DSP技术实验报告
- 格式:doc
- 大小:1002.50 KB
- 文档页数:38
dsp原理与应用实验报告总结DSP(Digital Signal Processing)数字信号处理是利用数字技术对信号进行处理和分析的一种方法。
在本次实验中,我们探索了DSP的原理和应用,并进行了一系列实验以验证其在实际应用中的效果。
以下是对实验结果的总结与分析。
实验一:数字滤波器设计与性能测试在本实验中,我们设计了数字滤波器,并通过性能测试来评估其滤波效果。
通过对不同类型的滤波器进行设计和实现,我们了解到数字滤波器在信号处理中的重要性和应用。
实验二:数字信号调制与解调本实验旨在通过数字信号调制与解调的过程,了解数字信号的传输原理与方法。
通过模拟调制与解调过程,我们成功实现了数字信号的传输与还原,验证了调制与解调的可行性。
实验三:数字信号的傅里叶变换与频谱分析傅里叶变换是一种重要的信号分析方法,可以将信号从时域转换到频域,揭示信号的频谱特性。
本实验中,我们学习了傅里叶变换的原理,并通过实验掌握了频谱分析的方法与技巧。
实验四:数字信号的陷波滤波与去噪处理陷波滤波是一种常用的去除特定频率噪声的方法,本实验中我们学习了数字信号的陷波滤波原理,并通过实验验证了其在去噪处理中的有效性。
实验五:DSP在音频处理中的应用音频处理是DSP的一个重要应用领域,本实验中我们探索了DSP在音频处理中的应用。
通过实验,我们成功实现了音频信号的降噪、均衡和混响处理,并对其效果进行了评估。
实验六:DSP在图像处理中的应用图像处理是另一个重要的DSP应用领域,本实验中我们了解了DSP在图像处理中的一些基本原理和方法。
通过实验,我们实现了图像的滤波、边缘检测和图像增强等处理,并观察到了不同算法对图像质量的影响。
通过以上一系列实验,我们深入了解了DSP的原理与应用,并对不同领域下的信号处理方法有了更深刻的认识。
本次实验不仅加深了我们对数字信号处理的理解,也为日后在相关领域的研究与实践提供了基础。
通过实验的结果和总结,我们可以得出结论:DSP作为一种数字信号处理的方法,具有广泛的应用前景和重要的实际意义。
DSP第六、七次实验报告1. 实验目的:(1)进一步熟悉Matlab实验环境和语言。
(2)熟悉各种滤波器的结构及Matlab实现语言。
(3)掌握用冲击响应不变法和双线性变换法设计IIR滤波器的方法。
(4)掌握用窗函数法和频率抽样法设计FIR滤波器的方法。
2. 实验内容及总结:1.滤波器结构:(1)IIR滤波器各种结构1、直接型结构例如直接型滤波器系统函数, 则有系数向量a=[1,a1,a2,a3],b=[b0,b1,b2], 利用:Y=filter[b,a,x]求信号x(n)通过此滤波器的输出。
2、由系统函数或差分方程求系统的二阶分式(含一阶分式)的级联结构将例如的系统函数重写为二阶分式节的级联型, 利用:[sos,G]=tf2sos(b,a)3、由二阶分式的级联结构转换成系统函数的直接结构是第二步的逆运算, 调用函数:[b,a] = sos2tf(sos)可以求得系数向量a,b, 从而得到H(z)4、由系统函数求部分分式展开(留数及其极点计算)即求z反变换的部分分式展开法, 利用:[r,p,c]=residuez(b,a)其中极点为p, 留数为r, 直接项系数为c。
5、由r,p,c求系统函数即第4步的逆运算, 利用:[b,a]=residuez(r,p,c)6、由直接型结构转换为并联型结构需开发函数:[C,B,A]=tf2par(b,a)其中, b,a为直接型的系数向量, C,B,A为并联型实系数向量, 基本思想是: 1.反复调用[r,p,c]=residuez(b,a)求出极点及留数;2.利用cplxpair函数把极点、留数对按复共轭极点-留数对, 实极点-留数对的顺序排列;3.开发cplxcomp函数, 保证极点和留数相互对应;4.调用[b,a]=residuez(r,p,c)计算并联二阶节的分子分母。
7、由并联型结构转换成直接型结构开发函数:[b,a]=par2tf(C,B,A)为[C,B,A]=tf2par(b,a)的逆函数。
实验一: 闪灯实验熟悉DSP 软硬件测试系统实验目的1.了解SHARC 系列高性能数字信号处理器的程序开发过程和编程语言;2.熟悉集成开发工具VisualDSP++, 学会使用VisualDSP++进行SHARC 系列ADSP 的程序开发、编译与调试;3.掌握SHARC 系列ADSP 的程序加载设计和加载过程。
实验内容利用波形产生信号板, 结合FPGA 编程技术和程序编程器, 编写测试ADSP21065L 和FPGA 之间硬件连接的应用程序, 同时完成应用程序的加载和脱机操作, 在信号指示灯“HL2”上产生可调周期的脉冲信号, “点亮”与“熄灭”指示灯HL2。
实验要求通过DSP 编程, 在其FLAG11引脚上模拟如下波形的周期信号:要求:(1) 500H T ms >,500L T ms >. (2) 并用示波器查看波形, 测量信号周期。
实验步骤1. 熟悉电路图, 清楚波形产生电路板ADSP21065L 与可编程FPGA 器件之间的连接关系;2. 编写FPGA 程序。
在FPGA 内部将ADSP21065L 的标志引脚FLAG11(引脚号26)设置为输出, 作为FPGA 的输入信号, 在FPGA 内部编程将该信号直接输出在发FPGA 的37引脚号上, 设置37引脚为输出信号, 驱动板上的HL2 LED 指示灯;3. 启动VisualDsp++4.5,选择project 工程选项菜单, 创建一个名称为Test.dpj 的工程文件, 选择处理器的型号为ADSP-21065L ;4.弹出一个对话框, 选择是否需要加入VDSP kernel ,选择“NO ”;5. 在工程中加入以下参考源文件:\exp1\test(boot)\ boot1.asm 和boot1.ldf 6.编译, 链接调试, 生成可执行文件。
7.运行程序, 可以看到波形发生电路板上的指示灯“HL2”不断闪动。
8. 利用示波器观测系统时钟,并测量产生信号的波形和周期。
实验一 信号系统及系统响应一、实验目的1、 熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
2、 熟悉离散信号和系统的时域特性。
3、 熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、 掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。
二、实验原理(一)连续时间信号的采样采样是指按一定的频率从模拟信号抽样获得数字信号。
