高中数学必修+选修知识点归纳大全
- 格式:doc
- 大小:4.46 MB
- 文档页数:55
高中数学知识点总结引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算高中数学必修1知识点第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇补集U A{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.()()()U U U A B A B =()()()UU U A B A B =(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <,(前者可以不成立,为空集;而后者必须成立). (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:yxo要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时, (0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 【2.2.2】对数函数及其性质(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =xxxxx x(q)0x xfxfx①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学选修知识点归纳
高中数学选修知识点包括以下内容:
1. 数列与数列极限:常数列、等差数列、等比数列、等差数列的前n项和、等比数列
的前n项和、数列极限、递推关系式。
2. 排列与组合:排列的定义、全排列、圆排列、组合的定义、二项式系数、二项式定理、组合数的性质。
3. 概率与统计:事件、概率的定义、概率的性质、条件概率、独立事件、贝叶斯公式、期望、方差、频率分布、参数估计。
4. 三角函数与图像:弧度制、角度制、正弦函数、余弦函数、正切函数、三角函数的
周期性、三角函数的图像和性质。
5. 平面向量与立体几何:平面向量的定义、向量的运算(加法、数乘、数量积、向量积)、向量的坐标表示、平面向量的共线性与垂直性、立体几何的基本概念(点、直线、平面、球面)。
6. 导数与微分:导数的定义、基本导数公式、导数的四则运算、导数的应用(切线与
法线、函数的单调性与极值、函数的凹凸性与拐点、变化率与边际效应)。
7. 不等式与线性规划:不等式的性质、不等式组的解法(图解法、代入法、分段讨论法)、线性规划的基本概念、线性规划的图解法和算法解法。
8. 微分方程:微分方程的定义、微分方程的求解方法(可分离变量法、齐次方程法、
一阶线性微分方程法)。
这些知识点是高中数学选修课程的主要内容,通过学习这些知识点,可以更深入地了解数学的应用与推导,为后续的学习和研究提供坚实的基础。
高中数学必修+选修1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步.必修3:算法初步、统计、概率.必修4:基本初等函数(三角函数)、平面向量、三角恒等变换.必修5:解三角形、数列、不等式.以上是每一个高中学生所必须学习的.上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等.不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求.此外,基础内容还增加了向量、算法、概率、统计等内容.选修课程有4个系列:系列1:由2个模块组成.选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用.选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成.选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何.选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例.系列3:由6个专题组成.选修3—1:数学史选讲.选修3—2:信息安全与密码.选修3—3:球面上的几何.选修3—4:对称与群.选修3—5:欧拉公式与闭曲面分类.选修3—6:三等分角与数域扩充.系列4:由10个专题组成.选修4—1:几何证明选讲.选修4—2:矩阵与变换.选修4—3:数列与差分.选修4—4:坐标系与参数方程.选修4—5:不等式选讲.选修4—6:初等数论初步.选修4—7:优选法与试验设计初步.选修4—8:统筹法与图论初步.选修4—9:风险与决策.选修4—10:开关电路与布尔代数.2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算专题一:常用逻辑用语1.命题:可以判断真假的语句叫命题;逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题;复合命题:由简单命题与逻辑联结词构成的命题.常用小写的拉丁字母p,q,r,s,……表示命题.2.四种命题及其相互关系四种命题的真假性之间的关系:⑴两个命题互为逆否命题,它们有相同的真假性;⑵两个命题为互逆命题或互否命题,它们的真假性没有关系. 3.充分条件、必要条件与充要条件⑴一般地,如果已知p q ⇒,那么就说:p 是q 的充分条件,q 是p 的必要条件; 若p q ⇔,则p 是q 的充分必要条件,简称充要条件.⑴ 充分条件,必要条件与充要条件主要用来区分命题的条件p 与结论q 之间的关系: Ⅰ.从逻辑推理关系上看:①若p q ⇒,则p 是q 充分条件,q 是p 的必要条件; ②若p q ⇒,但q p ,则p 是q 充分而不必要条件;③若p q ,但q p ⇒,则p 是q 必要而不充分条件; ④若p q ⇒且q p ⇒,则p 是q 的充要条件;② 若p q 且q p ,则p 是q 的既不充分也不必要条件. Ⅱ.从集合与集合之间的关系上看:已知{A x x =满足条件}p ,{B x x =满足条件}q : ①若A B ⊆,则p 是q 充分条件; ②若B A ⊆,则p 是q 必要条件;③若A B ,则p 是q 充分而不必要条件;④若B A ,则p 是q 必要而不充分条件;⑤若A B =,则p 是q 的充要条件;⑥若A B ⊄且B A ⊄,则p 是q 的既不充分也不必要条件. 