标上1,2,3,4四个数字;转盘B 被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字. 有人为甲、乙两人设计了一个游戏,其规则如下:A.B. C. D.(1)同时自由转动转盘A、B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字作成积. 如果得到的积是偶数,那么甲胜;如果得到的积是奇数,则乙胜(如果转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.(2)①填写下表:②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数关系式:___________;(3)当水面宽度为36m时,一艘吃水深度(船底部到水面的距离)为1.8m的货船能否在这个河段安全通过?为什么?27.(本题满分9分)某生活小区的居民筹集资金1600元,计划在一块上、下底分别为(如图).(1)他们在ΔAMD和ΔBMC地带上种植太阳花,单价为8元/cm共花了160元,请计算种满ΔBMC地带所需的费用;(2)花木,刚好用完所筹集资金?(3)若梯形ABCD为等腰梯形,面积不变(如图)P,使得ΔAPB≌ΔDPC,且SΔAPD=SΔBPC,,并说出你的理由.四、动脑想一想(本大题共有2小题,共18分.28.(本题满分8分)如图,在平面直角坐标系中,直线l的解析式为y,关于x2x2-2(m+2)x+2m+5=0(m>0)有两个相等的实数根.(1)试求出m的值,并求出经过点A(0,-m)和点D(m,0)的直线解析式;(2)在线段AD上顺次取两B、C,使AB=CD-1,试判断ΔOBC的形状;(3)设直线l与直线AD交于点P,图中是否存在与ΔOAB相似的三角形?如果存在,请直接写出来;如果不存在,请说明理由.29.(本题满分10分)如图,正方形ABCD的边长为12,划分成12×12个小正方形. 将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)图乙×(n -1)的正方形. 如此摆放下去,最后直到纸片盖住 正方形ABCD 的右下角为止. 请你认真观察思考后回答下 列问题:(1)由于正方形纸片边长n 的取值不同,完成摆放时所使用正方形纸 片的张数也不同,请填写下表:(2)设正方形ABCD 被纸片盖住的面积(重合部分只计一次)为S 1,未被盖住的面积为S 2. ①当n =2时,求S 1∶S 2的值;②是否存在使得S 1=S 2的n 值?若存在,请求出这样的n 值;若不存在,请说明理由.参考答案一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1.-3,2 2. 2,-2 3. 5.4×1011 4. (x +2)(x -2) 5. x ≠-2, x ≥3 6. 140 7. 8 8. 5000 9. 3.6 11. 176 12. 27二、精心选一选(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 13. C 14. B 15. D 16. D 17. C 18. A 19. C 20. C三、认真答一答(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!)21. (1)-9;(2)x <83;(3){3,1.x y ==- 22.ΔA 1B 1C 1和ΔA 2B 2C 2如图所示.23.(1)如果AE=AD ,AB=AC ,那么∠B =∠C证明:在ΔABE 和ΔACD 中,∵AE=AD ,∠A =∠A ,AB=AC ,∴ΔABE ≌Δ(2)①如果AE=AD ,AB=AC ,那么OB=OC . ②如果AE=AD ,∠B =∠C ,那么AB=AC . ③如果OB=OC ,∠B =∠C ,那么AE=AD . 24.(1)y =-x +40;(2)当销售价定为25元/件时日销售利润最大,为225元.25.这个游戏不公平.把游戏中由A 、B 两个转盘中所指的两个数字的“积”改成“和”,游戏就公平了. 因为在A 盘和B 盘中指针所指的两个数字作和共有24种情况,而A 盘中每个数字与B 盘中的数字作和得到偶数和奇数的结果都是3,这样这24个和中,偶数和奇数的种数都是12,所以甲和乙获胜的可能性是一样的,这对他们就公平了.26.(1)如图所示; (2)①; ②y =200x 2;(3)当水面宽度为36m ,即x =18m 时,y =1.62m<1.8m , 所以这艘货船不能安全通过该河段.27.