【精编】无锡市崇安区2019-2020年八年级(上)期末考试数学试题及答案.doc
- 格式:doc
- 大小:3.63 MB
- 文档页数:8
江苏省无锡市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .13.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°4.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .55.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132--B .132-+C .132-D .13-6.当12(1)a -+与13(2)a --的值相等时,则( )A .5a =-B .6a =-C .7a =-D .8a =- 7.下列条件中,不能判断△ABC 是直角三角形的是( ) A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:3 8.下列各式中,属于分式的是( )A .x ﹣1B .2mC .3bD .34(x+y ) 9.某篮球运动员的身高为1.96cm ,用四舍五人法将1.96精确到0.1的近似值为( ) A .2B .1.9C .2.0D .1.90 10.若253x +在实数范围内有意义,则x 的取值范围是( ) A .x >﹣52B .x >﹣52且x ≠0C .x ≥﹣52D .x ≥﹣52且x ≠0 二、填空题 11.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.12.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km )13.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.14.点A (3,-2)关于x 轴对称的点的坐标是________.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.16.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.17.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.18.点()2,3A 关于y 轴对称点的坐标是______.19.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .20.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.三、解答题21.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-.(1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.22.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数表达式,并写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长25米,求木杆断裂处离地面多少米?24.解分式方程(1)11322x x x-=--- (2)2121x x x =++- 25.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.四、压轴题26.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.27.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC 的面积.(2)判断ABC 的形状,并说明理由.(3)点E 是直线BC 上一点,CDE △是直角三角形,求点E 的坐标.28.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.29.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.30.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t 秒,则CP=12-3t ,BQ=t ,根据题意得到12-3t=t ,解得:t=3,故选B .【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.D解析:D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE是解题的关键.3.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.4.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE为中线,∴CE=AE=BE=12.5 2AB=,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴CF ACAC BA=,即445CF=,∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=1.4,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,245==,故选:C.【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.5.A解析:A【解析】【分析】根据可知AP=AB,在直角三角形ABC中,由勾股定理可求AB的长度,由点P在0的左边,即可得到答案.【详解】解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形,∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC -+=, ∴13AP AB == ∴132PC =,∵点P 在点C 的左边,点C 表示的数为0,∴点P 表示的数为:132)132-=;故选择:A.【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.6.C解析:C【解析】【分析】根据题意列出等式,由负整数指数幂的运算法则将分式方程转化为一元一次方程求解即可.【详解】依题意,112(1)3(2)a a --+=-,即3(1)2(2)a a +=-,解得7a =-,经检验7a =-是原分式方程的解,故选:C.【点睛】本题主要考查了负整数指数幂的运算及分式方程的解,熟练掌握相关运算知识及运算能力是解决本题的关键. 7.B解析:B【解析】【分析】A 、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B 、根据角的比值求出各角的度数,便可判断出三角形的形状;C 、根据三角形的内角和为180度,即可计算出∠C 的值;D 、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A 、因为a :b :c=3:4:5,所以设a=3x ,b=4x ,c=5x ,则(3x )2+(4x )2=(5x )2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.8.B解析:B【解析】【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:2m是分式,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.9.C解析:C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C.