2019福建高考数学双曲线专项练习(含答案)语文
- 格式:doc
- 大小:26.05 KB
- 文档页数:12
1.双曲线的标准方程一.知识梳理1.定义:平面内与两定点1F 、2F 的距离的差的绝对值是常数(小于12||F F )的点的轨迹叫做双曲线.这两个定点1F 、2F 叫做双曲线的焦点,两个焦点之间的距离叫做焦距. 注:若定义中“差的绝对值”中的“绝对值”去掉的话,点的轨迹成为双面线的一支。
设()y x M ,为双曲线上的任意一点,若M 点在双曲线右支上,则()02,2121>=->a a MF MF MF MF ; 若M 在双曲线的左支上,则a MF MF MF MF 2,2121-=-<; 因此得a MF MF 221±=-.2.标准方程:焦点在x 轴上:()0,12222>>=-b a by a x焦点在y 轴上:()0,12222>>=-b a bx a y .可以看出,如果2x 项的系数是正的,那么焦点就在x 轴上;如果2y 项的系数是正的,那么焦点就在y 轴上.3.标准方程中的c b a ,,三个量满足222b a c +=4.方程()0122<=+mn ny mx 表示的曲线为双曲线,它包含焦点在x 轴上或在y 轴上两种情形.若将方程变形为11122=+n y m x ,则当0>m ,0<n 时,方程为11122=--ny m x ,它表示焦点在x 轴上的双曲线,此时nb m a 1,1-==;当0,0><n m 时,方程为11122=--mx n y ,它表示焦点在y 轴上的双曲线,此时mb n a 1,1-==。
因此,在求双曲线的标准方程时,若焦点的位置不确定,则常考虑上述设法. 三.例题分析题型1 双曲线的定义及应用例1.双曲线11442522=-y x 上一点P 到右焦点的距离是5,则下列结论正确的是 ( ) A.P 到左焦点的距离为8 B.P 到左焦点的距离为15 C.P 到左焦点的距离不确定 D.这样的P 点不存在习题1.双曲线116922=-y x 上一点P 到左焦点1F 的距离101=PF ,求P 点到右焦点2F 的距离2PF .习题24表示的曲线方程为( ) A .24x -25y =1(x ≤-2)B .24x -25y =1(x ≥2)C .24y -25x =1(y ≤-2)D .24y -25x =1(y ≥2)题型2.求双曲线方程例2. 求适合下列条件的双曲线的标准方程: (1)4=a ,经过点⎪⎪⎭⎫⎝⎛-3104,1A ;(2)经过点()24,3-、⎪⎭⎫ ⎝⎛5,49; (3)与双曲线141622=-y x 有相同的焦点,且经过点)2,23(.题型3.判断曲线类型例3.(1).“m>2”是“方程22121x y m m -=--表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2).设()0,2πθ∈,则“方程22134sin x y θ+=表示双曲线”的必要不充分条件为( )A .()0,πθ∈B .2,23πθπ⎛⎫∈ ⎪⎝⎭ C .3ππ,2θ⎛⎫∈ ⎪⎝⎭D .π3π,22θ⎛⎫∈ ⎪⎝⎭(3).已知方程22134x y m m +=+-表示双曲线,则m 的取值范围是______.(4).若方程22131x y m m-=+-表示焦点在x 轴上的双曲线,则实数m 的取值范围为____________.解析:(1)方程22121x y m m -=--表示双曲线等价于()()210m m --<,即1m <或m>2, 故“m>2”是“方程22121x y m m -=--表示双曲线”的充分不必要条件. 故选:A (2)由()0,2θ∈π,方程22134sin x y θ+=表示双曲线,则sin 0θ<,所以(),2θ∈ππ,根据选项,“方程22134sin x y θ+=表示双曲线”的必要不充分条件为B. 故选:B.(3)若方程22134x y m m +=+-表示在x 轴上的双曲线,则3040m m +>⎧⎨-<⎩,解得34-<<m ;若方程22134x y m m +=+-表示在y 轴上的双曲线,则3040m m +<⎧⎨->⎩,此时m ∈∅.综上所述,34-<<m . 故答案为:()3,4-.(4)因为方程22131x y m m -=+-表示焦点在x 轴上的双曲线,所以有3010m m +>⎧⎨->⎩,解得31m -<<,所以实数m 的取值范围为(3,1)-,故答案为:(3,1)-题型4 双曲线的轨迹例4.在△ABC 中,()6,0B -,()6,0C ,直线AB 、AC 的斜率乘积为94,求顶点A 的轨迹.例5.(1)已知两圆()()22221249,49C x y C x y ++=-+=::,动圆C 与圆1C 外切,且和圆2C 内切,则动圆C 的圆心C 的轨迹方程为( ) A .()221379y x x -=≥B .22197y x -=C .22179x y -=D .()221397x x y -=≥(2)已知动圆M 与圆1:C ()2242x y ++=外切,与圆2C :()2242x y -+=内切,则动圆圆心M 的轨迹方程为( ) A .()2212214x y x -=≥ B .()2212214x y x -=≤-C .()2212214x y x +=≥D .221214x y -=解析:(1)如图,设动圆C 的半径为R ,则13CC R =+,23CC R =-,则121268CC CC C C -=<=, 所以动圆圆心C 的轨迹是以1C ,2C 为焦点,以6为实轴长的双曲线的右支.因为26,28a c ==,所以2223,4,7a c b c a ===-=.故动圆圆心C 的轨迹方程为()221397x x y -=≥. 故选:D.(2)如图,由题意得:MB MA =,圆1:C ()2242x y ++=与圆2C :()2242x y -+=的半径2,即122BC AC =()121212MC MC MB BC MA AC MB BC MA AC -=+--=+-+1212228BC AC C C =+==,故点M 的轨迹为以12,C C 为焦点的双曲线的右支,其中222a =28c =,故2a =4c =,则22216214b c a =-=-=,所以轨迹方程为(2212214x y x -=≥,故选:A题型5.双曲线的最值问题例 6.(1).P 为双曲线11522=-y x 右支上一点,N M ,分别是圆()44:221=++y x C 和圆()14:222=+-y x C 上的点,则||||PN PM -的最大值为______.。
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{1A =-,0,1,2},2{|1}B x x =…,则(A B =I ) A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}2.(5分)若(1)2z i i +=,则(z = ) A .1i --B .1i -+C .1i -D .1i +3.(5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14 C .13D .124.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.85.(5分)函数()2sin sin 2f x x x =-在[0,2]π的零点个数为( ) A .2B .3C .4D .56.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =) A .16B .8C .4D .27.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则( ) A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线9.(5分)执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于( )A .4122-B .5122-C .6122-D .7122-10.(5分)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为( )A .32B .52C .72D .9211.(5分)记不等式组6,20x y x y +⎧⎨-⎩……表示的平面区域为D .命题:(,)p x y D ∃∈,29x y +…;命题:(,)q x y D ∀∈,212x y +„.下面给出了四个命题 ①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④12.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A .233231(log )(2)(2)4f f f -->> B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>二、填空题:本题共4小题,每小题5分,共20分。
高三数学(双曲线)复习检测试题 (附参考答案)一。
选择题1.双曲线22154x y -=-的离心率为( )A. B. C .23 D .322.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为( )A221412x y -= B 221124x y -= C.221106x y -= D.221610x y -= 3.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为( )(A )23(B )23 (C )26(D )3324.设F 1和F 2为双曲线-42x y 2=1两个焦点,点P 在双曲线上,满足∠F 1PF 2=90°,则△F 1PF 2的面积是( )A .1B .25C .2D .5 5.已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为( ) (A(B(C )65 (D )566.若椭圆154116252222=-=+y x y x 和双曲线的共同焦点为F 1,F 2,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( ) A.221B.84C.3D.21 7.已知点(2,0),(3,0)A B -,动点(,)P x y 满足26PA PB x ⋅=-,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线8.(北京3)“双曲线的方程为221916x y -=”是“双曲线的准线方程为95x =±”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.(福建12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]10.已知双曲线2212y x -=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )(A )43 (B )53 (C (D 11.(全国Ⅱ11)设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B .231+ C . 21+ D .31+12.如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F2是等边三角形,则双曲线的离心率为( ) (A )3 (B )5 (C )25(D )31+二。