4.复合命题⑴复合命题有三种形式:p 或q (p q ∨);p 且q (p q ∧);非p (p ⌝). ⑵复合命题的真假判断“p 或q ”形式复合命题的真假判断方法:一真必真; “p 且q ”形式复合命题的真假判断方法:一假必假; “非p ”形式复合命题的真假判断方法:真假相对. 5.全称量词与存在量词 ⑴全称量词与全称命题短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题.(2)存在量词与特称命题短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做特称命题.⑶全称命题与特称命题的符号表示及否定①全称命题p :,()x p x ∀∈M ,它的否定p ⌝:00,().x p x ∃∈M ⌝全称命题的否定是特称命题. ②特称命题p :00,(),x p x ∃∈M ,它的否定p ⌝:,().x p x ∀∈M ⌝特称命题的否定是全称命题. 专题二:圆锥曲线与方程关于抛物线焦点弦的几个结论:设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ= ⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π; ⑸112.||||FA FB P+=专题三:定积分 1.定积分的概念如果函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=…,作和式11()(),n nn i i i i b aL f x f nξξ==-=∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分.记作⎰b adx x f )(,即1()lim ()nbi an i b af x dx f nξ→∞=-=∑⎰,这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式.说明:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限. 2.微积分基本定理(牛顿-莱布尼兹公式)如果()()F x f x '=,且()f x 在],[b a 上可积,则()()()()bba af x dx F x F b F a ==-⎰,【其中()F x 叫做()f x 的一个原函数,因为()()()()F x C F x f x ''+==】3.常用定积分公式 ⑴0dx c ⎰=(c 为常数)⑵1dx x c ⎰=+⑶1(1)1x x dx c αααα+⎰=+≠-+⑷1ln dx x c x⎰=+ ⑸xxe dx e c ⎰=+⑹(0,1)ln xxa a dx c a a a⎰=+>≠ ⑺sin cos xdx x c ⎰=-+ ⑻cos sin xdx x c ⎰=+ ⑼1sin cos (0)axdx ax c a a⎰=-+≠ ⑽1cos sin (0)axdx ax c a a⎰=+≠ 4.定积分的性质 ⑴⎰⎰=babadx x f k dx x kf )()((k 为常数);⑵⎰⎰⎰±=±bababadx x g dx x f dx x g x f )()()()(;⑶()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰(其中)a c b <<;⑷利用函数的奇偶性求定积分:若()f x 是[,]a a -上的奇函数,则0dx )x (f aa=⎰-;若()f x 是[,]a a -上的偶函数,则⎰⎰=-aaadx )x (f 2dx )x (f .5.定积分的几何意义 定积分()baf x dx ⎰表示在区间[,]a b 上的曲线()y f x =与直线x a =、x b =以及x 轴所围成的平面图形(曲边梯形)的面积的代数和,即()bax x f x dx S S =⎰轴上方轴下方-.(在x 轴上方的面积取正号,在x 轴下方的面积取负号)6.求曲边梯形面积的方法与步骤⑴画出草图,在直角坐标系中画出曲线或直线的大致图像;⑵借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ⑶写出定积分表达式;⑷求出曲边梯形的面积和,即各积分的绝对值的和. 7.定积分的简单应用⑴定积分在几何中的应用:几种常见的曲边梯形面积的计算方法: (1)x 型区域:①由一条曲线)其中0≥=)()((x f x f y 与直线)(,b a b x a x <==以及x 轴所围成的曲边梯形的面积:()b S f x dx a ⎰=(如图(1));图(1)②由一条曲线)其中0≤=)()((x f x f y 与直线)(,b a b x a x <==以及x 轴所围成的曲边梯形的面积:⎰⎰babadx x f dx x f S )()(=-=(如图(2));图(2) ③由一条曲线()y f x = 【当a x c ≤≤时,()0()0;ca f x f x dx ≥⇒≥⎰当c x b ≤≤时,()0()0.bcf x f x dx ≤⇒≤⎰】与直线)(,b a b x a x <==以及x 轴所围成的曲边梯形的面积:3));图(3)④由两条曲线()()y f x y g x ==,(()())f x g x ≥与直线)(,b a b x a x <==所围成的曲边梯形的面积:[]()()()().b b baaaS f x dx g x dx f x g x dx =-=-⎰⎰⎰(如图(4))图(4)(2)y 型区域:①由一条曲线)其中0≥=x x f y )((与直线)(,b a b y a y <==以及y 轴所围成的曲边梯形的面积,可由)(x f y =得)(y h x =,然后利用⎰bady y h S )(=求出(如图(5));图(5)②由一条曲线)其中0≤=x x f y )((与直线)(,b a b y a y <==以及y 轴所围成的曲边梯形的面积,可由)(x f y =先求出)(y h x =,然后利用⎰⎰babady y h dy y h S )()(=-=求出(如图(6));图(6)③由两条曲线)()(x g y x f y ==,与直线)(,b a b y a y <==所围成的曲边梯形的面积,可由)()(x g y x f y ==,先分别求出)(y h x 1=,)(y h x 2=,然后利用⎰bady y h y h S |)()(|21-=求出(如图(7));图(7)⑵定积分在物理中的应用: ①变速直线运动的路程作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间[],a b 上的定积 分,即().baS v t dt =⎰.