【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.10.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】解:由题意得,2x+5≥0,解得x≥﹣52,故选:C.【点睛】a≥时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题11.5.【解析】【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解解析:5.【解析】【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.【详解】设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴240060k bk b=+⎧⎨=+⎩,解得:1106kb⎧=-⎪⎨⎪=⎩,∴y与t的函数关系式为y=﹣16 10t+,当t=45时,y=﹣110×45+6=1.5.故答案为1.5.【点睛】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.12.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.13.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.14.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)试题分析:点A (3,﹣2)关于x 轴对称的点的坐标是(3,2).故答案为(3,2). 考点:关于x 轴、y 轴对称的点的坐标.15.200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x 50=-, 解得:x=200.检验:当x=200时,x (x ﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器. 16.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.17.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.18.(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对解析:(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,关于x轴对称的点,横坐标相同,纵坐标互为相反数.19.a=5【分析】本题是平方差公式的应用,设这个正方形的边长为a ,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a ,根据正方形面积公式有(a+2)2-a 2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有(a+2)2-a 2=24,(a+2)2-a 2=(a+2+a )(a+2-a )=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.20.x2+y2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x -0)2+(y -0)2=1,即x2+y2=1,故答案为: x2+y2=1. 解析:x 2+y 2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x -0)2+(y -0)2=1,即x 2+y 2=1,故答案为: x 2+y 2=1.三、解答题21.(1) 32m =,AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C在直线12y x=-上,点C的横坐标为−3,∴点C坐标为3 (3,)2 -,又∵点C在直线y=mx+2m+3上,∴3 3232 m m-++=,∴32 m=,∴直线AB的函数表达式为362y x=+,令x=0,则y=6,令y=0,则3602x+=,解得x=−4,∴A(−4,0)、B(0,6),∴2246213 AB=+=;(2)∵14OCQ BAOS S∆∆=,∴111346 242OQ⨯⋅=⨯⨯⨯,∴OQ=2,∴点Q坐标为(0,2).【点睛】考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.22.(1)y与x的函数表达式为y=100x+17360(21≤x≤62且x为整数);(2)共有25种租车方案;租用A型号客车21辆,B型号客车41辆时最省钱.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【详解】解:(1)由题意:y=380x+280(62-x)=100x+17360.∵30x+20(62-x)≥1441,∴x≥20.1,又∵x为整数,∴x的取值范围为21≤x≤62的整数.即y与x的函数表达式为y=100x+17360(21≤x≤62且x为整数).(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,又100>0,∴y随x的增大而增大,∴x=21时,y有最小值.即租用A型号客车21辆,B型号客车41辆时最省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.木杆断裂处离地面12米.【解析】【分析】设木杆断裂处离地面x米,根据勾股定理列出方程求解即可.【详解】解:设木杆断裂处离地面x米,由题意得:x2+52=(25−x)2,解得x=12,答:木杆断裂处离地面12米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合思想的应用.24.(1) 无解 (2) x=1 -2【解析】【分析】(1) 利用分式方程的解法,解出即可;(2) 利用分式方程的解法,解出即可.【详解】(1)113 22xx x-=---1=x-1-3(x-2) 1=-2x+52x=4x=2 检验:当x=2时,x-2=0 x=2为曾根所以原方程无解(2)2121x x x =++- x(x-1)=2(x+2)+(x+2)(x-1)x 2-x=2x+4+x 2+x-24x=-2x=1-2检验:当x=1-2时,x+2≠0 x-1≠0,所以x=1-2是解.【点睛】此题主要考查了解分式方程,关键点是要进行验证是否是方程的解.25.BF 的长为32【解析】【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴BF ===【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质. 四、压轴题26.