高中数学《双曲线》大题50题高中数学《双曲线》大题50题及答案解析1.在①m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,②C的焦距为6,③C上一点到两焦点距离之差的绝对值为4.这三个条件中任选一个,补充在下面的问题中.问题:已知双曲线C:﹣=1,_____,求C的方程.2.已知双曲线C的右焦点F,半焦距c=2,点F到直线的距离为,过点F作双曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求双曲线C的标准方程;(2)证明:直线MN必过定点,并求出此定点的坐标.3.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.4.在平面直角坐标系中,已知双曲线I:,A,B分别为I的左,右顶点.(1)以A为圆心的圆与I恰有三个不同的公共点,写出此圆的方程;(2)直线L过点A,与I在第一象限有公共点P,线段AP的垂直平分线过点B,求直线L的方程;(3)I上是否存在异于A、B点M、N,使+2=成立,若存在,求出所有M、N的坐标,若不存在说明理由.5.(Ⅰ)已知中心在原点的双曲线C的焦点坐标为,,且渐近线方程为,求双曲线C的标准方程;(Ⅱ)在圆x2+y2=3上任取一点P,过点P作y轴的垂线段PD,D为垂足,当点P在该圆上运动时,求线段PD的中点M的轨迹方程.6.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.7.2018年世界人工智能大会已于2018年9月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏,如图:A、B两个信号源相距10米,O是AB的中点,过O点的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足:接收到A点的信号比接收到B点的信号晚秒(注:信号每秒传播v0米).在时刻t0时,测得机器鼠距离O点为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时刻t0时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?8.已知离心率为2的双曲线C的一个焦点F(c,0)到一条渐近线的距离为.(1)求双曲线C的方程;(2)设A1,A2分别为C的左右顶点,P为C异于A1,A2一点,直线A1P与A2P分别交y 轴于M,N两点,求证:以线段MN为直径的圆D经过两个定点.9.已知F1,F2为双曲线的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.10.已知双曲线的一条渐近线方程为,点在双曲线上,抛物线y2=2px(p>0)的焦点F与双曲线的右焦点重合.(Ⅰ)求双曲线和抛物线的标准方程;(Ⅱ)过点F做互相垂直的直线l1,l2,设l1与抛物线的交点为A,B,l2与抛物线的交点为D,E,求|AB|+|DE|的最小值.高中数学资料共享群734924357每天都有更新!11.已知椭圆=1(a>b>0}),点A、点B分别是椭圆上关于原点对称的两点,点P是椭圆上不同于点A和点B的任意一点.(1)求证:直线PA的斜率与直线PB的斜率之积为定值,并求出定值;(2)试对双曲线=1写出具有类似特点的正确结论,并加以证明.12.如图,若F1,F2是双曲线﹣=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.13.已知双曲线过点(3,﹣2)且与椭圆4x2+9y2=36有相同的焦点.(1)求双曲线标准方程;(2)若点M在双曲线上,F1,F2分别是双曲线的左、右焦点,且|MF1|=2|MF2|,求△MF1F2的面积.14.设双曲线=1,其虚轴长为2,且离心率为.(1)求双曲线C的方程;(2)过点P(3,1)的动直线与双曲线的左右两只曲线分别交于点A、B,在线段AB上取点M使得=,证明:点M落在某一定直线上;(3)在(2)的条件下,且点M不在直线OP上,求△OPM面积的取值范围.15.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;高中数学资料共享群734924357每天都有更新!(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.16.已知双曲线=1(b>a>0)渐近线方程为y=±x,O为坐标原点,点在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知P,Q为双曲线上不同两点,点O在以PQ为直径的圆上,求的值.17.设双曲线﹣=1的两个焦点分别为F1、F2,离心率为2.(1)若A、B分别为此双曲线的渐近线l1、l2上的动点,且2|AB|=5|F1F2|,求线段AB 的中点M的轨迹方程,并说明轨迹是什么曲线;(2)过点N(1,0)能否作出直线l,使l交双曲线于P、Q两点,且•=0,若存在,求出直线l的方程;若不存在,说明理由.18.已知双曲线,(1)求以双曲线的顶点为焦点,焦点为顶点的椭圆E的方程.(2)点P在椭圆E上,点C(2,1)关于坐标原点的对称点为D,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由.19.已知双曲线C:﹣=1(a>0,b>0)的两个焦点分别为(﹣2,0)和(2,0),点P(3,)在双曲线C上.(Ⅰ)求双曲线C的方程;高中数学资料共享群734924357每天都有更新!(Ⅱ)过点A(0,2)的直线与双曲线C交于不同的两点E、F,若坐标原点O与E、F构成的三角形面积为2,求直线l的方程.20.已知双曲线的左右两个顶点是A1,A2,曲线C上的动点P,Q关于x轴对称,直线A1P与A2Q交于点M,(1)求动点M的轨迹D的方程;(2)点E(0,2),轨迹D上的点A,B满足,求实数λ的取值范围.21.已知圆M:(x+1)2+y2=,圆N:(x﹣1)2+y2=,动圆D与圆M外切并与圆N内切,圆心D的轨迹为曲线E.(1)求曲线E的方程;(2)若双曲线C的右焦点即为曲线E的右顶点,直线y=x为C的一条渐近线.①求双曲线C的方程;②过点P(0,4)的直线l,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合),当,且λ1+λ2=﹣时,求Q点的坐标.22.已知双曲线的离心率为e,经过第一、三象限的渐近线的斜率为k,且e≥k.(1)求m的取值范围;高中数学资料共享群734924357每天都有更新!(2)设条件p:e≥k;条件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分条件,求a的取值范围.23.已知F1,F2分别是双曲线的左右焦点,点P是双曲线上任一点,且||PF1|﹣|PF2||=2,顶点在原点且以双曲线的右顶点为焦点的抛物线为L.(Ⅰ)求双曲线C的渐近线方程和抛物线L的标准方程;(Ⅱ)过抛物线L的准线与x轴的交点作直线,交抛物线于M、N两点,问直线的斜率等于多少时,以线段MN为直径的圆经过抛物线L的焦点?24.若抛物线的顶点是双曲线x2﹣y2=1的中心,焦点是双曲线的右顶点(1)求抛物线的标准方程;(2)若直线l过点C(2,1)交抛物线于M,N两点,是否存在直线l,使得C恰为弦MN 的中点?若存在,求出直线l方程;若不存在,请说明理由.25.已知双曲线过点A(1,1),它的焦点F在其渐近线上的射影记为M,且△OFM(O为原点)的面积为.(Ⅰ)求双曲线的方程;(Ⅱ)过点A作双曲线的两条动弦AB,AC,设直线AB,直线AC的斜率分别为k1,k2,且(k1+1)(k2+1)=﹣1恒成立,证明:直线BC的斜率为定值.26.已知双曲线C:﹣=1(a>0,b>0)的一条渐近线与直线x=交于点M,双曲线C的离心率e=,F是其右焦点,且|MF|=1.(Ⅰ)求双曲线C的方程;(Ⅱ)过点A(0,1)的直线l与双曲线C的右支交于不同两点P、Q,且P在A、Q之间,若=λ且,求直线l斜率k的取值范围.27.已知双曲线C:﹣=1 的离心率是,其一条准线方程为x=.(Ⅰ)求双曲线C的方程;(Ⅱ)设双曲线C的左右焦点分别为A,B,点D为该双曲线右支上一点,直线AD与其左支交于点E,若=λ,求实数λ的取值范围.28.双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(a,0),B(0,﹣b).(1)求双曲线的方程;高中数学资料共享群734924357每天都有更新!(2)若B1是双曲线虚轴在y轴正半轴上的端点,过B作直线与双曲线交于M,N两点,求B1M⊥B1N时,直线MN的方程.29.已知椭圆C与双曲线﹣=1有公共焦点,且离心率e=,(1)求椭圆的标准方程;(2)已知点P是椭圆C上的一动点,过点P作x轴的垂线段PD,D为垂足,当点P在椭圆上运动时,线段PD的中点M的轨迹是什么?30.已知两点A(0,﹣1),B(0,1),P(x,y)是曲线C上一动点,直线PA、PB斜率的平方差为1.(1)求曲线C的方程;(2)E(x1,y1),F(x2,y2)是曲线C上不同的两点,Q(2,3)是线段EF的中点,线段EF的垂直平分线交曲线C于G,H两点,问E,F,G,H是否共圆?若共圆,求圆的标准方程;若不共圆,说明理由.31.双曲线S的中心在原点,焦点在x轴上,离心率e=,直线x﹣3y+5=0上的点与双曲线S的右焦点的距离的最小值等于.