②变力作功物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到()x b a b =<, 那么变力()F x 所作的功()baW F x dx =⎰.专题四:推理与证明1.归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳). 简言之,归纳推理是由部分到整体、由特殊到一般的推理. 归纳推理的一般步骤:∙通过观察个别情况发现某些相同的性质;∙从已知的相同性质中推出一个明确表述的一般命题(猜想); ∙证明(视题目要求,可有可无).2.类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:∙找出两类对象之间可以确切表述的相似特征;∙用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ∙检验猜想.3.合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理. 4.演绎推理从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理. 简言之,演绎推理是由一般到特殊的推理. 演绎推理的一般模式———“三段论”,包括 ⑴大前提-----已知的一般原理; ⑵小前提-----所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.用集合的观点来理解:若集合M 中的所有元素都具有性质P ,S 是M 的一个子集,那么S 中所有元素也都具有性质P.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确. 5.直接证明与间接证明⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立. 框图表示:要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示:要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法. 反证法法证明一个命题的一般步骤: (1)(反设)假设命题的结论不成立;(2)(推理)根据假设进行推理,直到导出矛盾为止; (3)(归谬)断言假设不成立; (4)(结论)肯定原命题的结论成立. 6.数学归纳法数学归纳法是证明关于正整数n 的命题的一种方法. 用数学归纳法证明命题的步骤;(1)(归纳奠基)证明当n 取第一个值*00()n n N ∈时命题成立;(2)(归纳递推)假设*0(,)n k k n k N =≥∈时命题成立,推证当1n k =+时命题也成立. 只要完成了这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立.用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、几何中的计算问题等.专题五:数系的扩充与复数 1.复数的概念 ⑴虚数单位i ;⑵复数的代数形式(,)z a bia b R =+∈;⑶复数的实部、虚部,虚数与纯虚数. 2.复数的分类 复数(),z a bia b R =+∈(0)(0,0)(0)(0,0)b a b b a b =⎧⎪=≠⎧⎨≠⎨⎪≠≠⎩⎩实数纯虚数虚数非纯虚数 3.相关公式⑴d c b a di c bi a ==⇔+=+且, ⑵00==⇔=+b a bi a⑶22b a bi a z +=+=⑷z a bi =-z z ,指两复数实部相同,虚部互为相反数(互为共轭复数).4.复数运算⑴复数加减法:()()()()i d b c a di c bi a ±+±=+±+; ⑵复数的乘法:()()()()a bi c di ac bd bc ad i ++=-++;⑶复数的除法:()()()()a bi c di a bi c di c di c di +-+=++- ()()222222ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++(类似于无理数除法的分母有理化→虚数除法的分母实数化) 5.常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n ii iii i++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+ )9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω 6.复数的几何意义复平面:用来表示复数的直角坐标系,其中x 轴叫做复平面的实轴,y 轴叫做复平面的虚轴.专题六:排列组合与二项式定理 1.基本计数原理⑴ 分类加法计数原理:(分类相加)做一件事情,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事情共有n m m m N +++= 21种不同的方法.⑵ 分步乘法计数原理:(分步相乘)做一件事情,完成它需要n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法……做第n 个步骤有n m 种不同的方法.那么完成这件事情共有n m m m N ⨯⨯⨯= 21种不同的方法. 2.排列与组合⑴排列定义:一般地,从n 个不同的元素中任取()n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中任取m 个元素的一个排列.⑵组合定义:一般地,从n 个不同的元素中任取()n m m ≤个元素并成一组,叫做从n 个不同的元素中任取m 个元素的一个组合.⑶排列数:从n 个不同的元素中任取()n m m ≤个元素的所有排列的个数,叫做从n 个不同的元素中任取m 个元素的排列数,记作mn A .