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点; (2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD=90°时,∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t)∴t=8,∴点E(8,21);当∠HTD=90°时,由于EH 与x 轴不平行,故∠HTD 不可能为90°;故点E 的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.27.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫-⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标.【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C ,令0y =,则1202x +=,解得4x =-, ∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =,∴22y x =-+,令0y =,则220x -+=,解得1x =,∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△; (2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形;(3)∵CD 平分ACB ∠,∴12 AD AC BD BC==,∴1533AD AB==,∴23OD AD OA=-=,∴2,03D⎛⎫-⎪⎝⎭①如图,CED∠是直角,过点E作EN x⊥轴于点N,过点C作CM EN⊥于点M,由(2)知,90ACB∠=︒,∵CD平分ACB∠,∴45ECD∠=︒,∴CDE△是等腰直角三角形,∴CE DE=,∵90NED MEC∠+∠=︒,90NED NDE∠+∠=︒,∴MEC NDE∠=∠,在DNE△和EMC△中,NDE MECDNE EMCDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DNE EMC AAS≅,设DN EM x==,EN CM y==,根据图象列式:DO DN CMEN EM CO+=⎧⎨+=⎩,即232x yx y⎧+=⎪⎨⎪+=⎩,解得2343xy⎧=⎪⎪⎨⎪=⎪⎩,∴43EN CM==,∴44,33E⎛⎫-⎪⎝⎭;②如图,CDE ∠是直角,过点E 作EG x ⊥轴于点G ,同理CDE △是等腰直角三角形,且可以证得()CDO DEG AAS ≅,∴2DG CO ==,23EG DO ==, ∴28233GO GD DO =+=+=, ∴82,33E ⎛⎫- ⎪⎝⎭,综上:44,33E ⎛⎫-⎪⎝⎭,82,33E ⎛⎫- ⎪⎝⎭. 【点睛】 本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解.28.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t=⎧⎨=-⎩ 解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.29.(1)203;(2)①t =83;②a =185;(3)t =6.4或t =103 【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM =CN =3t ,则只可以是△CMN ≌△BAM ,AB =CM ,由此列出方程求解即可;②由题意得:CN ≠BM ,则只可以是△CMN ≌△BMA ,AB =CN =12,CM =BM ,进而可得3t =10,求解即可;(3)分情况讨论,当△CMN ≌△BPM 时,BP =CM ,若此时P 由A 向B 运动,则12-2t =20-3t ,但t =8不符合实际,舍去,若此时P 由B 向A 运动,则2t -12=20-3t ,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.30.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.。
无锡市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .52.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒3.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 4.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )A .B .C .D .7.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =,3c =8.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .159.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,010.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .12二、填空题11.点P (﹣5,12)到原点的距离是_____.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.13.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.14.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.15.计算112242⨯+=__________. 16.等腰三角形中有一个角的度数为40°,则底角为_____________. 17.已知关于x 的方程211x m x -=-的解是正数,则m 的取值范围为__________. 18.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.19.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)20.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.三、解答题21.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?22.如图所示,在ABC ∆中,BAC ∠的平分线AD 交BC 于点D ,DE 垂直平分AC ,垂足为点E .求证:BAD C ∠=∠.23.如图,在四边形ABCD 中,AB=DC ,延长线段CB 到E ,使BE=AD ,连接AE 、AC ,且AE=AC ,求证:(1)△ABE ≌△CDA ;(2)AD ∥EC .24.已知函数y 1=2x -4与y 2=-2x +8的图象,观察图象并回答问题:(1)x 取何值时,2x -4>0?(2)x 取何值时,-2x +8>0?(3)x 取何值时,2x -4>0与-2x +8>0同时成立?(4)求函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积?25.如图1,在直角坐标系xoy 中,点A 、B 分别在x 、y 轴的正半轴上,将线段AB 绕点B 顺时针旋转90°,点A 的对应点为点C .