(1)求双曲线S的方程;(2)设经过点(﹣2,0),斜率等于k的直线与双曲线S交于A,B两点,且以A,B,P (0,1)为顶点的三角形ABP是以AB为底的等腰三角形,求k的值.32.已知双曲线=1(a>0,b>0)的两条渐近线与抛物线C:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为(1)求抛物线C的方程;(2)过点D(﹣1,0)的直线l与抛物线C交于不同的两点E,F,若在x轴上存在一点P(x0,0)使得△PEF是等边三角形,求x0的值.33.在平面直角坐标系xoy中,已知双曲线﹣y2=1的左、右顶点分别为A1,A2,点P(x0,y0),Q(x0,﹣y0)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)过坐标原点O作一条直线交轨迹E于A,B两点,过点B作x轴的垂线,垂足为点C,连AC交轨迹E于点D,求证:AB⊥BD.34.已知双曲线C:=1(a>0,b>0)的离心率为,实轴长为2 (Ⅰ)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C 交于不同的两点A,B,证明∠AOB的大小为定值.35.已知曲线Γ上的点到F(1,0)的距离比它到直线x=﹣3的距离小2,过F的直线交曲线Γ于A,B两点.(1)求曲线Γ的方程;(2)若,求直线AB的斜率;(3)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.36.已知点在双曲线上,且双曲线的一条渐近线的方程是.(1)求双曲线C的方程;(2)过点(0,1)且斜率为k的直线l与双曲线C交于A、B两个不同点,若以线段AB 为直径的圆恰好经过坐标原点,求实数k的值.37.已知点是椭圆C:的一个顶点,椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P(x0,y0)是定点,直线交椭圆C于不同的两点A、B,记直线PA、PB的斜率分别为k1、k2,求点P的坐标,使得k1+k2=0恒成立.38.已知双曲线C:的离心率为,点(4,2)在C上.(Ⅰ)求双曲线C的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,且直线l与双曲线C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.39.已知命题P“双曲线﹣=1上任意一点Q到直线l1:bx+ay=0,l2:bx﹣ay=0的距离分别记作d1,d2则d1,d2为定值”是真命题(1)求出d1•d2的值(2)已知直线l1,l2关于y轴对称且使得椭圆C:+=1上任意点到l1,l2的距离d1,d2满足为定值,求l1,l2的方程(3)已知直线m与(2)中某一条直线平行(或重合)且与椭圆C交于M,N两点,求|OM|+|ON|的最大值.40.椭圆与双曲线有许多优美的对称性质.对于椭圆+=1(a>b>0)有如下命题:AB是椭圆+=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM•k AB=﹣,为定值.那么对于双曲线﹣=1(a>0,b>0)则有命题:AB 是双曲线﹣=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM•k AB=定值.(在横线上填上正确的结论)并证明你的结论.41.如图,已知双曲线,过点P(0,﹣1)的直线l分别交双曲线C的左、右两支于点A,B,交双曲线C的两条渐近线于点D,E(点D在y轴的左侧).(1)若,求直线l的方程;(2)求的取值范围.42.已知双曲线C1:x2﹣=1(b>0),A(x A,b2)是C1上位于第二象限内的一点,曲线C2是以点C(0,b2+1)为圆心过点A的圆上满足y>b2的部分.曲线Γ由C1上满足y≤b2的部分和C2组成.记F1,F2为C1的左、右焦点.(1)若△CF1F2为等边三角形,求x A;(2)若直线AC与Γ恰有两个公共点,求b的最小值;(3)设b=1,过A的直线l与Γ相交于另外两点P、Q,求l的倾斜角的取值范围.43.如图,在平面直角坐标系xOy中,已知等轴双曲线E:(a>0,b>0)的左顶点A,过右焦点F且垂直于x轴的直线与E交于B,C两点,若△ABC的面积为.(1)求双曲线E的方程;(2)若直线l:y=kx﹣1与双曲线E的左,右两支分别交于M,N两点,与双曲线E的两条渐近线分别交于P,Q两点,求的取值范围.44.已知曲线,Q为曲线C上一动点,过Q作两条渐近线的垂线,垂足分别是P1和P2.(1)当Q运动到时,求的值;(2)设直线l(不与x轴垂直)与曲线C交于M、N两点,与x轴正半轴交于T点,与y 轴交于S点,若,,且λ+μ=1,求证T为定点.45.设双曲线的左顶点为D,且以点D为圆心的圆D:(x+2)2+y2=r2(r>0)与双曲线C分别相交于点A,B,如图所示.(1)求双曲线C的方程;(2)求的最小值,并求出此时圆D的方程;(3)设点P为双曲线C上异于点A,B的任意一点,且直线PA,PB分别与x轴相交于点M,N,求证:|OM|•|ON|为定值(其中O为坐标原点).46.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.47.已知双曲线C的一个焦点为,且过点.如图,F1,F2为双曲线的左、右焦点,动点P(x0,y0)(y0≥1)在C的右支上,且∠F1PF2的平分线与x轴、y 轴分别交于点M(m,0)(﹣<m<)、N,设过点F1,N的直线l与C交于D,E两点.(Ⅰ)求C的标准方程;(Ⅱ)求△F2DE的面积最大值.48.直线上的动点P到点T1(9,0)的距离是它到点T(1,0)的距离的3倍.(1)求点P的坐标;(2)设双曲线的右焦点是F,双曲线经过动点P,且,求双曲线的方程;(3)点T(1,0)关于直线x+y=0的对称点为Q,试问能否找到一条斜率为k(k≠0)的直线L与(2)中的双曲线交于不同的两点M、N,且满足|QM|=|QN|,若存在,求出斜率k的取值范围,若不存在,请说明理由.49.已知双曲线C1:的渐近线方程为y=±x,且过点,其离心率为e,抛物线C2的顶点为坐标原点,焦点为.(I)求抛物线C2的方程;(II)O为坐标原点,设A,B是抛物线上分别位于x轴两侧的两个动点,且=12.(i)求证:直线AB必过定点,并求出该定点P的坐标;(ii)过点P作AB的垂线与抛物线交于C,D两点,求四边形ACBD面积的最小值.50.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型建筑物.建在水源不十分充分的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.图1)(1)图2为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径.已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m,俯视图为三个同心圆,其半径分别为40m,m,30m,试根据上述尺寸计算主视图中该双曲线的标准方程(m为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,y=0,y=h,绕y轴旋转形成的旋转体的体积为(用a,b,h表示)(用积分计算不得分,图3、图4)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m(底部),最薄处厚度为0.3m(喉部,即左右顶点处).试计算该冷却塔内壳所在的双曲线标准方程是,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是m3(计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加.现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元)高中数学《双曲线》大题50题答案解析1.在①m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,②C的焦距为6,③C上一点到两焦点距离之差的绝对值为4.这三个条件中任选一个,补充在下面的问题中.问题:已知双曲线C:﹣=1,_____,求C的方程.【解析】选①.因为m>0,所以a2=m,b2=2m,c2=3m,所以a=,c=,因为C的左支上任意一点到右焦点的距离的最小值为a+c,所以a+c=+=3+,解得m=3,故C的方程为﹣=1;选②.若m>0,则a2=m,b2=2m,c2=3m,所以a=,c=,所以C的焦距为2c=2=6,解得m=3,则故C的方程为﹣=1;若m<0,则a2=﹣2m,b2=﹣m,c2=﹣3m,所以c=,所以C的焦距为2c=2=6,解得m=﹣3,则C的方程为﹣=1;选③.若m>0,则a2=m,所以a=,因为C上一点到两个焦点的距离之差的绝对值为4,所以2a=2=4,解得m=4,则C的方程为﹣=1;若m<0,则a2=﹣2m,所以a=,因为C上一点到两个焦点的距离之差的绝对值为4,所以2a=2=4,解得m=﹣2,则C的方程为﹣=1.2.已知双曲线C的右焦点F,半焦距c=2,点F到直线的距离为,过点F作双曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求双曲线C的标准方程;(2)证明:直线MN必过定点,并求出此定点的坐标.【解析】(1)由题意可得c=2,c﹣=,b2=c2﹣a2,解得:a2=3,b2=1,所以双曲线的方程为:﹣y2=1;(2)证明:设F(2,0)设过F的弦AB所在的直线方程为:x=ky+2,A(x1,y1),B(x2,y2),则有中点M(+2,),联立直线AB与双曲线的方程:整理可得:(k2﹣3)y2+4ky+1=0,因为弦AB与双曲线有两个交点,所以k2﹣3≠0,y1+y2=,所以x1+x2=k(y1+y2)+4=,所以M(,);(i)当k=0时,M点即是F,此时直线MN为x轴;(ii)当k≠0时,将M的坐标中的k换成﹣,同理可得N的坐标(,﹣),①当直线MN不垂直于x轴时,直线MN的斜率k MN==,将M代入方程可得直线MN:y﹣=(x﹣),化简可得y=(x﹣3),所以直线MN恒过定点P(3,0);②当直线MN垂直于x轴时,=可得k=±1,直线也过定点P(3,0);综上所述直线MN恒过定点P(3,0).3.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.