(1)∵梯形ABCD 中,AD ∥BC ,∴∠MAD =∠MCB ,∠MDA =∠MBC ,∴ΔMAD ∽ΔMCB ,∴S ΔMAD ∶S ΔMBC =1∶4. ∵种植ΔMAD 地带花费160元,∴S ΔMAD =160÷8=20(m 2),∴S ΔMBC =80(m 2), ∴种植ΔMBC 地带花费640元.(2)设ΔMAD 的高为h 1,ΔMBC 的高为h 2,梯形ABCD 的高为h ,则 S ΔMAD =12×10 h 1=20,∴h 1=4;S ΔMBC =12×10 h 2=80,∴h 2=8,∴h =h 1+h 2=12,∴S 梯形ABCD =12×(AD +BC ) h =180,∴S ΔMAB + S ΔMCD =180-(20+80)=80(m 2).∵160+640+80×12=1760(元),160+640+80×10=1600, ∴应种植茉莉花刚好用完所筹集的资金.(3)点P 在AD 、BC 的中垂线上. 此时,PA=PD ,PB=PC . ∵AB=DC ,∴ΔAPB ≌ΔDPC .设ΔAPD 的高为x ,则ΔBPC 的高为(12-x ), ∴S ΔAPD =12×10 x =5x , S ΔBPC =12×20(12-x )=10(12-x ),由S ΔAPD = S ΔBPC ,即5x =10(12-x ),可得x =8.∴当点P 在AD 、BC 的中垂线上,且与AD 的距离为8cm 时,S ΔAPD = S ΔBPC . 28.(1)由题意得Δ=[-2(m +2)]2-4×2×(2m +5)=0,∴m=∵m >0,∴m.∴点A (0、D0). 设经过A 、D 两点的直线解析式为y =kx +b ,则0,b b ==+⎧⎪⎨⎪⎩解得1,k b ==⎧⎨⎩∴y =x-. (2)作OE ⊥AD 于E ,由(1)得OA=OD,∴AD=∴OE=AE=ED=12AD =∵AB=CD1,∴BE=EC =1,∴OB=OC .在Rt ΔOBE 中,tan ∠OBE=OE BE=ΔOBC 为等边三角形.(3)存在,ΔODC 、ΔOPC 、ΔOPA . 29.(1)依此为11,10,9,8,7(2)S 1=n 2+(12-n )[n 2-(n -1)2]= -n 2+25n -12. ①当n =2时,S 1=34,S 2=110,∴S 1∶S 2=17∶55; ②若S 1=S 2,则有-n 2+25n -12=12×122,即n 2-25n +84=0,解得n 1=4, n 2=21(舍去)。
第 1 页 共 2 页初中创新思维训练(H30)“《数学周报》杯”2011年全国初中数学竞赛试题(A 卷) 一、选择题(共5小题,每小题7分,满分35分)1、设17-=a ,则代数式12612323--+a a a 的值为( ). (A )24 (B )25 (C )1074+ (D )1274+2、对于任意实数a,b,c,d,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为;(a ,b )△(c ,d )=(a c+bd ,ad +b c )。
如果对于任意实数u ,v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为( )。
(A )(0,1) (B )(1,0) (C )(-1,0) (D )(0,-1)3、若0,1>>y x ,且满足y y x yxx xy 3,==,则y x +的值为( )。
(A )1 (B )2 (C )29 (D )211 4、已知点D E ,分别在△ABC 的边AB AC , 上,BE与CD 相交于点F ,设1S S EAD F =四边形,2S S BDF =∆,3S S BCF =∆,4S S CEF =∆,则13S S 与24S S 的大小关系为( ).(A ) 1324S S S S < (B ) 1324S S S S = (C )1324S S S S > (D )不能确定5、设3339912111+++=S ,则4S 的整数部分等于( ). (A )4 (B )5 (C )6 (D )7 二、填空题(共5小题,每小题7分,共35分)6、若关于x 的方程()()0422=+--m x x x 有三个根,且这三个根恰好可以作为一个三角形的三边长,则m 的取值范围是___________.7、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为5的概率是____________.8、如图,已知点B A ,在直线x y =上,过B A ,分别作y轴的平行线交双曲线xy 1=(x >0)于点D C ,.若AC BD 2=,,则224OD OC -的值为__________.9、若211-+-=x x y 的最大值为a ,最小值为b 。
