基于51单片机恒温控制系统的设计
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
基于51单片机的水温控制系统设计毕业论文基于单片机的水温控制系统摘要水在人们日常生活和工业生产中有着必不可少的作用,在不同环境和不同的需求中,水温的变化也对我们的生活和工业生产有着重要的影响,为了满足人们在各个领域所需要的水温,水温控制系统在各个领域也应运而生。
随着社会的发展,科技的进步,智能化已经是温控系统发展的主流方向,小到人们生活中的饮水机,大到工业生产中的大型水温加热控制设备等各种水温控制系统发展以趋于成熟。
传统靠人工控制的温度,湿度,液位等信号的测压、力控系统,外围电路比较复杂,测量精度较低,分辨率不高,需进行温度校正;并且他们的体积较大适用不方便,在工业生产中也可能应为各种认为的失误发生意外,针对此问题,本系统设计的目的就是实现一种可连续高精度持续调温的温度控制系统,它应用广泛,功能强大,操作简单,便于携带,是一款既实用又廉价的控制系统。
温度检测控制系统在工业生产中主要职责是对温度进行严格的监测,在温度发生变化不符合规定温度时,系统报警提示并做出相应的温度调整措施,以使得生产能够顺利进行,节省了大量的人工,产品的质量也得到充分的保障,同时也避免了各种潜在意外的发生。
从而提高企业的生产效率。
本系统以89C51单片机为核心,扩展外围控制电路,检测变送电路,按键电路,显示电路,复位电路,时钟电路,电源电路,报警电路;本系统的整体运行过程为:通过按键电路设定理想水温范围,实时水温通过检测变送电路模检测,并将检测到的物理量转化成电信号,然后放大电信号并将模拟量同过A/D 转换为单片机识别的数字量发送给单片机。
单片机系统将实时温度与设定温度进行对比,并通过显示电路将实时温度显示出来,如果实时温度大于设定的最高温度或者低于设定的最低温度一定时间,单片机将触发报警电路对过温或者低温进行警报,同时触发控制电路对水温的控制做出适当的调整,确保水温出在理想的温度值,满足需求。
系统检测变送电路中采用电流型温度传感器AD590将温度的变化量转变成电流量,然后采用OP-07将电流量转换为电压量。
基于 51 单片机的水温自动控制系统引言在现代的各种工业生产中,不少地方都需要用到温度控制系统。
而智能化的控制系统成为一种发展的趋势.本文所阐述的就是一种基于 89C51 单片机的温度控制系统。
本温控系统可应用于温度范围30℃到96℃。
设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。
(1) 利用摹拟温度传感器检测温度,要求检测电路尽可能简单。
(2) 当液位低于某一值时,住手加热。
(3) 用 AD 转换器把采集到的摹拟温度值送入单片机。
(4) 无竞争—冒险,无颤动。
(1) 温度显示误差不超过1℃.(2) 温度显示范围为0℃—99℃。
(3) 程序部份用 PID 算法实现温度自动控制。
(4) 检测信号为电压信号。
根据设计要求和所学的专业知识,采用 AT89C51 为本系统的核心控制器件。
AT89C51 是一种带4K 字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8 位微处理器。
其引脚图如图1 所示。
显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件.在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器 74LS164 作为显示电路,其优点在于占用主控系统的 I/O 口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。
方案二:采用动态显示的方案由单片机的 I/O 口直接带数码管实现动态显示, 占用资源少,动态控制节省了驱动芯片的成本,节省了电,但编程比较复杂,亮度不如静态的好。
由于对电路的功耗要求不大,因此就在尽量节省 I/O 口线的前提下选用方案一的静态显示.图 1 AT89C51 引脚图1 温度检测:有选用 AD590 和LM35D 两种温度传感器的方案,但考虑到两者价格差距较大,而本系统中对温度要求的精度不很高,于是选用比较便宜 LM35D。
《基于51单片机的温度控制系统设计与实现》篇一一、引言在现代工业控制领域,温度控制系统的设计与实现至关重要。
为了满足不同场景下对温度精确控制的需求,本文提出了一种基于51单片机的温度控制系统设计与实现方案。
该系统通过51单片机作为核心控制器,结合温度传感器与执行机构,实现了对环境温度的实时监测与精确控制。
二、系统设计1. 硬件设计本系统以51单片机为核心控制器,其具备成本低、开发简单、性能稳定等优点。
硬件部分主要包括51单片机、温度传感器、执行机构(如加热器、制冷器等)、电源模块等。
其中,温度传感器负责实时监测环境温度,将温度信号转换为电信号;执行机构根据控制器的指令进行工作,以实现对环境温度的调节;电源模块为整个系统提供稳定的供电。
2. 软件设计软件部分主要包括单片机程序与上位机监控软件。
单片机程序负责实时采集温度传感器的数据,根据设定的温度阈值,输出控制信号给执行机构,以实现对环境温度的精确控制。
上位机监控软件则负责与单片机进行通信,实时显示环境温度及控制状态,方便用户进行监控与操作。
三、系统实现1. 硬件连接将温度传感器、执行机构等硬件设备与51单片机进行连接。
具体连接方式根据硬件设备的接口类型而定,一般采用串口、并口或GPIO口进行连接。
连接完成后,需进行硬件设备的调试与测试,确保各部分正常工作。
2. 软件编程编写51单片机的程序,实现温度的实时采集、数据处理、控制输出等功能。