⑷组合数:从n 个不同的元素中任取()n m m ≤个元素的所有组合的个数,叫做从n 个不同的元素中任取m 个元素的组合数,记作m n C .⑸排列数公式:①()()()121+---=m n n n n A m n()!m n n A m n -=!;②!n A n n =,规定1!0=.⑹组合数公式: ①()()()!121m m n n n n C mn +---=或()!!m n m n C mn -=!;②mn nm n C C -=,规定10=n C . ⑺排列与组合的区别:排列有顺序,组合无顺序.⑻排列与组合的联系:m mm n m n A C A ⋅=,即排列就是先组合再全排列. ()(1)(1)!()(1)21!!mmn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅- ⑼排列与组合的两个性质性质排列11-++=m nm n m n mA A A ;组合11-++=m nm n m n C C C .⑽解排列组合问题的方法①特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置).②间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉).③相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列).④不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间). ⑤有序问题组合法. ⑥选取问题先选后排法. ⑦至多至少问题间接法. ⑧相同元素分组可采用隔板法.⑨分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组问题别忘除以n !. 3.二项式定理⑴二项展开公式:()011222nn n n r n r r n n n n a b C a C a b C a b C a b ---+=++++ ()n n n C b n N +++∈ .⑵二项展开式的通项公式:()+-+∈∈≤≤=N n N r n r b a C T r r n r n r ,,01.主要用途是求指定的项.⑶项的系数与二项式系数项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数.如在()n ax b +的展开式中,第1r +项的二项式系数为r n C ,第1r +项的系数为r n r rn C a b -;而1()n x x+的展开式中的系数等于二项式系数;二项式系数一定为正,而项的系数不一定为正.⑷()nx +1的展开式:()0221101x C x C x C x C x n n n n n n n n n++++=+-- ,若令1=x ,则有()nnn n n n nC C C C ++++==+ 210211. 二项式奇数项系数的和等于二项式偶数项系数的和.即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C⑸二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即mn nm n C C -=; (2)增减性与最大值:当12n r +≤时,二项式系数C r n 的值逐渐增大,当12n r +≥时,C r n 的值逐渐减小,且在中间取得最大值.当n 为偶数时,中间一项(第2n+1项)的二项式系数2nn C 取得最大值.当n 为奇数时,中间两项(第21+n 和21+n +1项)的二项式系数1122n n n n C C -+=相等并同时取最大值.⑹系数最大项的求法设第r 项的系数r A 最大,由不等式组11r r rr A A A A -+≥⎧⎨≥⎩可确定r .⑺赋值法若2012()...,n n n ax b a a x a x a x +=++++则设()().n f x ax b =+ 有: ①0(0);a f =②012...(1);n a a a a f ++++=③0123...(1)(1);n n a a a a a f -+-++-=-④0246(1)(1)...;2f f a a a a +-++++=⑤1357(1)(1) (2)f f a a a a --++++=专题七:随机变量及其分布1.基本概念⑴互斥事件:不可能同时发生的两个事件.如果事件A B C 、、,其中任何两个都是互斥事件,则说事件A B C 、、彼此互斥.当A B 、是互斥事件时,那么事件A B +发生(即A B 、中有一个发生)的概率,等于事件A B 、分别发生的概率的和,即()()()P A B P A P B +=+.⑵对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A . 对立事件的概率和等于1. ()1()P A P A =-.特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.⑶相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.当A B 、是相互独立事件时,那么事件A B ⋅发生(即A B 、同时发生)的概率,等于事件A B 、分别发生的概率的积.即()()()P A B P A P B ⋅=⋅.若A 、B 两事件相互独立,则A 与B 、A 与B 、A 与B 也都是相互独立的. ⑷独立重复试验①一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. ②独立重复试验的概率公式如果在1次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个试验恰好发生k 次的概率()()(1)0,12,.,k k n kn n P k n k C p p -==-⑸条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 发生的概率.公式:()(),()0.()P AB P B A P A P A => 2.离散型随机变量⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母,,,X Y ξη等表示.⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.⑷离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若X 是随机变量,(,Y aX b a b =+是常数)则Y 也是随机变量 并且不改变其属性(离散型、连续型).3.离散型随机变量的分布列⑴概率分布(分布列)设离散型随机变量X 可能取的不同值为12,x x ,…,i x ,…,n x ,X 的每一个值i x (1,2,,i n =⋯)的概率()i i P X x p ==,则称表为随机变量X 的概率分布,简称X 的分布列. 性质:①0,1,2,...;i p i n ≥= ②11.nii p==∑⑵两点分布如果随机变量X 的分布列为则称X 服从两点分布,并称(1)p P X ==为成功概率. ⑶二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()(1).k kn k n P X k C p p -==-其中0,1,2,...,,1k n q p ==-,于是得到随机变量X 的概率分布如下:我们称这样的随机变量X 服从二项分布,记作()p n B X ,~,并称p 为成功概率. 判断一个随机变量是否服从二项分布,关键有三点: ①对立性:即一次试验中事件发生与否二者必居其一; ②重复性:即试验是独立重复地进行了n 次; ③等概率性:在每次试验中事件发生的概率均相等. 注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是,,.p k n ⑷超几何分布一般地, 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --=== ,于是得到随机变量X 的概率分布如下:其中{}min ,m M n =,*,,,,n N M N n M N N ∈≤≤. 我们称这样的随机变量X 的分布列为超几何分布列,且称随机变量X 服从超几何分布.注:⑴超几何分布的模型是不放回抽样;⑵超几何分布中的参数是,,.M N n 其意义分别是 总体中的个体总数、N 中一类的总数、样本容量. 4.离散型随机变量的均值与方差 ⑴离散型随机变量的均值一般地,若离散型随机变量X 的分布列为则称()1122i i n n E X x p x px p x p =+++++ 为离散型随机变量X 的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平. ⑵离散型随机变量的方差一般地,若离散型随机变量X 的分布列为则称21()(())ni i i D X x E X p ==-∑为离散型随机变量X 的方差,为随机变量X 的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度.()D X 越小,X 的稳定性越高,波动越小,取值越集中;()D X 越大,X 的稳定性越差,波动越大,取值越分散.50正态分布正态变量概率密度曲线函数表达式:()()R x ex f x ∈⋅=--,21222σμσπ,其中σμ,是参数,且+∞<<-∞>μσ,0.记作2(,).N μσ如下图:专题八:统计案例 1.回归分析回归直线方程bx a y+=ˆ, 其中()()()1122211nni i i ii i n ni ii i x x y y x y nx yb x x xnx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑相关系数:()()niixx y y r --=∑ni ix y nxy-=∑2.独立性检验假设有两个分类变量X 和Y ,它们的值域分另为{x 1, x 2}和{y 1, y 2},其样本频数2⨯2列联表为:若要推断的论述为H 1:“X 与Y 有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度.具体的做法是,由表中的数据算出随机变量2K 的值22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量,K 2的值越大,说明“X 与Y 有关系”成立的可能性越大.随机变量2K 越大,说明两个分类变量,关系越强;反之,越弱.2 3.841K ≤时,X 与Y 无关;2 3.841K >时,X 与Y 有95%可能性有关;2 6.635K ≥时X 与Y 有99%可能性有关.专题九:坐标系与参数方程 1.平面直角坐标系中的伸缩变换设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为),(θρM .注:极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点.极点O 的坐标为)R )(,0(∈θθ.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等.极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出:θρcos 2a =θρsin 2a =图4θρsin 2a -=图5θρcos 2a -=a=ρ图1)cos(2ϕθρ-=a 图64.简单曲线的极坐标方程 ⑴圆的极坐标方程①以极点为圆心,a 为半径的圆的极坐标方程是 a ρ=;(如图1)②以(,0)a )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =;(如图2) ③以(,)2a π)0(>a 为圆心,a 为半径的圆的极坐标方程是θρsin 2a =;(如图4)⑵直线的极坐标方程①过极点的直线的极坐标方程是)0(≥=ραθ和(0)θπαρ=+≥. (如图1)① 过点)0)(0,(>a a A ,且垂直于极轴的直线l 的极坐标方程是a =θρcos . 化为直角坐标方程为x a =.(如图2) ② 过点(,)2A a π且平行于极轴的直线l 的极坐标方程是sin a ρθ=. 化为直角坐标方程为y a =.(如图4)ϕθ=θρcos a=θρcos a -=θρsin a=图4θρsin a -=图5)cos(ϕθρ-=a )0(tan ≠= x xy θ⎩⎪⎩(直极互化 图)。