采样是从连续时间信号到离散时间信号的过渡桥梁。
对一个连续时间信号进行理想采样的过程可以表示为该信号的一个周期冲激脉冲的乘积,即()()()ˆa a x t x t M t =(1)其中连续信号的理想采样,是周期冲激脉冲()()n M t t n T d +=-=-å(2)它也可以用傅立叶级数表示为:1()s jm tn M t eT+W =-=å(3)其中T 为采样周期,Ω是采样角频率。
设是连续时间信号的双边拉氏变换,即有:()()ata a X s x t edt+--=ò(4)此时理想采样信号的拉氏变换为()ˆˆ()()1ˆ()1ˆ()1()s s ataa jm tsta m s jm ta m a s m X s x t e dtxt ee dtTxt e dtT X s jm T+--++W -=--++--W =- -++=--====-W òåòåòåò(5)作为拉氏变换的一种特例,信号理想采样的傅立叶变换1ˆ()[()]aa s m X j X j m T+=-W =W-W å(6)由式(5)和式(6)可知,信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期等于采样频率。
根据Shannon 取样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频谱混淆现象。
DSP实验报告(二)实验二应用FFT对信号进行频谱分析一、实验目的1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT算法及其程序的编写。
2、熟悉应用FFT对典型信号进行频谱分析的方法。
3、了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
二、实验原理与方法①一个连续信号的频谱可以用它的傅立叶变换表示为+ Xa(jW)=-jWtx(t)edtòa-如果对该信号进行理想采样,可以得到采样序列x(n)=xa(nT)同样可以对该序列进行z变换,其中T为采样周期X(z)=+ x(n)z-n+ -令z为ejw,则序列的傅立叶变换X(ejw)=x(n)ejwn-其中ω为数字频率,它和模拟域频率的关系为w=WT=W/fs式中的是采样频率。
上式说明数字频率是模拟频率对采样率的归一化。
同模拟域的情况相似。
数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。
序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系。
1X(e)=Tjw+ - w-2pXa(j)T即序列的频谱是采样信号频谱的周期延拓。
从式可以看出,只要分析采样序列的谱,就可以得到相应的连续信号的频谱。
注意:这里的信号必须是带限信号,采样也必须满足Nyquist定理。
在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。
无限长的序列也往往可以用有限长序列来逼近。
有限长的序列可以使用离散傅立叶变换。
当序列的长度是N时,定义离散傅立叶变换为:X(k)=DFT[x(n)]=其中W=e2pj-NN-1n=0WNkn它的反变换定义为:1x(n)=IDFT[X(k)]=N根据式和,则有N-1n=0X(k)WNknX(z)|z=Wnk=NN-1n=0x(n)WNnk=DFT[x(n)]j2pN可以得到X(k)2pk的点,就NN是将单位圆进行N等分以后第k个点。
所以,X(k)是z变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。
我不应把我的作品全归功于自己的智慧,还应归功于我以外向我提供素材的成千成万的事情和人物!——采于网,整于己,用于民2021年5月12日dsp实验报告总结篇一:dsp课程设计实验报告总结DSP课程设计总结(XX-XX学年第2学期)题目:专业班级:电子1103 学生姓名:万蒙学号:指导教师:设计成绩:XX 年6 月目录一设计目的----------------------------------------------------------------------3 二系统分析----------------------------------------------------------------------3 三硬件设计3.1 硬件总体结构-----------------------------------------------------------3 3.2 DSP模块设计-----------------------------------------------------------4 3.3 电源模块设计----------------------------------------------------------4 3.4 时钟模块设计----------------------------------------------------------5 3.5 存储器模块设计--------------------------------------------------------6 3.6 复位模块设计----------------------------------------------------------6 3.7 JTAG模块设计--------------------------------------------------------7 四软件设计4.1 软件总体流程-----------------------------------------------------74.2 核心模块及实现代码---------------------------------------8五课程设计总结-----------------------------------------------------14一、设计目的设计一个功能完备,能够独立运行的精简DSP硬件系统,并设计简单的DSP控制程序。
dsp实验报告实验一:CCS入门实验实验目的:1. 熟悉CCS集成开发环境,掌握工程的生成方法;熟悉SEED-DEC643实验环境; 掌握CCS集成开发环境的调试方法。
2.学习用标准C 语言编写程序;了解TI CCS开发平台下的C 语言程序设计方法和步骤; 熟悉使用软件仿真方式调试程序。
3. 学习用汇编语言编写程序; 了解汇编语言与 C 语言程序的区别和在设置上的不同;了解TMS320C6000 汇编语言程序结果和一些简单的汇编语句用法学习在CCS 环境中调试汇编代码。