2011年安徽中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1、(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A、﹣1B、0C、1D、2考点:有理数。
分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.解答:解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.点评:理解正数和负数的概念是解答此题的关键.2、(2010•安徽)计算(2x)3÷x的结果正确的是()A、8x2B、6x2C、8x3D、6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
分析:根据积的乘方等于各因式乘方的积和单项式的除法法则解答.解答:解:(2x)3÷x=8x3÷x=8x2.故选A.点评:本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3、(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A、50°B、55°C、60°D、65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
分析:先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.解答:解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.点评:本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A、2.89×107B、2.89×106C、2.89×105D、2.89×104考点:科学记数法—表示较大的数。
初中数学思维训练一、平面图形的运动1、平移2、翻折3、旋转二、分类讨论三、新题型四、函数解析式的确定1、已知函数解析式的确定——待定系数法——关键是求点的坐标(几何法、解析法综合运用)2、未知函数解析式的确定——列方程(直接法、间接法、参数法)利用面积、勾股定理、平行线截得比例线段、相似性(全等)等方法找到等量关系——求函数定义域(解析式法、极限法)五、探索问题千变万化,但少不了对图形的分析和研究,运用数学数形结合的思想,化动为静、化繁为简的转化思想,分类讨论的思想,用几何和代数的方法求出x的值。
PDABCMNE初三数学思维训练题(一)一、平移1. 如图,在Rt △ABC 中,AB =6cm ,BC =4cm ,点D 是斜边AB 上的中点,把△ADC 沿着AB 方向平移1cm 得△EFP ,EP 与FP 分别交边BC 于点H 和点G ,则GH = cm . 2. 如图,在△ACB 中,∠CAB=90°,AC=AB =3,将△ABC 沿直线BC 平移,顶点A 、C 、B 平移后分别记为A 1、C 1、B 1,若△ACB 与△A 1C 1B 1重合部分的面积2,则CB 1= .3. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 扫过的面积为 cm 2 .二、翻折4. 如图所示,将边长为2的正方形纸片折叠,折痕为EF ,顶点A 恰好落在CD 边上的中点P 处,B 点落在点Q 处,PQ 与CF 交于点G . 设C 1为△PCG 的周长,C 2为△PDE 的周长,则C 1 :C 2 = .5. 如图,Rt △ABC 中,∠C=90°,AC=3,3cot 4A =,点D 、E 分别是边BC 、AC 上的点,且∠EDC=∠A ,将△ABC 沿DE 对折,若点C 恰好落在边AB 上,则DE 的长为 .6. 如图,在ABC ∆中,MN ∥AC ,直线MN 将ABC ∆分割成面积相等的两部分.将BMN ∆沿直线MN 翻折,点B 恰好落在点E 处,联结AE ,若AE ∥CN ,则:AE NC = .H GA BCP AC BEBC三、旋转7. 如图,在Rt △ABC 中,90ACB ∠=︒,点O 在AB 上,且6CA CO ==,1cos 3CAB ∠=,若将△ABC 绕点A 顺时针旋转得到Rt △AB’C’,且C’落在CO 的延长线上,联结'BB 交CO 的延长线于点F ,则BF = .8. 如图,在ABC ∆中,90C ∠=,10AB =,3tan 4B =,点M 是AB 边的中点,将ABC ∆绕着点M 旋转,使点C 与点A 重合,点A 与点D 重合,点B 与点E 重合,得到DEA ∆,且AE 交CB 于点P ,那么线段CP 的长是 .9. 