(1)若A (6,0),B (0,4),求点C 的坐标;(2)以B 为直角顶点,以AB 和OB 为直角边分别在第一、二象限作等腰Rt △ABD 和等腰Rt △OBE ,连DE 交y 轴于点M ,当点A 和点B 分别在x 、y 轴的正半轴上运动时,判断并证明AO 与MB 的数量关系.四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.28.如图,在平面直角坐标系中,直线334y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC 交BF 于点E .(1)求证:AD BE =;(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条件的t 的值;若不存在,请说明理由.29.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.30.如图,在平面直角坐标系中,直线y =2x +6与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于点C ,且AB =BC .(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE为中线,∴CE=AE=BE=1 2.52AB =, ∴∠ACF=∠BAC ,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE , ∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,245==, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 2.A解析:A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 3.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y与x的关系式,从而得到答案.4.C解析:C【解析】【分析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228 AB DE AC DF即112246428 AB解得,AB=8,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.6.B解析:B【解析】【分析】根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.【详解】解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选B.【点睛】本题主要考查动点问题的函数图象,熟练掌握是解题的关键.7.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键.8.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC 的周长为24,ABE 的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 9.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.10.B解析:B【解析】【分析】将点(﹣2,1)代入y =kx 即可求出k 的值.【详解】解:∵正比例函数y =kx 的图象经过点(﹣2,1),∴1=﹣2k ,解得k =﹣12, 故选:B .本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.二、填空题11.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.13.【解析】【分析】过点C作直线AB的垂线段CD,利用三角形的面积即可求出CD的长. 【详解】连接AC,过点C作CD⊥AB,则CD的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:16 5【解析】【分析】过点C作直线AB的垂线段CD,利用三角形的面积即可求出CD的长.【详解】连接AC,过点C作CD⊥AB,则CD的长最短,如图,对于直线334y x=+令y=0,则3304x+=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴5 ∵C (0,-1),∴OC=1,∴BC=3+1=4, ∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.14.3cm .【解析】【分析】利用勾股定理列式求出AB ,根据翻折变换的性质可得BC′=BC ,C′D =CD ,然后求出AC′,设CD =x ,表示出C′D 、AD ,然后利用勾股定理列方程求解即可.【详解】解析:3cm .【解析】【分析】利用勾股定理列式求出AB ,根据翻折变换的性质可得BC ′=BC ,C ′D =CD ,然后求出AC ′,设CD =x ,表示出C ′D 、AD ,然后利用勾股定理列方程求解即可.【详解】解:∵∠C =90°,BC =6cm ,AC =8cm ,∴AB 10cm ,由翻折变换的性质得,BC ′=BC =6cm ,C ′D =CD ,∴AC ′=AB ﹣BC ′=10﹣6=4cm ,设CD =x ,则C ′D =x ,AD =8﹣x ,在Rt △AC ′D 中,由勾股定理得,AC ′2+C ′D 2=AD 2,即42+x 2=(8﹣x )2,解得x =3,即CD =3cm .故答案为:3cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.15.【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】解:.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.解析:【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】1122426.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.16.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.17.m>1且m≠2.【解析】【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【详解】原方程整理得:2x-m=x-1解得:x=m-1因为x>0,所以解析:m>1且m≠2.【解析】【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【详解】原方程整理得:2x-m=x-1解得:x=m-1因为x>0,所以m-1>0,即m>1.①又因为原式是分式方程,所以,x≠1,即m-1≠1,所以m≠2.②由①②可得,则m的取值范围为m>1且m≠2.故答案为:m>1且m≠2.【点睛】考核知识点:解分式方程.去分母,分母不等于0是注意点.18.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m,y=n代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.19.