程序采用C语言编写,易于阅读与维护。
同时,需编写上位机监控软件,实现与单片机的通信、数据展示、控制指令发送等功能。
3. 系统调试在完成硬件连接与软件编程后,需对整个系统进行调试。
首先,对单片机程序进行调试,确保其能够正确采集温度数据、输出控制信号。
其次,对上位机监控软件进行调试,确保其能够与单片机正常通信、实时显示环境温度及控制状态。
最后,对整个系统进行联调,测试其在实际应用中的性能表现。
四、实验结果与分析通过实验测试,本系统能够实现对环境温度的实时监测与精确控制。
长春科技学院毕业设计 (论文)基于51单片机智能温度控制器系统设计摘要温度是工业生产和日常生活中最常见的参数之一,对温度的精确测量和控制具有重要意义。
为此,本文以AT89S51单片机为处理核心进行了智能温度监控系统的下位机设计,详细阐述了系统的硬件及软件设计方法。
该设计使用DS18B20数字式温度传感器进行多点测温,通过RS232串口实现单片机与PC机之间的数据交换,实现各温度点的实时测温及根据上位机的温度设定值完成对其中一点温度的控制。
此系统具有测温电路简单、连接方便、转换速度快、为上位机监控部分可实时传送温度信号、控制精度高等优点,因此,具有较广泛的应用前景。
关键词: AT89S51;智能温度测量控制;DS18B20;RS232AbstractTemperature is one of the most familiar parameters in the industrial production anddaily life. Therefore, this paper designs the under-bit machine of multi-point temperature monitoring system with the 89S51 SCM as the processing core. It elaborates hardware and software design method in detail. The system uses the DS18B20 digital temperature sensor to measure multi-point temperature. Through the RS232 serial port it can exchange data between the SCM and PC.Each point of temperature can be measured on time and one point of it can be controlled according to the temperature settings transmittd by up-bit machine. Based on the advantages that this system has the simple temperature measurement circuit, the convenient connection, the quick change speed, the real-time transmission of temperature signals for up-bit machine, the high precision control , therefore, it will have very good application value.Keywords: AT89S51; multi-point temperature measure and control; DS18B20; RS232引言1.现代社会中,温度控制的应用越来越多。
基于51单片机的温度控制系统设计引言:随着科技的不断进步,温度控制系统在我们的生活中扮演着越来越重要的角色。
特别是在一些需要精确控制温度的场合,如实验室、医疗设备和工业生产等领域,温度控制系统的设计和应用具有重要意义。
本文将以基于51单片机的温度控制系统设计为主题,探讨其原理、设计要点和实现方法。
一、温度控制系统的原理温度控制系统的基本原理是通过传感器感知环境温度,然后将温度值与设定值进行比较,根据比较结果控制执行器实现温度的调节。
基于51单片机的温度控制系统可以分为三个主要模块:温度传感器模块、控制模块和执行器模块。
1. 温度传感器模块温度传感器模块主要用于感知环境的温度,并将温度值转换成电信号。
常用的温度传感器有热敏电阻、热敏电偶和数字温度传感器等,其中热敏电阻是最常用的一种。
2. 控制模块控制模块是整个温度控制系统的核心,它负责接收传感器传来的温度信号,并与设定值进行比较。
根据比较结果,控制模块会输出相应的控制信号,控制执行器的工作状态。
51单片机作为一种常用的嵌入式控制器,可以实现控制模块的功能。
3. 执行器模块执行器模块根据控制模块输出的控制信号,控制相关设备的工作状态,以实现对温度的调节。
常用的执行器有继电器、电磁阀和电动机等。
二、温度控制系统的设计要点在设计基于51单片机的温度控制系统时,需要考虑以下几个要点:1. 温度传感器的选择根据具体的应用场景和要求,选择合适的温度传感器。
考虑传感器的测量范围、精度、响应时间等因素,并确保传感器与控制模块的兼容性。
2. 控制算法的设计根据温度控制系统的具体要求,设计合适的控制算法。
常用的控制算法有比例控制、比例积分控制和模糊控制等,可以根据实际情况选择适合的算法。
3. 控制信号的输出根据控制算法的结果,设计合适的控制信号输出电路。
控制信号的输出电路需要考虑到执行器的工作电压、电流等参数,确保信号能够正常控制执行器的工作状态。
4. 系统的稳定性和鲁棒性在设计过程中,需要考虑系统的稳定性和鲁棒性。