如图,将△ABC 绕顶点C 旋转至△DEC 位置,使顶点D 恰好落在边AB 上,已知AC=3,BC=4,︒=∠90ACB ,则=∠BED cot _______________.四、分类讨论10. 已知等腰三角形的周长为20,一个内角的余弦值为23,那么这个等腰三角形的腰长等于 .11. 抛物线23y ax bx =++的顶点在坐标轴上,则a = .12. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的一点(D 、E与端点不重合),如果△CDE 与△ABC 相似,那么CE =五、新题型13. 若等腰三角形的顶角为θ,则定义msad nθ=,其中m 、n 分别表示这个等腰三角形的底边长和腰长,请根据定义推算: ① 若已知锐角θ满足4tan 3θ=,则sad θ= ; ②36sad ︒= . 14. 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n 个图案中白色正方形的个数为___________.C ABOF 'C 'B EDCBA…… 第n 个15. 现规定一种新的运算“*”:b a b a *=,如23239*==,则132*=( ) (A ) 18 (B ) 8 (C ) 16 (D ) 32初三数学思维训练题(二)一、函数型综合题1.已知抛物线23y ax bx =++与x 的交点为A (1,0)、B (3,0),与y 轴交于点C. (1)求出抛物线的解析式及顶点P 的坐标;(2)若点M 在抛物线的对称轴上,且∠AMP=∠ACB ,求点M 的坐标;(3)若点G 在线段OC 上,且OG=2CG ,抛物线的对称轴与x 轴相交于点E ,点F 为射线AG 上一点,且△ABF 与△AEG 相似,求出点F 的坐标;(4)设点Q 是抛物线上的一个动点,当点Q 在第四象限时,△ACQ 的面积为158,求点Q 的坐标.二、几何型综合题1、已知:点A 、B 都在半径为9的圆O 上,P 是射线OA 上一点,以PB 为半径的圆P 与圆O 相交的另一个交点为C ,直线OB 与圆P 相交的另一个交点为D ,2cos 3AOB ∠=. (1)求:公共弦BC 的长度;(2)如图,当点D 在线段OB 的延长线上时,设AP=x ,BD=y ,求y 关于x 的函数解析式,并写出它的定义域;(3)如果直线PD 与射线CB 相交于点E ,且△BDE 与△BPE 相似,求线段AP 的长.OAPB CD(第(2)小题图)H参考答案:初三数学思维训练题(一)(1)23; (2) 或 ; (3) 16; (4) 4:3; (5) 12548; (6) 1 ; (7) 14; (8)74; (9) 724; (10) 6 或; (11) 3或7 或-1; (12) 2或3625或258;(13)(14) )5n+3 ; (15) A. 初三数学思维训练题(二) 一、函数型综合题(1)243y x x =-+;2(2)1y x =--;顶点P (2,-1); (2)M 1(2,2)M 2(2,-2);(3)(-1,4)或34(,)55 ;(4)53(,)24-二、几何型综合题(1)BC =(2)y 关于x 的函数解析式为463y x =-,定义域为92x >.(3)线段AP 的长为9292.---精心整理,希望对您有所帮助。
深圳市2011年初中毕业生学业考试数学试卷1、说明,答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定位置上,将条形码粘贴好。
2、全卷分两部分,第一部分为选择题,第二部分为非选择题,共4页,满分100分,考试时间120分钟。
3、本卷试题,考生必须在答题卡上按规定作答;在试卷上、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠。
第一部分 选择题(本部分共12小题,每题3分,共36分.每小题4个选项,只有一个是正确的)1、12-的相反数是 A. 12- B. 12C. 2-D.22、如图1所示的物体是一个几何体,其主视图是3、今年我市参加中考的毕业生学业考试的总人数约为56000人,这个数据用科学计数法表示为A.5.6×103B.5.6×104C.5.6×105D.0.56×1054、下列运算正确的是 A.235xx x += B.222()x y yx =++ C.236xx x ⋅= D.