【解析】(1)①当直线l斜率不存在时,方程为x=1,显然与双曲线Γ相切,只有一个交点,符合题意,②当直线l的斜率存在且与双曲线Γ相切时,设斜率为k,则直线l的方程为y﹣1=k(x﹣1),即y=kx﹣k+1联立方程,消去y得:(4﹣k2)x2﹣2k(1﹣k)x﹣[(1﹣k)2+4]=0,∵直线l和双曲线Γ有且仅有一个公共点,∴△=4k2(1﹣k)2+4(4﹣k2)[(1﹣k)2+4]=0,化简得:80﹣32k=0,∴,∴直线l的方程为:y=,即5x﹣2y﹣3=0,③当直线l与双曲线Γ的渐近线平行时,也与双曲线Γ有且仅有一个公共点,∵双曲线Γ的渐近线方程为:y=±2x,∴直线l的斜率为±2,∴直线l的方程为y﹣1=2(x﹣1)或y﹣1=﹣2(x﹣1),即2x﹣y﹣1=0或2x+y﹣3=0,综上所述,直线l的方程为:x=1或5x﹣2y﹣3=0或2x﹣y﹣1=0或2x+y﹣3=0;(2)假设点R在双曲线Γ上,不妨设直线l1方程为:y=2x,设点A(x1,2x1),B(x2,2x2),点P(x0,y0),∵P关于点A的对称点记为Q,∴点Q(2x1﹣x0,4x1﹣y0),∵Q关于点B的对称点记为R.∴点R(2x2﹣2x1+x0,4x2﹣4x1+y0),∵点R在双曲线Γ上,∴,∴﹣=1,∴,又∵点P(x0,y0)在双曲线Γ:x2﹣=1上,∴x02﹣=1,∴上式化为:4(x2﹣x1)•x0﹣2(x2﹣x1)•y0=0,又∵x1≠x2,∴4x0=2y0,∴y0=2x0,又∵x02﹣=1,∴,∴0=1,此式显然不成立,故假设不成立,所以点R不可能在双曲线Γ上.4.在平面直角坐标系中,已知双曲线I:,A,B分别为I的左,右顶点.(1)以A为圆心的圆与I恰有三个不同的公共点,写出此圆的方程;(2)直线L过点A,与I在第一象限有公共点P,线段AP的垂直平分线过点B,求直线L的方程;(3)I上是否存在异于A、B点M、N,使+2=成立,若存在,求出所有M、N的坐标,若不存在说明理由.【解析】(1)双曲线I:,A(﹣2,0),B(2,0),由题意可得以A为圆心的圆经过B,则圆的半径r=4,圆的方程为(x+2)2+y2=16;(2)直线L过点A(﹣2,0),且直线的斜率存在,设直线L的方程为y=k(x+2),(k >0),联立双曲线方程消去y,可得(5﹣4k2)x2﹣16k2x﹣16k2﹣20=0,可得x A+x P=,可得x P=,y P=k(x+2)=,可得AP的中点T坐标为(,),由题意可得k TB=﹣,即为=﹣,解得k=(负的舍去),则直线L的方程为y=(x+2);(3)假设I上存在异于A、B点M、N,使+2=成立.设M(x1,y1),N(x2,y2),由+2=,可得x2=2﹣2x1,y2=﹣2y1,将M,N的坐标代入双曲线的方程可得﹣=1,即﹣=1,又﹣=1,解得x1=2,y1=0,与B重合,故不存在.5.(Ⅰ)已知中心在原点的双曲线C的焦点坐标为,,且渐近线方程为,求双曲线C的标准方程;(Ⅱ)在圆x2+y2=3上任取一点P,过点P作y轴的垂线段PD,D为垂足,当点P在该圆上运动时,求线段PD的中点M的轨迹方程.【解析】(Ⅰ)依题可知双曲线的焦点在y轴上,设其方程为:,且①,双曲线的渐近线方程为,即②.又∵a2+b2=c2…③,由①②③可得.得双曲线方程为:;(Ⅱ)设轨迹上任一点M的坐标为(x,y),点P的坐标为(x0,y0),则依题意可知D点坐标为(0,y0),∵PD的中点为M,∴,即,∵点P在圆x2+y2=3上运动,,得4x2+y2=3,经检验所求方程符合题意,∴点M的轨迹方程为.6.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.【解析】(I)离心率为3,实轴长为1,即e==3,a=,可得c=,F(﹣,0),可设抛物线的方程为y2=2px,p>0,可得=,即p=3,可得抛物线的方程为y2=6x;(Ⅱ)设直线l的方程为x=my+t,设点M(x1,y1)、N(x2,y2),则x1=,x2=,将直线l的方程与抛物线C的方程联立,得y2﹣6my﹣6t=0,由韦达定理得y1+y2=6m,y1y2=﹣6t,∵OM⊥ON,∴k OM•k ON=•=﹣=﹣1,即t=6,由△=36m2+24×6>0恒成立,则|MN|==•=6≥12,当且仅当m=0时,|MN|取得最小值12.7.2018年世界人工智能大会已于2018年9月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏,如图:A、B两个信号源相距10米,O是AB的中点,过O点的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足:接收到A点的信号比接收到B点的信号晚秒(注:信号每秒传播v0米).在时刻t0时,测得机器鼠距离O点为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时刻t0时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?【解析】(1)设机器鼠位置为点P,由题意可得﹣=,即|PA|﹣|PB|=8<10,可得P的轨迹为双曲线的右支,且2c=10,2a=8,即有c=5,a=4,b=3,则P的轨迹方程为﹣=1(x≥4),时刻t0时,|OP|=4,即P(4,0),可得机器鼠所在位置的坐标为(4,0);(2)设直线l的平行线l1的方程为y=x+m,联立双曲线方程﹣=1(x≥4),可得7x2+32mx+16m2+144=0,即有△=(32m)2﹣28(16m2+144)=0,且x1+x2=﹣>0,可得m=﹣,即l1:y=x﹣与双曲线的右支相切,切点即为双曲线右支上距离l最近的点,此时l与l1的距离为d==,即机器鼠距离l最小的距离为>1.5,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.8.已知离心率为2的双曲线C的一个焦点F(c,0)到一条渐近线的距离为.(1)求双曲线C的方程;(2)设A1,A2分别为C的左右顶点,P为C异于A1,A2一点,直线A1P与A2P分别交y 轴于M,N两点,求证:以线段MN为直径的圆D经过两个定点.【解析】(1)设C:,因为离心率为2,所以c=2a,.所以C的渐近线为,由,得c=2.于是a=1,,故C的方程为.(2)方法一、设P(x0,y0)(x0≠±1),因为A1(﹣1,0),A2(1,0),可得直线A1P与A2P方程为,.由题设,所以,,,MN中点坐标,于是圆D的方程为.因为,所以圆D的方程可化为.当y=0时,,因此D经过两个定点和.方法二、设P(x0,y0)(x0≠±1),因为A1(﹣1,0),A2(1,0),可得直线A1P与A2P方程为,,由题设,所以,.设P(x,y)是圆D上点,则,即,于是圆D的方程为.因为,所以圆D的方程可化为.当y=0时,,因此D经过两个定点和.9.已知F1,F2为双曲线的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.【解析】(1)双曲线的a=1,c=,可令x=c,解得y=b=b2,设M(c,b2),由∠MF1F2=30°,可得b2=2c tan30°=,解得b=,则双曲线的方程为x2﹣=1,可得双曲线的方程为y=±x,即有tanθ=||=2,可得夹角θ=arctan2;(2)当直线AB的斜率不存在,可得A(,2),B(,﹣2),可得△AF1B的面积为×2×4=4;直线AB的斜率存在,设过点F2的直线l设为y=k(x﹣),联立双曲线方程2x2﹣y2=2,可得(2﹣k2)x2+2k2x﹣3k2﹣2=0,设A(x1,y1),B(x2,y2),又x1+x2=﹣>0,x1x2=﹣>0,可得k2>2,可得△AF1B的面积为S=•2c•|y1﹣y2|=•|k(x1﹣x2)|=•|k|•=|k|•,设t=k2﹣2(t>0),可得S=4•=4•>4,综上可得△AF1B的面积的最小值为4;(3)设Q(m,n),可得2m2﹣n2=2,双曲线的渐近线方程为y=±x,Q到直线y=x的距离为d=,由平行于直线y=﹣x的直线y=﹣(x﹣m)+n,联立直线y=x,可得Q2(,),|OQ2|=|n+m|,。
(二)双曲线性质典型例题例1 求与双曲线191622=-y x 共渐近线且过()332-,A 点的双曲线方程及离心率. .例2 求以曲线0104222=--+x y x 和222-=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.例3 已知双曲线的渐近线方程为023=±y x ,两条准线间的距离为131316,求双曲线标准方程. 例4 中心在原点,一个焦点为()01,F 的双曲线,其实轴长与虚轴长之比为m ,求双曲线标准方程.例5 求中心在原点,对称轴为坐标轴经过点()31-,P 且离心率为2的双曲线标准方程.例6 已知点()03,A ,()02,F ,在双曲线1322=-y x 上求一点P ,使PF PA 21+的值最小. 例7 已知:()11y x M ,是双曲线12222=-by a x 上一点.求:点M 到双曲线两焦点1F 、2F 的距离.例9 如图所示,已知梯形ABCD 中,CD AB 2=,点E 满足EC AE λ=,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4332≤≤λ时,求双曲线离心率的取值范围. 例10 设双曲线12222=-by a x )0(b a <<的半焦距为c ,直线l 过)0,(a 、),0(b 两点, 且原点到直线l 的距离为c 43,求双曲线的离心率.例11 在双曲线1131222=-x y 的一支上有三个点),(11y x A 、)6,(2x B 、),(33y x C 与焦点)5,0(F 的距离成等差. (1)求31y y +; (2)求证线段AC 的垂直平分线经过某个定点,并求出定点的坐标.例12 根据以下条件,分别求出双曲线的标准方程. (1)过点)2,3(-P ,离心率25=e . (2)已知双曲线的右准线为4=x ,右焦点为)0,10(F ,离心率2=e .(3)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且︒=∠6021PF F ,31221=∆F PF S ,又离心率为2. 例13 已知双曲线12222=-by a x 的离心率21+>e ,左、右焦点分别为1F 、2F ,左准线为l ,能否在双曲线的左支上找到一点P ,使得1PF 是P 到l 的距离d 与2PF 的等比中项?