高中数学选修知识点归纳高中数学选修知识点11、圆的定义:平面内到一定点的间隔等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的间隔为,那么有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线间隔 =半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:圆上两点,圆心必在中垂线上;两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:假如一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是断定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证假设干个点共线的重要根据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的根据②它是证明平面重合的根据公理4:平行于同一条直线的两条直线互相平行高中数学必修二知识点总结:空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线断定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],假设两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:假如一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aa‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b高中数学选修知识点2解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用可以运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.数列(1)数列的概念和简单表示法①理解数列的概念和几种简单的表示方法(列表、图象、通项公式).②理解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在详细的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④理解等差数列与一次函数、等比数列与指数函数的关系不等关系一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联络.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②理解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.根本不等式:①理解根本不等式的证明过程.②会用根本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点高中数学选修知识点31.函数的概念:设A、B是非空的数集,假如按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:2假如只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要根据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)假如函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
高中数学选修所有知识点归纳(最全)选修数学知识点第一部分:简单逻辑用语命题是可以判断真假的陈述句,可以用语言、符号或式子表达。
真命题是判断为真的语句,假命题是判断为假的语句。
在“若p,则q”形式的命题中,p称为命题的条件,q称为命题的结论。
原命题为“若p,则q”,逆命题为“若q,则p”,否命题为“若非p,则非q”,逆否命题为“若非q,则非p”。
四种命题的真假性之间的关系:两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系。
若p能推出q,则p是q的充分条件,q是p的必要条件;若p等价于q,则p是q的充要条件。
利用集合间的包含关系,例如,若A包含于B,则A是B的充分条件或B是A的必要条件;若A等于B,则A是B的充要条件。
逻辑联结词有“且”(and)、“或”(or)和“非”(not)。
第二部分:圆锥曲线椭圆是平面内与两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。
椭圆的标准方程为x^2/a^2 +y^2/b^2 = 1(a>b>0)。
椭圆的范围为-a≤x≤a且-b≤y≤b。
椭圆的顶点为(0,±b),轴长为2a和2b,焦点为(-c,0)和(c,0),焦距为2c,离心率为c/a。
椭圆的几何性质与焦点的位置有关,焦点在x轴上时,椭圆的方程为x^2/a^2 + y^2/b^2 = 1;焦点在y 轴上时,椭圆的方程为y^2/a^2 + x^2/b^2 = 1.椭圆具有对称性,即关于x轴、y轴和原点对称。
1.(a+bi)·(c+di) = (ac-bd) + (ad+bc)i2.z1÷z2 = (a+bi)(c-di) / (c+di)(c-di) = (ac+bd)/(c^2+d^2) + (bc-ad)i/(c^2+d^2) (z2 ≠ 0)3.几个重要的结论:1) (1±i)^2 = ±2i。
高中数学必修+选修知识点归纳新课标人教A版一、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a xx ln )('=; ⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=3、导数的运算法则 (1)'()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。
高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。
数学必修知识点归纳一、必修一。
(一)集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