()362x x =5、某校开展为“希望小学”捐书活动,以下是八名学生的捐书册数 2 3 2 2 6 7 5 5,这组数据的中位数是A.4B.4.5C.3D.26、一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是A.100元B.105元C.108元D.118元7、如图2,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是8、如图3是两个可以自由转动的转盘,转盘各被等分成三 个扇形,分别标上1、2、3和6、7、8这6个数字,如果同 时转动这两个转盘各一次(指针落在等分线上重转),转盘停 止后,指针指向字数之和为偶数的是 A.12 B. 29 C. 49 D. 139、已知a 、b 、c 均为实数,且a>b ,c ≠0,下列结论不一定正确的是 A. a c b c +>+ B. c a c b -<- C.22abcc>D. 22ab ab >>10、对抛物线y =-x 2+2x -3而言,下列结论正确的是 A.与x 轴有两个交点 B.开口向上C.与y 轴交点坐标是(0,3)D.顶点坐标是(1,2) 11、下列命题是真命题的有①垂直于半径的直线是圆的切线 ②平分弦的直径垂直于弦③若12x y =⎧⎨=⎩是方程x -ay=3的解,则a=-1④若反比例函数3y x =-的图像上有两点(12,y 1)(1,y 2),则y 1 <y 2 A.1个 B.2个 C.3个 D.4个12、如图4,△ABC 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE 的值为 A.3:1 B. 2:1 C.5:3 D.不确定第二部分 非选择题填空题(本题共4小题,每题3分,共12分)13、分解因式:a 3-a= .14、如图5,在⊙O 中,圆心角∠AOB=120º,弦AB=23cm ,则OA= cm. 15、如图6,这是边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,第n 个图形的周长为 .鸹斃鹁剥态酝蛮骠曄濼絀峄詰极嘮狈萨缎寫龚渎鶘慫賑聩颡嘜镛腊狯颇讴鸲绽叶躓滠鍤鐋16、如图7,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标为(0,2),直线AC 的解析式为112y x =-,则tanA 的值是 .咙萦筚财殺属篩谭钬幀腻辊詎噯医櫪渌约鐮铭解答题(本题共七小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17、(5分)()013520112π-︒+---18、(6分)解分式方程:23211x x x +=+-19、(7分)某校为了解本校八年级学生的课外阅读喜好,随即抽取部分该校八年级学生进行问卷调查(每人只选一种书籍),图8是整理数据后画的两幅不完整的统计题,请你根据图中的信息,解答下列问题(1)这次活动一共调查了 名学生.(2)在扇形统计图中,“其它”所在的扇形圆心角为 度. (3)补全条形统计图(4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有 人.20、(8分)如图9,在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB并延长交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图10,连接CE,⊙O的半径为5,AC长为4,求阴影部分面积之和.(保留∏与根号)21、(8分)如图11,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图12,再折叠一次,使点D与点A重合,的折痕EN,EN角AD于M,求EM的长.22、(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台相同型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台,运往B馆14台,运往A、B两馆运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最少,最少为多少元?22、(9分)如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.