例14 直线1+=kx y 与双曲线122=-y x 的左支相交于A ,B 两点,设过点)0,2(-和AB 中点的直线l 在y 轴上的截距为b ,求b 的取值范围.例15 已知1l ,2l 是过点)0,2(-P 的两条互相垂直的直线,且1l ,2l 与双曲线122=-x y 各有1A ,1B 和2A ,2B 两个交点. (1)求1l 的斜率1k 的取值范围;(2)若22115B A B A =,求1l ,2l 的方程; (3)若1A 恰是双曲线的一个顶点,求22B A 的值. 例16 已知双曲线的渐近线方程是043=+y x ,043=-y x ,求双曲线的离心率.例17 已知双曲线S 的两条渐近线过坐标原点,且与以)0,2(A 为圆心,1为半径的圆相切,双曲线S 的一个顶点'A 和A 关于直线x y =对称,设直线l 过点A ,斜率为k .(1)求双曲线S 的方程;(2)当1=k 时,在双曲线S 的上支求点B ,使其与直线l 的距离为2;(3)当10<≤k 时,若双曲线S 的上支上有且只有一个点B 到直线l 的距离为2,求斜率k 的值及点B 的坐标. 例18 如右图,给出定点)0,(a A )0(>a 和直线1-=x l :, B 是直线l 上的动点,BOA ∠的角平分线交AB 于C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系\例19 已知双曲线C 的实轴在直线2=x 上,由点)4,4(-A 发出的三束光线射到x 轴上的点P 、Q 及坐标原点O 被x 轴反射,反射线恰好分别通过双曲线的左、右焦点1F 、2F 和双曲线的中心M .若4=PQ ,过右焦点的反射光线与右准线交点的纵坐标为98,求双曲线C 的方程和入射光线AP 、AQ 所在直线的方程.。
11月6日 双曲线的定义及其标准方程(2)高考频度:★★★☆☆ 难易程度:★★★☆☆典例在线如图,若F 1,F 2是双曲线221916x y -=的两个焦点. (1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且|PF 1||PF 2|=32,试求12F PF △的面积.【参考答案】(1)10或22;(2)16.(2)将12|||||6|PF PF -=两边平方,得212122||||2||||36F PF F PF P P +=-,所以1212223||||2|106|||0F F P P PF P F ++==, 在12F PF △中,由余弦定理得2221212121212||||||cos 21||||2|||0010|00F PF F F F PF F P P P PF F PF +--===∠, 所以1290F PF =︒∠,12F PF △的面积1211||||321622F PF S P ==⨯=. 【解题必备】(1)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件12||||||2F PF P a -=的应用,同时应注意双曲线上的点到任一焦点的距离都大于等于c -a ,从而两解中要舍去不满足要求的那个;其次是利用正弦定理、余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.(2)在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能正确解题.①当||MF 1|-|MF 2||=2a <|F 1F 2|(a >0),即|MF 1|-|MF 2|=±2a ,0<2a <|F 1F 2|时,点M 的轨迹是双曲线, 其中取正号时为双曲线的右(上)支,取负号时为双曲线的左(下)支;②当||MF 1|-|MF 2||=2a =|F 1F 2|(a >0)时,点M 的轨迹是以点F 1,F 2为端点的两条射线;③当||MF 1|-|MF 2||=2a >|F 1F 2|(a >0)时,点M 的轨迹不存在.(3)对于形如:Ax 2+By 2=1(AB <0)的双曲线的方程,其包含焦点在x 轴上和在y 轴上两种情况, ①当B <0时,表示焦点在x 轴上的双曲线;②当A <0时,表示焦点在y 轴上的双曲线.利用此种形式的方程可避免讨论.学霸推荐1.方程22123x y m m +=-+表示双曲线,则实数m 的取值范围是 A .3-<m <2B .1-<m <3C .3-<m <4D .3-<m <02. 已知定点()12,0F -,()22,0F ,N 是圆O :221x y +=上任意一点,点1F 关于点N 的对称点为M ,线段1F M 的中垂线与直线2F M 相交于点P ,则点P 的轨迹是A .直线B .圆C .椭圆D .双曲线1.【答案】A【名师点睛】解答本题的关键是正确理解双曲线的概念,然后转化成不等式的问题求解,考查对定义的理解和运用,属于基础题.根据双曲线的定义可得方程中两个分母异号,由此得到关于m 的不等式,解不等式可得到所求.2.【答案】D【名师点睛】根据三角形中位线性质以及中垂线性质得122||||||||22PF PF F M ON -===,再根据双曲线定义得结果.求轨迹方程,一般有以下方法:一是定义法,动点满足圆或圆锥曲线定义;二是直接法,化简条件即得;三是转移法,除所求动点外,一般还有已知轨迹的动点,寻求两者关系是关键;四是交轨法或参数法,如何消去参数是解题关键,且需注意消参过程中的等价性.。
2019年全国统一高考数学试卷(文科)(新课标Ⅱ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x>−1},B={x|x<2},则A∩B=()A. (−1,+∞)B. (−∞,2)C. (−1,2)D. ⌀2.设z=i(2+i),则z−=()A. 1+2iB. −1+2iC. 1−2iD. −1−2i3.已知向量a⃗=(2,3),b⃗ =(3,2),则|a⃗−b⃗ |=()A. √2B. 2C. 5√2D. 504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. 23B. 35C. 25D. 155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为().A. 甲、乙、丙B. 乙、甲、丙C. 丙、乙、甲D. 甲、丙、乙6.设f(x)为奇函数,且当x≥0时,f(x)=e x−1,则当x<0时,f(x)=()A. e−x−1B. e−x+1C. −e−x−1D. −e−x+17.设α,β为两个平面,则α//β的充要条件是()A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面8.若x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=()A. 2B. 32C. 1 D. 129.若抛物线y2=2px(p>0)的焦点是椭圆x23p +y2p=1的一个焦点,则p=()A. 2B. 3C. 4D. 810.曲线y=2sinx+cosx在点处的切线方程为()A. x−y−π−1=0B. 2x−y−2π−1=0C. 2x+y−2π+1=0D. x+y−π+1=011.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=()A. 15B. √55C. √33D. 2√5512.设F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为()A. √2B. √3C. 2D. √5二、填空题(本大题共4小题,共20.0分)13.若变量x,y满足约束条件{2x+3y−6≥0,x+y−3≤0,y−2≤0,则z=3x−y的最大值是______.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______.15.△ABC的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=______.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、解答题(本大题共7小题,共84.0分)17.如图,长方体ABCD−A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E−BB1C1C的体积.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:√74≈8.602.20.已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.21.已知函数f(x)=(x−1)lnx−x−1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.22.在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π时,求ρ0及l的极坐标方程;3(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.23.已知f(x)=|x−a|x+|x−2|(x−a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(−∞,1)时,f(x)<0,求a的取值范围.答案和解析1.【答案】C【解析】【分析】本题考查交集及其运算,是基础题.直接利用交集运算得答案.【解答】解:由A={x|x>−1},B={x|x<2},得A∩B={x|x>−1}∩{x|x<2}={x|−1<x<2},即A∩B=(−1,2).故选C.2.【答案】D【解析】【分析】本题考查复数四则运算及共轭复数,是基础题.利用复数代数形式的乘除运算化简,再由共轭复数的概念即可得答案.【解答】解:∵z=i(2+i)=−1+2i,∴z−=−1−2i,故选D.3.【答案】A【解析】【分析】本题考查平面向量的坐标运算,考查向量模的求法,是基础题,利用向量的坐标减法运算求得a⃗−b⃗ 的坐标,再由向量模的公式求解,【解答】解:∵a⃗=(2,3),b⃗ =(3,2),∴a⃗−b⃗ =(2,3)−(3,2)=(−1,1),∴|a⃗−b⃗ |=√(−1)2+12=√2.故选A.4.【答案】B【解析】【分析】本题主要考查概率的求解,属于基础题.利用列举法求解即可.