4. 在了解纯C 语言程序工程和汇编语言程序工程结构的基础上,学习在C 工程中加入汇编编程的混合编程方法; 了解混合编程的注意事项;理解混合编程的必要性和在什么情况下要采用混合编程5. 熟悉CCS集成开发环境,掌握工程的生成方法; 熟悉SEED-DEC643实验环境;掌握CCS集成开发环境的调试方法。
实验原理:CCS 提供了配置、建立、调试、跟踪和分析程序的工具,它便于实时、嵌入式信号处理程序的编制和测试,它能够加速开发进程,提高工作效率。
CCS 提供了基本的代码生成工具,它们具有一系列的调试、分析能力序。
使用此命令后,要重新装载.out 文件后,再执行程序。
使用 CCS常遇见文件简介1. program.c: C 程序源文件;2. program.asm: 汇编程序源文件;3. filename.h: C 程序的头文件,包含DSP/BIOS API模块的头文件;4. filename.lib: 库文件;5. project.cmd: 连接命令文件;6. program.obj: 由源文件编译或汇编而得的目标文件;7. program.out: 经完整的编译、汇编以及连接后生成可执行文件; 8. program.map: 经完整的编译、汇编以及连接后生成空间分配文件; 9.project.wks: 存储环境设置信息的工作区文件。
P.S(CMD文件中常用的程序段名与含义1. .cinit 存放C程序中的变量初值和常量;2. .const 存放C程序中的字符常量、浮点常量和用const声明的常量;3. .text 存放C程序的代码;4. .bss 为C 程序中的全局和静态变量保留存储空间;5. .far 为C 程序中用far声明的全局和静态变量保留空间;6. .stack 为 C 程序系统堆栈保留存储空间,用于保存返回地址、函数间的参数传递、存储局部变量和保存中间结果;7. .sysmem 用于 C 程序中malloc、calloc 和 realloc 函数动态分配存储空间。
电子科技大学电子工程学院标准实验报告(实验)课程名称DSP技术实验题目开发环境及流水灯电子科技大学实验报告1.实验目的1.熟悉BF609开发板WL-BF609-EDU;2.熟悉CCES开发平台的使用;3.掌握CCES集成开发环境的基本操作和常用功能;4.掌握CCES工程的创建、程序编写、编译和调试;5.熟悉CCES集成开发环境工具的使用。
2.实验环境1.预装开发环境Cross Core Embedded Studio 1.0.2的计算机;2.BF609开发板一套;3.ADDS HPUSB-ICE仿真器一套。
3.实验内容1.了解BF609开发板WL-BF609-EDU;2.学习CCES集成开发环境的基本操作和常用功能;3.改写程序,实现开发板上的流水灯显示。
4.实验原理1.BF609开发板WL-BF609-EDU简介·CPUADSP-BF609 2个Blackfin内核,性能达500MHz/1000MMAC552K字节的片内SRAM,每个内核148KB的L1 SRAM流水线视觉处理器(PVP),支持HD存储器·存储器NOR FLASH:SST38VF3201 32MbitSPI FLASH:AT45DB161D 16MbitDDR2 SDRAM:MT47H64M16HR-25E 128MB ·LCD显示屏:480x272 TFT LCD TM043NDH02·视频:视频解码:CH7024通过i2c总线控制·C MOS SENSOR可连接CMOS OV9650摄像头进行视频采集可连接CMOS OV3640摄像头进行视频采集通过EPPI与CMOS MODULE链接,通过TWI控制摄像头·音频SSM2603音频Codec24-bit立体声模数和数模转换器高效率耳机放大器立体声线路输入和单声道麦克风输入音频采样速率最高达96kHz·USB OTGMini USB支持USB2.0串行接口:两个RS232串行接口MMC接口:可外接SD存储卡Link Port接口链路端口可连接到其他DSP或处理器的Link Port双向端口具有8条数据线、1条应答线和1条时钟线·键盘:4*4键盘·外部扩展口:4个扩展TWI接口、16-PIN扩展GPIO接口·其他:8个可编程LED灯·JTAG调试接口系统调试单元(SDU)通过JTAG接口提供IEEE-1149.1支持通过仿真器与PC机相连,实现JTAG调试功能ES开发环境简介CrossCore® Embedded Studio是针对ADI公司Blackfin®和SHARC®处理器系列的一流集成开发环境(IDE)。
DSP实验报告一引言本实验旨在通过实际操作,探索数字信号处理(DSP)的基本概念和技术。
DSP是一种通过数字计算来处理连续时间信号的技术,被广泛应用于音频处理、图像处理、通信系统等领域。
本实验将重点介绍数字信号的采样、量化和离散化过程,并通过实际编程实现。
实验过程1. 信号的采样1.1 信号的定义在DSP领域,信号是指随着时间变化的某种物理量,可以是声音、图像等。
我们首先需要定义一个连续的信号,用于采样和处理。
在本次实验中,我们选择了一个简单的正弦信号作为示例:x(t) = A \\sin(2\\pi f t)其中,A表示幅值,f表示频率,t表示时间。
1.2 采样过程为了将连续信号转换为离散信号,我们需要对信号进行采样。
采样是指在一定时间间隔内对连续信号进行测量。
我们可以通过模拟采样器来模拟采样过程。
在本实验中,我们选择了采样频率为100Hz,即每秒采样100次。
使用Python编程实现采样过程:import numpy as np# 信号参数设置A =1f =10# 采样频率设置fs =100# 采样点数设置N =100# 生成时间序列t = np.arange(N) / fs# 生成采样信号x = A * np.sin(2* np.pi * f * t)上述代码中,我们通过调整A和f的值来模拟不同的信号。
生成的信号将存储在x变量中,可以用于后续处理。
2. 信号的量化2.1 量化过程量化是指将连续信号的幅值转换为离散的数值。
在实际应用中,我们通常使用有限位数来表示信号的幅值。
常用的量化方式有线性量化和非线性量化。
在本实验中,我们选择了线性量化方式。
具体的量化过程可以通过下列Python代码实现:import math# 量化位数设置bits =8# 量化步长计算step_size =2* A / (2** bits -1)# 信号的量化x_quantized = np.round(x / step_size) * step_size上述代码中,我们通过调整bits的值来控制量化位数。