深圳市2011 年初中毕业生学业考试数学试卷参考答案第一部分:选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C B D A A B C D D C A第二部分:填空题13、(1)(1)a a a +-14、415、2n + 16、13解答题17、解:原式=618、解:方程两边同时乘以:(x +1)(x -1),得: 2x(x -1)+3(x +1)=2(x +1)(x -1) 整理化简,得 x =-5经检验,x =-5是原方程的根原方程的解为:x =-5(备注:本题必须验根,没有验根的扣2分)19、(1)200 (2)36 (3)如图1 (4)180(1)证明:如图2,连接AB 、BC , ∵点C 是劣弧AB 上的中点 ∴CA CB = ∴CA =CB 又∵CD =CA ∴CB =CD =CA ∴在△ABD 中,CB=12AD ∴∠ABD =90° ∴∠ABE =90° ∴AE 是⊙O 的直径(22)解:如图3,由(1)可知,AE 是⊙O 的直径 ∴∠ACE =90°∵⊙O 的半径为5,AC =4 ∴AE =10,⊙O 的面积为25π在Rt △ACE 中,∠ACE =90°,由勾股定理,得:CE=22221AB AC -=∴11422142122ACE S AC CE ∆=⨯⨯=⨯⨯= ∴112525421421222O ACE S S S ππ∆=-=⨯-=-⊙阴影21、(1)证明:如图4,由对折和图形的对称性可知, CD =C ′D ,∠C =∠C ′=90°在矩形ABCD 中,AB =CD ,∠A =∠C =90° ∴AB =C ’D ,∠A =∠C ’ 在△ABG 和△C ’DG 中,∵AB =C ’D ,∠A =∠C ’,∠AGB =∠C ’GD ∴△ABG ≌△C ’DG (AAS ) ∴AG =C ’G(2)解:如图5,设EM =x ,AG =y ,则有: C ’G =y ,DG =8-y , DM=12AD=4cm 在Rt △C ’DG 中,∠DC ’G =90°,C ’D =CD =6, ∴222''C G C D DG += 即:2226(8)y y +=- 解得: 74y = ∴C ’G =74cm ,DG =254cm 又∵△DME ∽△DC ’G∴DM ME DC CG =, 即:476()4x= 解得:76x =, 即:EM =76(cm )∴所求的EM 长为76cm 。
中考2011年数学全真模拟试题(三)一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1、如果a与-2互为倒数,那么a是()A.-2B.-错误!未找到引用源。
C.错误!未找到引用源。
D.22、据统计,2008“超级男生”短信投票的总票数约327 000 000张,将这个数写成科学数法是()A.3.27×106B.3.27×107C.3.27×108D.3.27×1093、如图所示的图案中是轴对称图形的是()4、已知α为等边三角形的一个内角,则cosα等于()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5、已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36º,则该圆锥的母线长为()A.100cmB.10cmC. 错误!未找到引用源。
cmD.错误!未找到引用源。
cm6、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间错误!未找到引用源。
与山高错误!未找到引用源。
间的函数关系用图形表示是()A B C D7、为了弘扬雷锋精神,某中学准备在校园内建造一座高2m的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。
如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m ,参考数据:错误!未找到引用源。
≈1.414,错误!未找到引用源。
≈1.732,错误!未找到引用源。
≈2.236)是( )A.0.62mB.0.76mC.1.24mD.1.62m8、若反比例函数错误!未找到引用源。
的图象经过点(-1,2),则这个函数的图象一定经过点( )A 、(2,-1)B 、(错误!未找到引用源。
,2)C 、(-2,-1)D 、(错误!未找到引用源。
【在初中数学教学中培养学生的创新思维】初中数学创新思维题和答案一、营造宽松氛围,培养创新意识愉悦的心理是课堂创新的有机土壤。
教师用爱心为学生创设一个民主、和谐的学习氛围,成为学生学习的合作者、参与者、引导者,对问题的分析、讨论不定框框,鼓励学生积极思维,敢于质疑,鼓励“挑刺”和求异,从而激活学生创新思维的灵感。
在学习比较线段大小时,教师提出:今天请你们一起来和老师比比身高,你们愿意吗?这一问题使教师很快与学生拉近距离,为心灵的交流打下基础。
接着又提出:谁的身体要高一些,你是怎么知道的。
这时,学生七嘴八舌讨论开了。
有的说通过目测,有的说用测量的方法。
这种知心式的交流,学生没有压力,可以放开思维的闸门。
老师接着提出:你能总结一下方法吗?学生在这种愉快交流中总结出结论:一是通过目测;二是通过工具测量;三是利用参照物。
学生在讨论交流中,相互补充,相互提示,激活学生的思维。