【解答】解:记3只测量过某项指标的兔子分别为A,B,C,没有测量过某项指标的兔子为D,E,则从这5只兔子中随机取出3只的所有情况为(A,B,C),(A,B,D),(A,B,E),(A,C,D),(A,C,E),(A,D,E),(B,C,D),(B,C,E),(B,D,E),(C,D,E),共10种,恰有2只测量过该指标的所有情况有6种,∴概率为610=35.故选:B.5.【答案】A【解析】【分析】本题主要考查合情推理,属于基础题.因为只有一个人预测正确,所以本题关键是要找到互相关联的两个预测入手就可找出矛盾,从而得出正确结果.【解答】解:由题意,可把三人的预测简写如下:甲:甲>乙.乙:丙>乙且丙>甲.丙:丙>乙.∵只有一个人预测正确,∴分析三人的预测:如果乙预测正确,则丙预测正确,不符合题意;如果丙预测正确,假设甲、乙预测不正确,则有丙>乙,乙>甲,∵乙预测不正确,而丙>乙正确,∴只有丙>甲不正确,∴甲>丙,这与丙>乙,乙>甲矛盾.不符合题意;∴只有甲预测正确,乙、丙预测不正确,则有甲>乙,乙>丙.故选A.6.【答案】D【解析】【分析】本题考查函数奇偶性的应用,是基础题.设x<0,则−x>0,代入已知函数解析式,结合函数奇偶性可得x<0时的f(x).【解答】解:设x<0,则−x>0,∵f(x)为奇函数,∴f(x)=−f(−x)=−(e−x−1)=−e−x+1,故选D.7.【答案】B【解析】【分析】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题.由充要条件的定义结合面面平行的判定定理可得结论.【解答】解:对于A,α内有无数条直线与β平行,α与β相交或α//β;对于B,α内有两条相交直线与β平行,则α//β;对于C,α,β平行于同一条直线,α与β相交或α//β;对于D,α,β垂直于同一平面,α与β相交或α//β.故选B.8.【答案】A【解析】【分析】本题考查了三角函数的图象与性质,关键是根据条件得出周期,属于基础题.x1=π4,x2=3π4是f(x)两个相邻的极值点,则周期T=2(3π4−π4)=π,然后根据周期公式即可求出ω.【解答】解:∵x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,∴T=2(3π4−π4)=π=2πω∴ω=2,故选A.9.【答案】D【解析】【分析】本题考查了抛物线与椭圆的性质,属基础题.根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得3p−p=(p2)2,解得p=8.故选D.10.【答案】C【解析】【分析】本题考查利用导数研究过曲线上某点处的切线方程,熟记基本初等函数的导函数是关键,属于基础题.求出原函数的导函数,得到函数在x=π时的导数,再由直线方程点斜式得答案.【解答】解:由y=2sinx+cosx,得y′=2cosx−sinx,∴y′|x=π=2cosπ−sinπ=−2,∴曲线y=2sinx+cosx在点(π,−1)处的切线方程为y+1=−2(x−π),即2x+y−2π+1=0.故选:C.11.【答案】B【解析】【分析】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.由二倍角公式化简已知条件可得4sinαcosα=2cos2α,结合角的范围可求得sinα> 0,cosα>0,可得cosα=2sinα,根据同角三角函数基本关系式即可解得sinα的值.【解答】解:∵2sin2α=cos2α+1,由二倍角公式可得4sinαcosα=2cos2α,∵α∈(0,π2),∴sinα>0,cosα>0,∴cosα=2sinα,则有sin2α+cos2α=sin2α+(2sinα)2=5sin2α=1,解得sinα=√55.故选B .12.【答案】A【解析】【分析】本题考查双曲线的简单性质,考查数形结合的解题思想方法,属于中档题.方法一:根据题意画图,由图形的对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.方法二:由题意画出图形,先求出PQ ,再由|PQ|=|OF|列式求C 的离心率. 【解答】 方法一:解:设PQ 与x 轴交于点A ,由对称性可知PQ ⊥x 轴 又∵|PQ|=|OF|=c , ∴|PA|=c2,∴PA 为以OF 为直径的圆的半径, ∴A 为圆心,|OA|=c2∴P (c 2,c2),又P 点在圆x 2+y 2=a 2上,∴c 24+c 24=a 2,即c 22=a2,∴e 2=c 2a 2=2∴e =√2,故选A .方法二:如图,以OF 为直径的圆的方程为x 2+y 2−cx =0, 又圆O 的方程为x 2+y 2=a 2, ∴PQ 所在直线方程为.把x =代入x 2+y 2=a 2,得PQ =,再由|PQ|=|OF|,得,即4a 2(c 2−a 2)=c 4,∴e 2=2,解得e =.故选A . 13.【答案】9【解析】【分析】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件{2x +3y −6≥0x +y −3≤0y −2≤0作出可行域如图:化目标函数z=3x−y为y=3x−z,由图可知,当直线y=3x−z过A(3,0)时,直线在y轴上的截距最小,z有最大值为9.故答案为9.14.【答案】0.98【解析】【分析】本题考查加权平均数公式等基础知识,属于基础题.利用加权平均数公式直接求解.【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,∴经停该站高铁列车所有车次的平均正点率的估计值为:(10×0.97+20×0.98+10×0.99)=0.98.x−=110+20+10故答案为0.98.15.【答案】3π4【解析】【分析】本题主要考查了正弦定理,同角三角函数基本关系式,特殊角的三角函数值在解三角形中的应用,考查了计算能力和转化思想,属于基础题.由正弦定理化简已知等式可得sinAsinB+sinAcosB=0,由于sinA>0,化简可得tanB=−1,结合范围B∈(0,π),可求B的值为3π.4【解答】解:∵bsinA+acosB=0,∴由正弦定理可得:sinAsinB+sinAcosB=0,∵A∈(0,π),sinA>0,∴可得:sinB+cosB=0,可得:tanB=−1,∵B∈(0,π),∴B=3π.4故答案为3π.416.【答案】26;√2−1【解析】【分析】本题考查了几何体的内接多面体,属中档题.中间层是一个正八棱柱,有8个侧面,上层是有8+1个面,下层也有8+1个面,故共有26个面;中间层正八棱柱的棱长加上两个棱长的√22倍等于正方体的棱长.【解答】解:该半正多面体中间层是一个正八棱柱,有8个侧面,故该半正多面体共有8+8+ 8+2=26个面;设其棱长为x,因为每个顶点都在边长为1的正方体上,则x+√22x+√22x=1,解得x=√2−1.故答案为26;√2−1.17.【答案】解:(1)证明:由长方体ABCD−A1B1C1D1,可知B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,∴B1C1⊥BE,∵BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,∴BE⊥平面EB1C1;(2)由(1)知BE⊥平面EB1C1,∵B1E⊂平面EB1C1,∴B1E⊥BE,∴∠BEB1=90°,由题设可知Rt△ABE≌Rt△A1B1E,∴∠AEB=∠A1EB1=45°,∴AE=AB=3,AA1=2AE=6,∵在长方体ABCD−A1B1C1D1中,AA1//平面BB1C1C,E∈AA1,AB⊥平面BB1C1C,∴E到平面BB1C1C的距离d=AB=3,∴四棱锥E−BB1C1C的体积V=13×3×6×3=18.【解析】本题考查了线面垂直的判定定理和性质,考查了四棱锥体积的求法,属于中档题.(1)由线面垂直的性质可得B1C1⊥BE,结合BE⊥EC1利用线面垂直的判定定理可证明BE⊥平面EB1C1;(2)由条件可得AE=AB=3,然后得到E到平面BB1C1C的距离d=3,再求四棱锥的体积即可.18.【答案】解:(1)设等比数列的公比为q,由a1=2,a3=2a2+16,得2q2=4q+16,即q2−2q−8=0,解得q=−2(舍)或q=4.∴a n=a1q n−1=2×4n−1=22n−1.(2)b n=log2a n=log222n−1=2n−1,∵b1=1,b n+1−b n=2(n+1)−1−2n+1=2,∴数列{b n}是以1为首项,以2为公差的等差数列,则数列{b n}的前n项和T n=n×1+n(n−1)×22=n2.【解析】本题考查等差数列与等比数列的通项公式及前n项和,考查对数的运算性质,属于基础题.(1)设等比数列的公比,由已知列式求得公比,则通项公式可求;(2)把(1)中求得的{a n}的通项公式代入b n=log2a n,得到b n,说明数列{b n}是等差数列,再由等差数列的前n项和公式求解.19.【答案】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:14+7100=0.21=21%,产值负增长的企业频率为:2100=0.02=2%,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)企业产值增长率的平均数y−=1100(−0.1×2+0.1×24+0.3×53+0.5×14+ 0.7×7)=0.3=30%,产值增长率的方程s2=1100∑n i5i=1(y i−y−)2=1100[(−0.4)2×2+(−0.2)2×24+02×53+0.22×14+0.42×7]=0.0296,∴产值增长率的标准差s=√0.0296=0.02×√74≈0.17,∴这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.【解析】本题考查了样本数据的平均值和方程的求法,考查运算求解能力,属基础题.(1)根据频数分布表计算即可;(2)根据平均值和标准差计算公式代入数据计算即可.20.【答案】解:(1)连接PF1,由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=√3c,于是2a=|PF1|+|PF2|=(√3+1)c,故曲线C的离心率e=ca=√3−1.(2)由题意可知,满足条件的点P(x,y)存在当且仅当:12|y|⋅2c=16,yx+c⋅yx−c=−1,x2 a2+y2b2=1,即c|y|=16①x2+y2=c2 ②x2 a2+y2b2=1③由②③及a2=b2+c2得y2=b4c ,又由①知y2=162c,故b=4,由②③得x2=a2c2(c2−b2),所以c2≥b2从而a2=b2+c2≥2b2=32,故a≥4√2,当b=4,a≥4√2时,存在满足条件的点P.