dsp实验报告DSP实验报告一、引言数字信号处理(Digital Signal Processing,DSP)是一种对数字信号进行处理和分析的技术。
它在许多领域中被广泛应用,如通信、音频处理、图像处理等。
本实验旨在通过实际操作,探索和理解DSP的基本原理和应用。
二、实验目的1. 理解数字信号处理的基本概念和原理;2. 掌握DSP实验平台的使用方法;3. 进行一系列DSP实验,加深对DSP技术的理解。
三、实验器材和软件1. DSP开发板;2. 电脑;3. DSP开发软件。
四、实验内容1. 实验一:信号采集与重构在此实验中,我们将通过DSP开发板采集模拟信号,并将其转换为数字信号进行处理。
首先,我们需要连接信号源和开发板,然后设置采样频率和采样时间。
接下来,我们将对采集到的信号进行重构,还原出原始模拟信号,并进行观察和分析。
2. 实验二:滤波器设计与实现滤波器是DSP中常用的模块,用于去除或增强信号中的特定频率成分。
在此实验中,我们将学习滤波器的设计和实现方法。
首先,我们将选择合适的滤波器类型和参数,然后使用DSP开发软件进行滤波器设计。
最后,我们将将设计好的滤波器加载到DSP开发板上,并进行实时滤波处理。
3. 实验三:频谱分析与频域处理频谱分析是DSP中常用的方法,用于分析信号的频率成分和能量分布。
在此实验中,我们将学习频谱分析的基本原理和方法,并进行实际操作。
我们将采集一个包含多个频率成分的信号,并使用FFT算法进行频谱分析。
然后,我们将对频谱进行处理,如频率选择、频率域滤波等,并观察处理后的效果。
4. 实验四:音频处理与效果实现音频处理是DSP中的重要应用之一。
在此实验中,我们将学习音频信号的处理方法,并实现一些常见的音频效果。
例如,均衡器、混响、合唱等。
我们将使用DSP开发软件进行算法设计,并将设计好的算法加载到DSP开发板上进行实时处理。
五、实验结果与分析通过以上实验,我们成功完成了信号采集与重构、滤波器设计与实现、频谱分析与频域处理以及音频处理与效果实现等一系列实验。
DSP 实验报告(实验六)班级:学号:姓名:实验六数字图象处理实验一、实验目的1. 学习使用实时运行库并了解数字图象处理的基本原理;2. 熟悉用C和汇编混合编程的方法及混合编程的调试方法;3. 学习灰度图象反色处理技术及其二值化处理技术。
二、实验环境1. 集成开发环境Code Composer Studio2.0(简称CCS)2. 实验程序DSP54X-28-Tuxiangchuli.c,DSP54X-28-Tuxiangchuli.cmd,rts.lib,c5402.gel(说明同前)。
三、实验步骤实验操作流程参照前面实验。
1. 建立新项目DSP54X-28-Tuxiangchuli.pjt,添加所需文件。
双击打开源程序DSP54X-28-Tuxiangchuli.c,找到打开图片语句,根据源语句及Tupian文件夹所在位置,重新设置好图片的打开路径(保存时注意文件属性。
必须修改好,否则会要求手动输入64*64个数据,如出现这种情况,通过任务管理器关闭CCS后重新打开修改)。
2. 改设置:Build option子菜单linker中Basic项Autoinit Model 改为load-time Initialization或Run-time Initialization(用No Initialization得不到正确的图像)。
3. 编译连接Build后, 装载得到的.out程序。
主程序中,在三个“i=0”处设置三个断点,如下图所示。
选择Debug_>Go main,使程序从main处开始执行。
单击“Run”,程序运行到第一个断点处停止;4. 用View/Graph/Image打开一个图形观察窗口,以观察程序载入的“Lena64.bmp”图像,该图像在“....\Tupian”目录中;按下图设置该观察窗口,以观察变量y为64*64的二维数组(也可在程序执行前就打开图形窗口,设置完确定时对y选择“否”即可):下图为“Lena64.bmp”在CCS环境下第一个断点处的显示图像;单击“Run”,程序运行到第二个断点处停止,这时可在图形观察窗口中,观察原图像经反色处理后的结果图像,如下图:再单击“Run”,程序运行到第三个断点处停止,这时可在图形观察窗口中,观察到原图像二值化处理后的结果图像,本程序中,二值化处理阀值设为128,见下图:5. 修改程序,对图像做其它处理(如反向显示,上下颠倒等),记录实验数据及结果,写出报告。
dsp信号处理实验报告DSP信号处理实验报告一、引言数字信号处理(DSP)是一种将连续信号转换为离散信号,并对其进行处理和分析的技术。
在现代通信、音频处理、图像处理等领域中,DSP技术被广泛应用。
本实验旨在通过对DSP信号处理的实践,加深对该技术的理解与应用。
二、实验目的本实验旨在通过对DSP信号处理的实践,掌握以下内容:1. 学习使用DSP芯片进行信号采集和处理;2. 理解离散信号的采样和重构过程;3. 掌握常见的DSP信号处理算法和方法。
三、实验原理1. 信号采集与重构在DSP信号处理中,首先需要对模拟信号进行采样,将连续信号转换为离散信号。
采样过程中需要注意采样频率的选择,以避免混叠现象的发生。
采样完成后,需要对离散信号进行重构,恢复为连续信号。
2. DSP信号处理算法DSP信号处理涉及到多种算法和方法,如滤波、频谱分析、时域分析等。
其中,滤波是一种常见的信号处理方法,可以通过滤波器对信号进行去噪、增强等处理。
频谱分析可以将信号在频域上进行分析,了解信号的频率成分和能量分布。
时域分析则关注信号的时序特征,如幅值、相位等。
四、实验步骤1. 信号采集与重构在实验中,我们使用DSP芯片进行信号采集与重构。
将模拟信号输入DSP芯片的模拟输入端口,通过ADC(模数转换器)将模拟信号转换为数字信号。
然后,通过DAC(数模转换器)将数字信号转换为模拟信号输出。
2. 滤波处理为了演示滤波处理的效果,我们选择了一个含有噪声的信号进行处理。
首先,使用FIR滤波器对信号进行低通滤波,去除高频噪声。
然后,使用IIR滤波器对信号进行高通滤波,增强低频成分。
3. 频谱分析为了对信号的频率成分和能量分布进行分析,我们使用FFT(快速傅里叶变换)算法对信号进行频谱分析。
通过观察频谱图,可以了解信号的频率特性。
4. 时域分析为了对信号的时序特征进行分析,我们使用时域分析方法对信号进行处理。
通过计算信号的均值、方差、峰值等指标,可以了解信号的幅值、相位等特性。
§2.1 基础实验一、实验目的1. 掌握CCS3.3实验环境的使用;2. 掌握用C语言编写DSP程序的方法。