老师再提出:如果把你的身高用线段AB表示,教师的身高用线段CD表示,那么你会比较线段的大小吗?说给老师听听。
——老师用亲切的语言营造一个和谐的氛围,学生表现为思维灵活,为进行数学创新思维训练作好了准备。
二、诱发创新动机,培养创新个性在数学教学过程中,应有意识让学生去重复人类探索知识的过程,让学生在动手操作、实践中发现问题、探索规律,满足学生的好奇心,诱发学生创新动机,形成创新个性。
在学习圆周角定理时,教师让学生先画一个圆,在圆上任意确定两个点,标出该段弧,作出该弧所对的圆周角、圆心角,再量一量角的大小。
学生有了感性认识,为上升到理性认识做好了准备。
这时教师提出:这两个角有什么联系?你发现了什么?先独立思考,再小组交流,从而得到圆周角定理。
这个过程,让学生认识到生活中到处都有规律,只要我们善于动手、观察、思考,就会发现。
但为什么会有这样的等量关系?教师再提出:圆周角的两边与该弧所对的弦组成一个三角形与圆心的位置关系有几种?学生通过画图观察、交流,找到三种位置关系:一是圆心在三角形内,二是圆心在三角形外部,还有一种特殊的是圆心在三角形一边上,从而引入圆周角定理的证明。
第 1 页 共 2 页初中创新思维训练(H13)第二十二届“希望杯”全国数学邀请赛 初二 第一试2011年3月13日 上午8:30至10:00 得分 一、选择题(每小题4分,共40分。
)1、 将a 千克含盐10﹪的盐水配制成含盐15﹪的盐水,需加盐x 千克,则由此可列出方程( )(A )()()()%151%101-+=-x a a (B )()%15%10⋅+=⋅x a a (C )%15%10⋅=+⋅a x a (D )()()%151%101-=-x a 2、一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加a ﹪,则所用的时间减少b ﹪,则a 、b 的关系是( )(A )%1100a a b += (B )%1100a b += (C )a a b +=0 (D )a ab +=1001003、当1≥x 时,不等式|2|1|1|--≥-++x m x x 恒成立,那么实数m 的最大值是( )(A )1. (B )2。
(C )3。
(D )4。
4、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数12-=x y 与k kx y +=的图象的交点是整点,则k 的值有( )个(A )2. (B )3。
(C )4。
(D )5。
5、满足不等式6|12|2≤-≤x 的所有整数x 的和是( ) (A )8. (B )5。
(C )2。
(D )0。
6、若三角形的三条边的长分别为,,,c b a 且03222=-+-b c b c a b a ,则这个三角形一定是( )三角形。
(A )等腰 (B )直角 (C )等边 (D )等腰直角 7、如图,点C 在线段BG 上,四边形ABCD 是一个正方形,AG 分别与BD 、CD 相交于点E 和F ,如果AE=5,EF=3,则FG=( )(A )316。
(B )38(C )4。
(D )5。
8、1216-能分解成n 个质因数的乘积,n 的值是( ) (A )6. (B )5。
2011年中考数学创新思维训练(三)
一、填空题(每小题3分,共15分) 1、EFGH 是矩形
ABCD 的内接矩形,且1:3:=FG EF ,1:2:=BC AB ,则=HE AH :
2、某市初三年级举行以班为单位的基层数学团体赛,在各校预赛的基础上,每校选派一个班级中25名同学参加决赛,实验初中三(2)班、三(6)班为该校的候选班级,他们预赛的成绩如下:
得分 50 60 70 80 90 100 人数
三(2) 4 5 10 8 14 9 三(6)
4
4
16
2
12
12
已经算得两个班的平均分都是80分
①利用你学的统计知识,比较 班的实力更均衡些. ②你认为应派 班的25名同学参加决赛. 3、数轴上表示1、
2的对应点分别为A 、B ,点B 关于点A 的对称点C 所示的数是
4、在平面直角坐标系中,直线k x y +-=与双曲线x
y 1=只有一个交点,则k 的值为
5、如图,圆木的横截面圆半径均为r ,则将这七根圆木用绳子扎住,每周所需绳子的长度为 二、(共7分)
如图,AM 是⊙O 的直径,AM BC ⊥,垂足为N ,CD 是弦,交AM 和AB
于点E 、F .
①如果NM EN
=,求证:AB CD ⊥.
②如果弦CD 交AB 于点F ,且AB CD
=,求证:ED EF CE ⋅=2.
三、(共8分)
已知关于x 的方程0127)1(222
=+--+-+b a a x a x
有两个相等的实数根,且满足02=-b a .