基于单片机的温度控制系统设计1.设计要求要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。
具体设计要求如下:①数码管或液晶显示屏显示室内当前的温度;②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键;③DS18B20温度采集;④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。
2.方案论证根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。
温度采集直接可以用设计要求中所要求的DS18B20。
报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。
显示模块有两种方案可供选择。
方案一:使用LED数码管显示采集温度和设定温度;方案二:使用LCD液晶显示屏来显示采集温度和设定温度。
LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。
LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。
综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。
LCD 显示模块可以选用RT1602C。
3.硬件设计根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。
其相互联系如下图1所示:图1 硬件电路设计框图3.1单片机时钟电路形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。
本次设计采用内部时钟方式,如图2所示。
单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为1.2~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一起形成了一个自激振荡电路,为单片机提供时钟源。
基于51单片机恒温控制系统的设计
作者:孙志永
来源:《中国科技博览》2016年第03期
[摘要]本文设计一种基于单片机控制的恒温系统研究,系统通过按键设置温度的上下限,当温度超出限制范围时,单片机驱动相应的负载工作,同时产生声光报警。
[关键词]STC89C51单片机,温度控制,DS18B20
中图分类号:TP273.5 文献标识码:A 文章编号:1009-914X(2016)03-0142-01
1.前言
温度是工业生产中主要的被控参数之一,但随着现代工农业技术的发展及人们对生活环境要求的提高,与温度相关的检测和控制系统越来越广泛的被应用到各个生产、生活等领域,而且对其控制的要求也在不断提高,
本文以AT89C51单片机为主控芯片,以DS18B20为温度测量元件,LCD1602液晶显示屏为显示元件,继电器模块为负载驱动控制模块,设计一种简单、方便使用的恒温控制系统。
本恒温控制系统与传统的温度计相比,具有读数方便,测温范围广,设计灵活、成本较低等优点,可以应用在大型工业及民用恒温监测的场所。
2.硬件设计
本设计以AT89C51单片机为主控芯片, DS18B20为温度测量元件,将检测到的温度信息反馈到LCD1602液晶显示屏上。
系统设定上下限温度值(通过程序可以更改上下限初始值),如果检测到的温度低于下限或者高于上限值,蜂鸣器报警,相应的LED灯闪烁,继电器驱动负载进行制冷和升温;当温度达到温度设定区间,蜂鸣器停止报警,LED灯停止闪烁,从而实现系统的自动恒温控制。
系统电路原理图如图1所示。
(1)AT89C51简介
AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。
(2)DS18B20简介
DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器,与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
可以分别在93.75ms和750ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根接口线读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。
因而使用DS18B20可使系统结构更趋简单,可靠性更高。
3.软件设计
(1)流程图
整个系统包括管理程序和控制程序两部分。
管理程序是对显示LED进行动态刷新,控制指示灯、处理键盘的扫描和响应、进行掉电保护的处理、执行中断服务操作等。
控制程序是对被控对象进行采样、数据处理,根据控制算法进行计算和输出等。
(2)部分主要程序代码
4.总结
本设计以AT89C51为核心,以DS18B20为测量元件,利用软硬件相结合的方式启动相应的功能电路,实现恒温效果的控制,具有成本低,控制方便、简单灵活、实用性强等优点,具有一定的实用性。
参考文献
[1] 余威明. DS18B20高精度多点温度测量显示系统[J]. 仪表技术, 2007,03.
[2] 孙剑涛,崔明礼.基于AT89S51单片机的温度测控系统设计[J]. 传感测量技术, 2008,(08).
[3] 杨金红,林咏海.AT89S51及其在温度测量中的应用[J]. 科技风, 2008,(21).
[4] 郑惟晖. 单片机智能温度控制系统的设计[J]. 黄山学院学报, 2008,10(05).
[5] 宋刈非,赵猷肄,林一楠.基DS1820传感器的温度测量系统[J]. 光电技术应用,2009,24(03).。