二、实验设备1. 一台装有CCS3.3软件的计算机;2. DSP实验箱的TMS320F2812主控板;3. DSP硬件仿真器。
三、实验原理浮点数的表达和计算是进行数字信号处理的基本知识;产生正弦信号是数字信号处理中经常用到的运算;C语言是现代数字信号处理表达的基础语言和通用语言。
写实现程序时需要注意两点:(1)浮点数的范围及存储格式;(2)DSP的C语言与ANSI C语言的区别。
四、实验步骤1.打开CCS3.3 并熟悉其界面;2.在CCS3.3环境中打开本实验的工程(Example_bASe.pjt)[位置为:/ Example_2812/ Example_math/ Example_base],编译并重建.out 输出文件,然后通过仿真器把执行代码下载到DSP芯片中;3.把X0 , Y0 和Z0添加到Watch窗口中作为观察对象(选中变量名,单击鼠标右键,在弹出菜单中选择“Add Watch Window”命令);4.选择view->graph->time/frequency…。
设置对话框中的参数: 其中“Start Address”设为“sin_value”,“Acquisition buffer size”和“Display Data size”都设为“100”,并且把“DSP Data Type”设为“32-bit floating point”,设置好后观察信号序列的波形(sin函数,如图);5.单击运行;6.观察三个变量从初始化到运算结束整个过程中的变化;观察正弦波形从初始化到运算结束整个过程中的变化;7.修改输入序列的长度或初始值,重复上述过程。
五.实验注意事项1.把代码载入硬件时注意操作顺序,要操作规范,以免烧坏硬件2.只有添加了可视窗口才可以看到图形3.读懂程序以后再按要求修改,才能完成要求4.注意观察修改程序的图形变化与之前的比较六.实验程序/** Program for convolve **/#include <math.h>int N1,N2; /*输入数组长度*/int n; /*输出数组长度*/int m,i,k;float x[20];float h[20];float y[20]; /*输出数组*/main(){N1=10; /* x 长度*/N2=10; /* h 长度*/n=N1+N2-1; /* 输出y 的长度*/ for(i=0;i<20;i++) /* 初始化数组*/{x[i]=0;h[i]=0;y[i]=0;}for(i=0;i<n;i++) /* 给x数组赋值*/{if(i<N1){x[i]=i;}else{x[i]=0;}}for(i=0;i<=n;i++) /* 给h数组赋值*/{if(i<N2){h[i]=1;}else{h[i]=0;}}for(i=0;i<n;i++) /* 计算卷积*/{for (k=0;k<=i;k++)y[i]=y[i]+h[k]*x[i-k];}while(1);七.实验结果八.实验小结通过本实验熟悉和使用CCS3.3实验环境,虽然还不是充分解读CCS3.3技巧,但有了这次自己动手,掌握其基本技巧。
第1篇一、实验背景随着信息技术的飞速发展,数字信号处理(DSP)技术已成为通信、图像处理、语音识别等领域的重要工具。
本实验旨在通过一系列实验,加深对数字信号处理基本原理和方法的理解,提高实际应用能力。
二、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握常用信号处理算法的MATLAB实现。
3. 培养分析和解决实际问题的能力。
三、实验内容本实验共分为五个部分,具体如下:1. 离散时间信号的基本操作(1)实验目的:熟悉离散时间信号的基本操作,如加法、减法、乘法、除法、延时、翻转等。
(2)实验步骤:- 使用MATLAB生成两个离散时间信号。
- 对信号进行基本操作,如加法、减法、乘法、除法、延时、翻转等。
- 观察并分析操作结果。
2. 离散时间系统的时域分析(1)实验目的:掌握离散时间系统的时域分析方法,如单位脉冲响应、零状态响应、零输入响应等。
(2)实验步骤:- 使用MATLAB设计一个离散时间系统。
- 计算系统的单位脉冲响应、零状态响应和零输入响应。
- 分析系统特性。
(1)实验目的:掌握离散时间信号的频域分析方法,如快速傅里叶变换(FFT)、离散傅里叶变换(DFT)等。
(2)实验步骤:- 使用MATLAB生成一个离散时间信号。
- 对信号进行FFT和DFT变换。
- 分析信号频谱。
4. 数字滤波器的设计与实现(1)实验目的:掌握数字滤波器的设计与实现方法,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。
(2)实验步骤:- 使用MATLAB设计一个低通滤波器。
- 使用窗函数法实现滤波器。
- 对滤波器进行性能分析。
5. 信号处理在实际应用中的案例分析(1)实验目的:了解信号处理在实际应用中的案例分析,如语音信号处理、图像处理等。
(2)实验步骤:- 选择一个信号处理应用案例。
- 分析案例中使用的信号处理方法。
- 总结案例中的经验和教训。
四、实验结果与分析1. 离散时间信号的基本操作实验结果表明,离散时间信号的基本操作简单易懂,通过MATLAB可以实现各种操作,方便快捷。
实验0 实验设备安装才CCS调试环境实验目的:按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。
实验步骤:以演示实验一为例:1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源;2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out;3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示;4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1;DSP Data Type设置成16-bit signed integer,如下图所示;6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果:心得体会:通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。
熟悉了DSP实验箱基本模块。
让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。