①利用根与系数的关系判断这两根的正负情况. ②若将127)1(222+--+-+=b a a x a x y 图象沿对称轴向下移动3个单位,
写出顶点坐标和对称轴方程.
A
B
C
D E F
M
N O
四、(11分) 如图所示,52=AB ,2tan =∠ABC ,5
3
cos =
∠ACB ①求过
A 、
B 、
C 三点的二次函数解析式.
②若D 是AB 的中点,试判断点D 在这条二次函数的图象上吗?并说明理由. ③若y 随x 的增大而减小,求x 的取值范围.
五、(9分)
正方形ABCD 中,有一直径为BC 的半圆,cm BC 2=,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以s cm /1的速度向点A 运动,点F 沿折线C D A --以s cm /2的速度向点C 运动,设点E 离开B 的
时间为t 秒
①当t 为何值时,线段EF 与BC 平行?
②设21<<t ,当t 为何值时,EF 与半圆相切?
③当21<≤t 时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若变化,请说明理
由;若不发生变化,请给予证明,并求PC AP ⋅的值.
A B
C
D
E
F
P
A B
C
D
E
F
A B
C
D E
F
A
B
C
O
3,参考答案
一、1、1:5;2、①二班②六班;3、22-;4、2±=k ;5、r r π212+
二、证明:①连结BM ,
∵AM 是⊙O 的直径,∴︒=∠90ABM
∵AM BC ⊥,∴CN BN =,BNM ENC ∠=∠ 又NM EN =,∴Rt △CEN ≌Rt △BMN ∴ECB MBC ∠=∠
又∵AM BC ⊥,∴MC BM =,∴MBC A ∠=∠ ∴EBC A ∠=∠ 又AEF NEC ∠=∠ 在△AEF 和△CNE 中 ︒=∠=∠90AFE ENC 即AB CD ⊥
②连结BD 、BE 、AC
∵点E 是BC 垂直平分线AM 上一点,∴EC BE = ∵AB CD =
∴AB CD =,∴BC AD =,∴BDC ACD ∠=∠
又
AE AE AC AB ==,
∴△ABC ≌△ACE
∴BDC ACD ABE ∠=∠=∠
BED ∠是公共角
∴△BED ∽△FEB ,
∴ED EF BE ⋅=2
∴ED EF CE
⋅=2
三、①解:由0)127(4)3(422=+----=∆
b a a a
得03=
-+b a ,又02=-b a 得
2,1==b a
设这个方程的解为1x 、2x 则
04)3(221>=--=+a x x
∴ 1x 、2x 均为正根
② ∵ 2,1==b a
∴ 127)1(222+--+-+=b a a x a x y 可化为:
442+-=x x y ,将此图象向下移动2个单位,得
3)2(2--=x y
顶点)3,2(-,对称轴为2=x
四、解:①
)4,0(A ,)0,2(-B ,)0,3(C ∴
43
2
322++-=x x y
②∵D 是AB
的中点,∴)2,1(-D
∵4)1(3
2
)1(322
2+-⨯+-⨯-≠
∴点D 一在这条二次函数的图象上
③∵
625)21(322+--=x y ,032<-=a 开口向下
∴当2
1
>x 时,y 随x 的增大而减小
五、解:①点E 离开点B t 秒,t BE =,t CF 24-=
要使EF 与BC 平行,则应CF BE =
∴t t 24-=,得3
4
=t
②EF 与半圆相切,作AB FG ⊥于G
在Rt △EFG 中,∵2.22
EF FG EG =+
∴222)24(2)43(t t t
-+=+-
∴2
22+=
t (秒)
③当21<≤t 时,点P 的位置不会发生变化
证明:E 、F 出发t 秒时,t BE = t AE -=2,t CF 24-= ∴
2
1
2442=--=t CF AE 又∵CD AB //,∴△AEP ∽△CFP ∴
2
1
==CF AF PC AP 因此,当21<≤t 时,点P 的位置与t 的取值无关,点P 的位置不会发生变化。