所以b=4,a的取值范围为[4√2,+∞).【解析】本题主要考查了椭圆的性质和直线与圆锥曲线的位置关系,解答本题的关键是掌握相关知识,逐一分析解答即可.(1)根据△POF2为等边三角形,可得在△F1PF2中,∠F1PF2=90°,在根据直角形和椭圆定义可得;(2)根据三个条件列三个方程,解方程组可得b=4,根据x2=a2c2(c2−b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4√2,21.【答案】证明:(1)∵函数f(x)=(x−1)lnx−x−1.∴f(x)的定义域为(0,+∞),f′(x)=x−1x +lnx−1=lnx−1x,∵y=lnx在(0,+∞)上单调递增,y=1x在(0,+∞)上单调递减,∴f′(x)在(0,+∞)上单调递增,又f′(1)=−1<0,f′(2)=ln2−12=ln4−12>0,∴存在唯一的x0∈(1,2),使得f′(x0)=0.当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,∴f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=−2,又f(e2)=e2−3>0,∴f(x)=0在(x0,+∞)内存在唯一的根,记为x=a,由a>x0>1,得0<1a<1<x0,∵f(1a )=(1a−1)ln1a−1a−1=f(a)a=0,∴1a是f(x)=0在(0,x0)的唯一根,综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.【解析】本题考查函数有唯一的极值点的证明,考查函数有且仅有两个实根,且两个实根互为倒数的证明,考查导数性质、函数的单调性、最值、极值等基础知识,考查化归与转化思想、函数与方程思想,考查运算求解能力,属于较难题.(1)推导出f(x)的定义域为(0,+∞),f′(x)=lnx−1x,从而f′(x)单调递增,进而存在唯一的x0∈(1,2),使得f′(x0)=0.由此能证明f(x)存在唯一的极值点;(2)由f(x0)<f(1)=−2,f(e2)=e2−3>0,得到f(x)=0在(x0,+∞)内存在唯一的根x=a,由a>x0>1,得0<1a <1<x0,从而1a是f(x)=0在(0,x0)的唯一根,所以f(1a )=(1a−1)ln1a−1a−1=f(a)a=0,由此能证明f(x)=0有且仅有两个实根,且两个实根互为倒数.22.【答案】解:(1)如图:∵M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,当θ0=π3时,,且由图得|OP|=|OA|cosθ0=2,在直线l上任取一点(ρ,θ),则有,即,故l的极坐标方程为ρcos(θ−π3)=2;(2)设P(ρP,θP),则在Rt△OAP中,有|OP|=|OA|cosθP即ρP=4cosθP,∵P在线段OM上,且AP⊥OM,∴θP∈[π4,π2 ],其中π4为P点与M点重合时的角度,由4cosθP=4sinθP得到,故P点轨迹的极坐标方程为ρ=4cosθ,θ∈[π4,π2 ].【解析】本题考查曲线的极坐标方程及其应用,数形结合能力,是中档题.(1)由θ0=π3可得|OP|=2,在直线l上任取一点(ρ,θ),利用三角形中边角关系即可求得l的极坐标方程;(2)设P(ρ,θ),在Rt△OAP中,根据边与角的关系得答案.23.【答案】解:(1)当a=1时,f(x)=|x−1|x+|x−2|(x−1),∵f(x)<0,∴当x<1时,f(x)=−2(x−1)2<0,恒成立,∴x<1;当x≥1时,f(x)=(x−1)(x+|x−2|)≥0恒成立,∴x∈⌀;综上,不等式的解集为(−∞,1).(2)∵x∈(−∞,1)时,f(x)=|x−a|x−(x−2)(x−a).当a≥1时,f(x)=2(a−x)(x−1)<0在x∈(−∞,1)上恒成立;当a<1时,若x∈(−∞,a),f(x)=2(a−x)(x−1)<0,∴f(x)<0,成立;若x∈(a,1),则f(x)=2(x−a)>0,不满足题意;所以当a<1时,不满足题意;综上,a的取值范围为[1,+∞).【解析】本题考查了绝对值不等式的解法,考查了分类讨论思想,关键是掌握相关知识,逐一分析解答即可,属于中档题.(1)将a=1代入得f(x)=|x−1|x+|x−2|(x−1),然后分x<1和x≥1两种情况讨论f(x)<0即可;(2)根据条件分a≥1和a<1两种情况讨论即可.。
平面解析几何专题1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40° B .2cos40° C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒, 故选D .【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a ==对于椭圆()222210x y a b a b +=>>,有c e a ==3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.4.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .5.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又3OP OF ===,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△, 故选B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设()00,P x y ,由=O P O F ,再结合双曲线方程可解出0y ,利用三角形面积公式可求出结果.7.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .12【答案】D【解析】∵双曲线的离心率ce a==,c∴a=12a =,故选D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a ===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.9.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=.【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.10.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.11.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程. 12.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由2411y x'=-=-,得)x x ==,y =Q , 则切点Q 到直线x +y =04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.13.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.14.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛- ⎝⎭,所以212PFk ==.【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 15.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.16.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(11;(2)4b =,a 的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P . 所以4b =,a的取值范围为)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.17.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见详解;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.18.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t ktk k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||OA OB =(O 为原点). (1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得2222a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭. 由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 232==,因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为1+G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122122213434S m S m m m m =-=-=++++…当m =时,12S S取得最小值1+G (2,0).【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。
专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。
福建2019届高考数学双曲线专项练习(含答案)在数学中,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
以下是双曲线专项练习,请考生认真练习。