实验二基本算数运算2.1 实验目的和要求加、减、乘、除是数字信号处理中最基本的算术运算。
DSP实验报告班级:11050641学号:姓名:指导教师:实验一、二 DSP芯片的开发工具及应用实验1.实验目的(1)熟悉CCS集成开发环境,掌握工程的生成方法;(2)熟悉SEED-DTK DAD实验环境;(3)掌握CCS集成开发环境的调试方法。
2.实验设备DSP实验箱,计算机,CCS软件。
3.实验内容及步骤(1)CCS软件的安装;(2)了解SEED-DTK5416实验环境;(3)打开CCS集成开发环境,进入CCS的操作环境;(4)新建一个工程文件○1在c:\ti\myprojects中建立文件夹volume1(如果CCS安装在其他d:\ti ,则在d:\ti\myprojects中);○2将c:\ti\tutorial\target\volume1拷贝到c:\ti\myprojects\ volume1;○3从在CCS 中的Project 菜单,选择 New;○4在Project Name域中,键入volume1;○5在Location区域中,浏览步骤1所建立的工作文件夹;○6在Project Type 域中,选择Executable(.out);○7在Target域中,选择CCS配置的目标,并单击完成。
(5)向工程中添加文件○1从Project/Add Files to Project,选择 volume.c,单击Open(或右击Project View图标,选择Add Files to Project );○2选择Project/Add Files to Project,在Files of type对话框中,选择Asm Source Files (*.a*, *.s*)。
选择vectors.asm 和 load.asm, 单击Open;○3选择 Project/Add Files to Project,在Files of type 对话框中选择 Linker Command File (*.cmd),选择volume.cmd,单击Open。
dsp图像处理实验报告DSP图像处理实验报告一、引言数字信号处理(DSP)是一种用于处理数字信号的技术,广泛应用于各个领域。
图像处理是DSP的一个重要应用,通过对图像进行数字化处理,可以实现图像增强、边缘检测、目标识别等功能。
本实验旨在通过DSP技术对图像进行处理,探索图像处理算法的实际应用。
二、实验目的1. 了解数字信号处理在图像处理中的应用;2. 掌握DSP平台的基本操作和图像处理算法的实现;3. 进一步熟悉MATLAB软件的使用。
三、实验环境和工具本实验使用的DSP平台为TMS320C6713,开发环境为Code Composer Studio (CCS)。
图像处理算法的实现主要依赖于MATLAB软件。
四、实验步骤1. 图像采集与预处理首先,通过CCD摄像头采集一张待处理的图像,并将其转化为数字信号。
然后,对图像进行预处理,包括去噪、灰度化等操作,以提高后续处理的效果。
2. 图像增强图像增强是指通过一系列算法和技术,提高图像的质量、清晰度和对比度。
在本实验中,我们采用了直方图均衡化算法对图像进行增强。
该算法通过对图像像素值的统计分析,调整像素值的分布,使得图像的对比度更加明显,细节更加突出。
3. 边缘检测边缘检测是图像处理的重要环节,可以用于目标识别、图像分割等应用。
在本实验中,我们采用了Canny算法进行边缘检测。
Canny算法是一种经典的边缘检测算法,通过对图像进行多次滤波和梯度计算,得到图像的边缘信息。
4. 目标识别目标识别是图像处理中的关键任务之一,可以应用于人脸识别、车牌识别等领域。
在本实验中,我们以人脸识别为例,使用了Haar特征分类器进行目标识别。
Haar特征分类器是一种基于图像特征的分类器,通过对图像进行特征提取和分类器训练,可以实现对目标的快速准确识别。
五、实验结果与分析通过对图像进行处理,我们得到了增强后的图像、边缘检测结果和目标识别结果。
经过对比分析,我们发现图像增强算法能够有效提高图像的对比度和清晰度,使得图像更加易于观察和分析。
DSP上机实验:DTMF信号的编码一、实验要求设计作业:双音多频(DTMF)信号的编码:把自己的电话号码DTMF编码生成为一个.wav文件。
【wavwrite()】技术指标:根据ITU Q.23建议,DTMF信号的技术指标是:传送/接收率为每秒10个号码,或每个号码100ms。
每个号码传送过程中,信号存在时间至少45ms,且不多于55ms,100ms的其余时间是静音。
在每个频率点上允许有不超过±1.5%的频率误差。
任何超过给定频率±3.5%的信号,均被认为是无效的,拒绝接收。
二、实验思想:1、编码:DTMF拨号键盘由一个4*4行列构成,每列代表一个高频信号,每行代表一个低频信号,每当按下一个键时,产生高、低频率的两个正弦信号,代表一个特定的数字或符号,根据ITU Q.23颁布的国际标准,DTMF传送或接受每个号码的时间为100ms,其中每个号码传送的过程中,信号存在时间至少45ms,其余时间静音。
用一个字符串变量来接受输入的电话号码,并将各个数字和符号的ASCII码用一个4*4矩阵表示,每接收到一个数字就对应两个频率,并产生由两个正弦波叠加的信号,完成DTMF编码,利用matlab提供的fft函数画出其频谱,用sound函数发出声音。
2、解码:采用Goertzel算法来检测DTMF信号,它是用IIR滤波器实现DFT算法的一种特殊方法,在实际DTMF解码中,只需要知道输入信号即DTMF信号的离散傅里叶变换X(k)的幅度信息,忽略相位信息,因为只要能得到8个特定频率点的幅度值,看哪两个频率对应的幅度最大,就能知道对应的是哪个数字,达到解码的目的,可以利用matlab提供的goertzel函数来对信号解码。
三、实验代码:d=input('请键入电话号码: ','s');sum=length(d);total_x=[];sum_x=[];sum_x=[sum_x,zeros(1,800)];for a=1:sumsymbol=abs(d(a));tm=[49,50,51,65;52,53,54,66;55,56,57,67;42,48,35,68]; for p=1:4;for q=1:4;if tm(p,q)==abs(d(a));break,endendif tm(p,q)==abs(d(a));break,endendf1=[697,770,852,941];f2=[1209,1336,1477,1633];n=1:400;x=sin(2*pi*n*f1(p)/8000)+sin(2*pi*n*f2(q)/8000); x=[x,zeros(1,400)]; sum_x=sum_x+x;total_x=[total_x,x];endwavwrite(total_x,'soundwave')sound(total_x);t=(1:8800)/8000;subplot(2,1,1);plot(t,total_x);axis([0,1.2,-2,2]);xlabel('时间/s')title('DTMF信号时域波形')xk=fft(x); mxk=abs(xk);subplot(2,1,2);k=(1:800)*sum*8000/800;plot(k,mxk); xlabel('频率');title('DTMF信号频谱');disp('双频信号已生成并发出')四、实验结果图:请键入电话号码: 130xxxxxxxx。