- 表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,那么A是B的子集,记作A⊆ B。
- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,则A = B。
3. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
(二)函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
2. 函数的三要素。
- 定义域:自变量x的取值范围。
- 值域:函数值y的取值范围,是定义域在对应关系下的像集。
- 对应关系:函数中x与y的对应规则。
3. 函数的性质。
- 单调性。
- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:同理,当x_1 < x_2时,都有f(x_1)>f(x_2),则函数在区间D上是减函数。
- 奇偶性。
- 奇函数:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。
- 偶函数:对于函数y = f(x)的定义域内任意一个x,都有f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。
高中数学必修+选修知识点归纳大全引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、只要构成两个集合的元素是一样的,就称这两个集合相等。
3、常见集合:正整数集合:*N或N,整数集合:Z,有理数集合:Q,实数集合:R.4、集合的表示方法:列举法、描述法.§1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B 的子集。
记作B A ⊆. 2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集,21n -个真子集. §1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}UC A x x U x U =∈∉且 §1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1、 函数的三种表示方法:解析法、图象法、列表法. §1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. §1、 一般地,如果对于函数()x f 的定义域内任意一个x,都有()()x f x f =-,那么就称函数()x f为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.知识链接:函数与导数 1、函数)(x f y =在点0x 处的导数的几何意义:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.2、几种常见函数的导数 ①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=;⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=3、导数的运算法则 (1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠.4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值.(2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值 (1)求()y f x =在(,)a b 内的极值(极大或者极小值) (2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。
注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。
第二章:基本初等函数(Ⅰ) §1、 一般地,如果a x n =,那么x 叫做a的n次方根。
其中+∈>N n n ,1.2、 当n 为奇数时,a a n n=;当n 为偶数时,aa n n=. 3、 我们规定: ⑴m nmn a a=()1,,,0*>∈>m Nn m a ;⑵()01>=-n aa n n ; 4、 运算性质:⑴()Q s r a a a a s r sr ∈>=+,,0;⑵()()Q s r a a a rs s r ∈>=,,0; ⑶()()Q r b a b a ab r r r∈>>=,0,0.§1、记住图象:()1,0≠>=a a a y x2§1、指互化式:l o gx a a N x N =⇔=;2、对数恒等式:log aN a N =. 3、基本性质:01log =a ,1log =a a . 4、运算性质:当0,0,1,0>>≠>N M a a 时:⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛;⑶Mn M a na log log =.5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a .6、重要公式:log log n m a a mbb n= 7、倒数关系:ab b a log 1log =()1,0,1,0≠>≠>b b a a . §2..2.2、对数函数及其性质交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
3、空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 ⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ⑸球的表面积和体积:32344R V R S ππ==球球,.第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
2、公理2:过不在一条直线上的三点,有且只有一个平面。
3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。