1.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是()A.双曲线B.双曲线左边一支C.双曲线右边一支D.一条射线2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为()A. B. C. D.(,0)3.(2019大纲全国,文11)双曲线C:=1(a0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.44.过双曲线=1(a0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是()A. B. C.2 D.5.已知双曲线的两个焦点为F1(-,0),F2(,0),M是此双曲线上的一点,且满足=0,||||=2,则该双曲线的方程是()A.-y2=1B.x2-=1C.=1D.=16.已知双曲线C的离心率为2,焦点为F1,F2,点A在C上.若|F1A|=2|F2A|,则cosAF2F1=()A. B. C. D.7.(2019福建莆田模拟)已知双曲线=1的右焦点的坐标为(,0),则该双曲线的渐近线方程为 .8.A,B是双曲线C的两个顶点,直线l与双曲线C交于不同的两点P,Q,且与实轴所在直线垂直.若=0,则双曲线C的离心率e= .9.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).(1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:=0;(3)在(2)的条件下求△F1MF2的面积.10.(2019福建厦门模拟)双曲线=1(a0)的一条渐近线方程是y=x,坐标原点到直线AB的距离为,其中A(a,0),B(0,-b).(1)求双曲线的方程;(2)若B1是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点M,N求时,直线MN的方程.能力提升组11.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为()A. B.2 C.4 D.812.已知点P是双曲线=1(a0)右支上一点,F1,F2分别为双曲线的左、右焦点,点I为PF1F2的内心,若+成立,则的值为()A. B. C. D.13.若点O和点F(-2,0)分别为双曲线-y2=1(a0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为() A.[3-2,+) B.[3+2,+)C. D.14.(2019浙江,文17)设直线x-3y+m=0(m0)与双曲线=1(a0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是 .15.(2019湖南,文20)如图,O为坐标原点,双曲线C1:=1(a10)和椭圆C2:=1(a20)均过点P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C1,C2的方程;(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且||=||?证明你的结论.16.已知双曲线E:=1(a0)的两条渐近线分别为l1:y=2x,l2:y=-2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.1.C 解析:|PM|-|PN|=34,由双曲线定义知,其轨迹为双曲线的一支.又|PM||PN|,点P的轨迹为双曲线的右支.2.C 解析:双曲线的标准方程为x2-=1,a2=1,b2=.c2=a2+b2=.c=,故右焦点坐标为.3.C 解析:e=2,=2.设焦点F2(c,0)到渐近线y=x的距离为,渐近线方程为bx-ay=0,∵c2=a2+b2,b=.由=2,得=2,=4,解得c=2.焦距2c=4,故选C.4.A 解析:如图所示,在Rt△OPF中,OMPF,且M为PF的中点, 则△POF为等腰直角三角形.所以△OMF也是等腰直角三角形.所以有|OF|=|OM|,即c=a.故e=.5.A 解析:由=0,可知.可设||=t1,||=t2,则t1t2=2.在△MF1F2中,=40,则|t1-t2|===6=2a.解得a=3.故所求双曲线方程为-y2=1.6.A 解析:双曲线的离心率为2,=2,a∶b∶c=1∶∶2.又|AF1|=4a,|AF2|=2a,|F1F2|=2c=4a,cosAF2F1选A.7.2x3y=0 解析:因为右焦点坐标是(,0),所以9+a=13,即a=4.所以双曲线方程为=1.所以渐近线方程为=0,即2x3y=0.8. 解析:如图所示,设双曲线方程为=1,取其上一点P(m,n), 则Q(m,-n),由=0可得(a-m,-n)(m+a,-n)=0,化简得a2-m2+n2=0.又=1可得b=a,故双曲线的离心率为e=.9.(1)解:因为e=,所以可设双曲线方程为x2-y2=.因为双曲线过点(4,-),所以16-10=,即=6.所以双曲线方程为=1.(2)证明:由(1)可知,在双曲线中a=b=,所以c=2.所以F1(-2,0),F2(2,0).所以=(-2-3,-m),=(2-3,-m),则=9-12+m2=m2-3.因为点(3,m)在双曲线上,所以9-m2=6,即m2=3.所以=m2-3=0.(3)解:由(2)知△F1MF2的高h=|m|=,由△F1MF2的底边|F1F2|=4,则=6.10.解:(1)设直线AB:=1,由题意,所以所以双曲线方程为=1.(2)由(1)得B(0,-3),B1(0,3),设M(x1,y1),N(x2,y2),易知直线MN的斜率存在.设直线MN:y=kx-3,所以所以3x2-(kx-3)2=9.整理得(3-k2)x2+6kx-18=0,①所以x1+x2=,y1+y2=k(x1+x2)-6=,x1x2=,y1y2=k2(x1x2)-3k(x1+x2)+9=9.因为=(x1,y1-3),=(x2,y2-3), =0,所以x1x2+y1y2-3(y1+y2)+9=0,即+9-+9=0,解得k2=5,所以k=,代入①有解,所以lMN:y=x-3.11.C 解析:设等轴双曲线方程为x2-y2=m(m0),因为抛物线的准线为x=-4,且|AB|=4,所以|yA|=2.把坐标(-4,2)代入双曲线方程得m=x2-y2=16-12=4, 所以双曲线方程为x2-y2=4,即=1.所以a2=4,所以实轴长2a=4.12.B 解析:设△PF1F2内切圆半径为r,根据已知可得|PF1|r=|PF2|r+2cr,整理可得|PF1|=|PF2|+2c.由双曲线的定义可得|PF1|-|PF2|=2a,则2c=2a,故=.13.B 解析:由a2+1=4,得a=,则双曲线方程为-y2=1.设点P(x0,y0),则=1,即-1.=x0(x0+2)+=+2x0+-1x0,当x0=时,取最小值3+2.故的取值范围是[3+2,+).14. 解析:双曲线=1的两条渐近线方程分别是y=x和y=-x. 由解得A,由解得B.设AB中点为E,则E.由于|PA|=|PB|,所以PE与直线x-3y+m=0垂直,而kPE=,于是=-1.所以a2=4b2=4(c2-a2).所以4c2=5a2,解得e=.15.解:(1)设C2的焦距为2c2,由题意知,2c2=2,2a1=2.从而a1=1,c2=1.因为点P在双曲线x2-=1上,所以=1.故=3.由椭圆的定义知2a2==2.于是a2==2.故C1,C2的方程分别为x2-=1,=1.(2)不存在符合题设条件的直线.①若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=或x=-.当x=时,易知A(),B(,-),所以||=2,||=2.此时,||||.当x=-时,同理可知,||||.②若直线l不垂直于x轴,设l的方程为y=kx+m.由得(3-k2)x2-2kmx-m2-3=0.当l与C1相交于A,B两点时,设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,从而x1+x2=,x1x2=.于是y1y2=k2x1x2+km(x1+x2)+m2=.由得(2k2+3)x2+4kmx+2m2-6=0.因为直线l与C2只有一个公共点,所以上述方程的判别式=16k2m2-8(2k2+3)(m2-3)=0.化简,得2k2=m2-3,因此=x1x2+y1y2=0,于是+2-2,即||||,故||||.综合①,②可知,不存在符合题设条件的直线.16.解法一:(1)因为双曲线E的渐近线分别为y=2x,y=-2x, 所以=2,所以=2,故c=a,从而双曲线E的离心率e=.(2)由(1)知,双曲线E的方程为=1.设直线l与x轴相交于点C.当lx轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,又因为△OAB的面积为8,所以|OC||AB|=8,因此a4a=8,解得a=2,此时双曲线E的方程为=1.若存在满足条件的双曲线E,则E的方程只能为=1.以下证明:当直线l不与x轴垂直时,双曲线E:=1也满足条件.设直线l的方程为y=kx+m,依题意,得k2或k-2,则C.记A(x1,y1),B(x2,y2).由得y1=,同理得y2=,由S△OAB=|OC||y1-y2|得,=8,即m2=4|4-k2|=4(k2-4).由得,(4-k2)x2-2kmx-m2-16=0.因为4-k20,=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16),又m2=4(k2-4),所以=0,即l与双曲线E有且只有一个公共点.因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为=1.解法二:(1)同解法一.(2)由(1)知,双曲线E的方程为=1.设直线l的方程为x=my+t,A(x1,y1),B(x2,y2).依题意得-2或k-2.由得,(4-k2)x2-2kmx-m2=0,因为4-k20,0,所以x1x2=,又因为△OAB的面积为8,所以|OA||OB|sinAOB=8,由已知sinAOB=,所以=8,化简得x1x2=4.所以=4,即m2=4(k2-4).由(1)得双曲线E的方程为=1,由得,(4-k2)x2-2kmx-m2-4a2=0,因为4-k20,直线l与双曲线E有且只有一个公共点当且仅当=4k2m2+4(4-k2)(m2+4a2)=0,即(k2-4)(a2-4)=0,所以a2=4,所以双曲线E的方程为=1.当lx轴时,由△OAB的面积等于8可得l:x=2,又易知l:x=2与双曲线E:=1有且只有一个公共点.综上所述,存在总与l有且只有一个公共点的双曲线E,且E 的方程为=1.双曲线专项练习及答案的全部内容希望考生可以通过试卷查缺补漏。