DSP实验报告班级:学号:姓名:指导教师:实验一、二 DSP芯片的开发工具及应用实验1.实验目的(1)熟悉CCS集成开发环境,掌握工程的生成方法;(2)熟悉SEED-DTK DAD实验环境;(3)掌握CCS集成开发环境的调试方法。
2.实验设备DSP实验箱,计算机,CCS软件。
3.实验内容及步骤(1) CCS软件的安装;(2)了解SEED-DTK5416实验环境;(3)打开CCS集成开发环境,进入CCS的操作环境;(4)新建一个工程文件○1在c:\ti\myprojects中建立文件夹volume1(如果CCS安装在其他d:\ti ,则在d:\ti\myprojects中);○2将c:\ti\tutorial\target\volume1拷贝到c:\ti\myprojects\ volume1;○3从在CCS 中的Project 菜单,选择 New;○4在Project Name域中,键入volume1;○5在Location区域中,浏览步骤1所建立的工作文件夹;○6在Project Type 域中,选择Executable(.out);○7在Target域中,选择CCS配置的目标,并单击完成。
(5)向工程中添加文件○1从Project/Add Files to Project,选择 volume.c,单击 Open(或右击Project View图标,选择Add Files to Project );○2选择Project/Add Files to Project,在Files of type对话框中,选择Asm Source Files (*.a*, *.s*)。
选择vectors.asm 和 load.asm, 单击Open;○3选择 Project/Add Files to Project,在Files of type 对话框中选择 Linker Command File (*.cmd),选择volume.cmd,单击Open。
福计算机与信息学院信息工程类实验报告2011年11月21日实验项目列表福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程专业:电子信息工程年级: 2010级姓名:学号:实验课程:实验室号:___田C513 实验设备号:实验时间:指导教师签字:成绩:实验1 汇编语言、体系结构和CCS1.实验目的和要求1.熟悉DSP软件开发环境CCS的使用。
2.熟悉CCS中的C语言编程。
3.了解C6000DSP的汇编语言。
2.主要仪器设备(实验用的软硬件环境)安装了的计算机,采用simulator配置文件3.操作方法与实验步骤1、配置CCS打开桌面程序“Setup CCS 2 ('C6000)”,采用simulator配置文件,配置完成后保存。
2、实验内容1操作步骤:(2)打开CCS:①打双击桌面程序:Setup CCS 2 ('C6000),配置CCS,选C6xxx;②配置好后,打开桌面程序:CCS 2 ('C6000);(3)打开工程文件:①把文件夹tutorial\sim62xx\hello1拷贝到myproject下;②单击菜单Project->Open,打开,选择支持库(4)编译程序:菜单Project->build或rebuild(5)加载程序:菜单File->Load Program,选择Debug下的.out文件装入目标板(6)go main:菜单Debug->go main,执行到main()处暂停(7)执行程序:Debug->Run(8)设置断点:Toggle breakpoint(9)单步执行:Step(两种:C和汇编)(10)观察变量:菜单Edit->Variable(11)观察存储器:菜单Edit->Memory(12)测试函数执行的CLK:Profiler->View Clock(13)混合代码显示:View->Mixed Source/ASM3、自行完成实验内容2的操作。
4、自行完成实验内容3的编程及编译、目标程序的加载和执行,观察c = a*b 对应的汇编代码,并解释该汇编代码。
4.实验内容及实验数据记录1.新建一个project,把tutorial\sim62xx\hello1的文件添加进去,完成其功能。
练习CCS的基本操作:加载程序、go main、执行程序、设置断点、单步执行、观察变量、观察存储器、测试函数执行的CLK、混合代码显示。
2.打开tutorial\sim62xx\volume1的项目文件,完成图形方式观察变量、设置探点、GEL控制变量、FILE IO、动画显示输入输出的功能。
然后单步执行,观察C代码调用、寄存器的变化、测试函数执行时间、如何循环和返回C代码。
3.解释如何在C6201上实现32bit int乘32bit int, 结果是32 bit int的过程:在刚才的hello1中设置3个全局变量int a = 0x10008; int b = 56; int c;在main函数中执行语句 c = a * b; build后加载执行程序, 混合代码显示c = a*b对应的汇编代码,解释之。
5.实验程序或实验数据处理与分析1.配置CCS2.打开CCS(1)打开工程文件:①把文件夹tutorial\sim62xx\hello1拷贝到myproject下;②单击菜单Project->Open,打开,选择支持库(2)编译程序:菜单Project->build或rebuild(3)加载程序:菜单File->Load Program,选择Debug下的.out文件装入目标板(4)go main:菜单Debug->go main,执行到main()处暂停(5)执行程序:Debug->Run(6)设置断点:Toggle breakpoint(7)单步执行:Step(两种:C和汇编)(8)观察变量:菜单Edit->Variable(9)观察存储器:菜单Edit->Memory(10)测试函数执行的CLK:Profiler->View Clock(11)混合代码显示:View->Mixed Source/ASM3. 自行完成实验内容3的编程及编译、目标程序的加载和执行,观察c = a*b 对应的汇编代码,并解释该汇编代码。
6.质疑、建议、问题讨论通过此次实验,使我熟悉了DSP软件开发环境CCS的使用,熟悉CCS中的C 语言编程,并且初步了解C6000DSP的汇编语言。
福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程专业:电子信息工程年级:姓名:学号: 1 实验课程:实验室号:____ __ 实验设备号:实验时间:指导教师签字:成绩:实验2 C6000流水线和C运行时环境1.实验目的和要求1.熟悉DSP软件开发环境CCS的使用。
2.熟悉C6000中的C运行时环境。
2.主要仪器设备(实验用的软硬件环境)安装了的计算机,采用simulator配置文件3.操作方法与实验步骤1)打开ccs6000的C运行时的环境;2)双击桌面程序Setup CCS2(6000),配置CCS,选择C6xxx;3)配置好后,打开桌面程序CCS2(6000);4)把文件夹tutorial\sim62xx\hello1拷贝到myproject下;5)单击菜单project->open,打开,选择文件库;6)将汇编代码段加到,再在中加入汇编子函数的C语言程序,进行编译、加载生成.out文件,执行产生结果。
4.实验内容及实验数据记录采用simulator配置文件1. Hello1中添加1个C文件,该文件是一个乘法累加的子函数sop_c (short * a, short * x, int * y, int n),然后在main函数中调用。
不选择任何优化选项。
用混合代码显示,在汇编层次执行sop_c子函数,观察调用、执行和返回的过程。
2.用汇编语言实现两个数组a(n)和x(n)的乘法累加功能。
汇编文件名为:,主函数C中调用格式:int sop_asm(short * a, short * x, int n)。
5.实验程序或实验数据处理与分析1)在Hello1中添加文件在mian函数中调用:2)在Hello1中添加文件在main函数中调用3)实验处理:6.质疑、建议、问题讨论由于对c6000的使用还不是太熟悉,所以操作中还是不太熟练,而且在编写代码时也有些不必要的错误,但进过细心的观察,最终找到错误并改正,今后应该注意,此次实验使我熟悉DSP软件开发环境CCS的使用,熟悉C6000中的C 运行时环境。
福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程专业:电子信息工程年级:姓名:学号:实验课程:实验室号:__ __ 实验设备号:实验时间:指导教师签字:成绩:实验3 C6000代码优化1.实验目的和要求1.熟悉DSP软件开发环境CCS的使用。
2.掌握CCS中的C语言编程。
3.熟悉C6000DSP的代码优化过程。
2.主要仪器设备(实验用的软硬件环境)安装了的计算机,采用simulator配置文件3.操作方法与实验步骤1)打开ccs6000的C运行时的环境;2)双击桌面程序Setup CCS2(6000),配置CCS,选择C6xxx;3)配置好后,打开桌面程序CCS2(6000);4)把文件夹tutorial\sim62xx\hello1拷贝到myproject下;5)单击菜单project->open,打开,选择文件库;6)将汇编代码段加到,再在中加入汇编子函数的C语言程序,进行编译、加载生成.out文件,执行产生结果。
4.实验内容及实验数据记录1.采用simulator配置文件,写手工优化的程序:在实验二的基础上实现16bit数组的乘法累加的函数,并手工优化和采用软件流水优化。
要求:(1)使用LDW和MPY,MPYH指令;对于C64可以使用扩展乘法指令。
(2)画出相关图和模迭代间隔表。
5.实验程序或实验数据处理与分析1. 实现16位数组乘法函数1)在中添加文件2)在main函数中的调用3)编译运行结果2.优化1)线性汇编优化2)在main函数中的调用3)编译运行结果4)汇编优化5)在main函数中的调用6)编译运行结果6.质疑、建议、问题讨论通过此次实验,进一步熟悉DSP软件开发环境CCS的使用,也知道并且熟悉C6000DSP的代码优化过程,但还是发现自己在编写改进程序上能力不足,今后一定加强这方面的练习。
福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程专业:电子信息工程年级:姓名:学号:实验课程:实验室号:__ _ 实验设备号:实验时间:指导教师签字:成绩:实验4 利用BIOS创建工程及性能分析1.实验目的和要求1.通过创建基于DSP/BIOS的Hello World工程实例,熟悉CCS环境下DSP/BIOS软件的创建和使用方法。
2.熟悉在CCS环境下对代码的运行效率和性能作出评估的工具和方法。
3.实验要求2.主要仪器设备(实验用的软硬件环境)安装了的计算机,采用simulator配置文件3.操作方法与实验步骤第一步:打开已有工程并运行1、在C:\ti\myprojects目录里面创建hellobios目录。
2、把C:\ti\tutorial\sim64xx\hello1里的全部文件拷贝到这个新的目录下面。
3、如果CCS还没有启动,启动CCS环境,Setup里面设置为C64xx DeviceSimulator。
4、选择Project->Open,打开这个工程,工程的项目文件目录为:C:\ti\myprojects\hellobios,项目名称是。
5、若提示以下错误,选择Browse,选择目录:C:\ti\C6000\cgtools\lib\,打开工程。
6、编译,运行工程,查看结果,应该是输出hello world字符。
第二步:评测中输出函数put()的执行时间(周期数)1、新建一个Profiler,选择Profiler->Start New Session,名称为MySession,确定。
2、出现Session窗口,选择Range栏。
如下所示,出现。
3、用鼠标拖曳,高亮put()函数,如下所示:4、按住鼠标,拖曳到Range窗口里面,出现:5、重新Load程序,运行,得到运行结果如下:6、结论:采用put()函数输出一次的指令周期数是:1700。
7、采用同样方法,测试printf()函数的指令周期数目:8、记录put()函数和printf()函数需要的指令周期数到表格,用来和下面实验的结果对比。