或或【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2解析:()2,4或()2,0-或()2,4-【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C(2,0),C(2,4),C(2,4)--故答案为:()2,4或()2,0-或()2,4-【点睛】本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键20.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E =90°,∴∠BAD =90°,即△ABD 为直角三角形,∴△ABD 的面积=12AD •AB =15. 故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形. 三、解答题21.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x 元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x 元,则每支圆珠笔(2)x +元. 假设能买到相同数量的笔,则30452x x =+. 解这个方程,得4x =.经检验,4x =是原方程的解.但是,3047.5÷=,7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.22.见解析【解析】【分析】利用角平分线的定义得到BAD DAE ∠=∠,然后利用垂直平分线的性质得到DA DC =,则DAE C ∠=∠,从而使问题得解.【详解】解:∵AD 平分BAC ∠∴BAD DAE ∠=∠,∵DE 垂直平分AC ,∴DA DC =,∴DAE C∠=∠,∴BAD C∠=∠【点睛】本题考查角平分线的定义和垂直平分线的性质,掌握相关性质正确推理论证是本题的解题关键.23.(1)证明见解析;(2)证明见解析.【解析】【分析】试题分析:(1)直接根据SSS就可以证明△ABE≌△CDA;(2)由△ABE≌△CDA可以得出∠E=∠CAD,就可以得出∠ACE=∠CAD,从而得出结论.试题解析:(1)在△ABE和△CDA中{AE AC AB CD BE AD===∵△ABE≌△CDA(SSS);(2)∵△ABE≌△CDA,∴∠E=∠CAD.∵AE=AC,∴∠E=∠ACE∴∠ACE=∠CAD,∴AD∥EC.考点:全等三角形的判定与性质.【详解】请在此输入详解!24.(1)x>2;(2)x<4 ;(3)2<x<4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积.【详解】由图可知:(1)当x>2时,2x−4>0;(2)当x<4时,-2x+8>0;(3)由(1)(2)可知当2<x<4时,2x−4>0与−2x+8>0同时成立;(4)联立y1=2x-4与y2=-2x+8,解得x=3,y=2,∴函数y1=2x-4与y2=-2x+8的图象的交点坐标为(3,2),所以函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.25.(1)C(-4,-2);(2)AO= 2MB.证明见解析.【解析】【分析】(1)过C点作y轴的垂线段,垂足为H点,证明△ABO≌△BCH,利用全等三角形的性质结合C在第三象限即可求得C点坐标;(2)过D点作DN⊥y轴于点N,证明△DBN≌△BAO,根据全等三角形对应边相等BN=AO,DN=BO,再证明△DMN≌△EMB,可得MN=MB,于是可得AO=2MB.【详解】(1)解:过C点作y轴的垂线段,垂足为H点.∴∠BHC=∠AOB=90°,∵A(6,0),B(0,4)∴OA=6,OB=4∵∠ABC=90°,∴∠ABO+∠OBC=90°,又∠ABO+∠OAB=90°,∴∠OBC=∠OAB,∵在△ABO和△BCH中BHC AOBOBC OABAB BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO≌△BCH,∴AO=BH=6,CH=BO=4,∴OH=2,∴C(-4,-2).(2)AO= 2MB.过D点作DN⊥y轴于点N,∴∠BND =∠AOB =90°,∵△ABD 、△OBE 为等腰直角三角形,∴∠ABD =∠OBE =90°,AB =BD ,BO =BE ,∴∠DBN +∠ABO =∠BAO +∠ABO =90°,∴∠DBN =∠BAO ,∴△DBN ≌△BAO ,∴BN =AO ,DN =BO ,在△DMN 和△EMB 中,∵DN =BO=BE ,∠DNM =∠EBM ,∠DMN =∠EMB ,∴△DMN ≌△EMB ,∴MN =MB =12BN =12AO ∴AO =2MB .【点睛】本题考查坐标与图形,旋转的性质,全等三角形的性质与判定,等腰直角三角形的性质.能正确作出辅助线,并根据全等三角形的判定定理证明三角形全等是解决此题的关键.四、压轴题26.(1)5y x =+;(2)223)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x=时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =.∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.22BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【解析】【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠ADB =∠CEA =90°∵∠BAC =90°∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°∴∠CAE =∠ABD∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD ,∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC ,∴∠ABD=∠CAE ,在△ABD 和△CAE 中,BDA AECAB CA⎪∠∠⎨⎪⎩==∴△ABD≌△CAE(AAS )∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如图,作AE ⊥x轴于E,BF⊥x轴于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B的坐标为B(1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.28.(1)详见解析;(2)36(04)2BDEt tS-+≤<=;(3)存在,当78t=或43时,使得BDE是以BD为腰的等腰三角形.【解析】【分析】(1)先判断出EBC DAC∠=∠,CEB CDA∠=∠,再判断出BC AC=,进而判断出△BCE≌△ACD,即可得出结论;(2)先确定出点A,B坐标,再表示出AD,即可得出结论;(3)分两种情况:当BD BE=时,利用勾股定理建立方程2223(4)t t+=-,即可得出结论;当BD DE=时,先判断出Rt△OBD≌Rt△MED,得出DM OD t==,再用OM BE=建立方程求解即可得出结论.【详解】解:(1)证明:射线//BF x轴,EBC DAC∴∠=∠,CEB CDA∠=∠,又C为线段AB的中点,BC AC∴=,在△BCE和△ACD中,EBCDAC BC AC ⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD (AAS ),BE AD ∴=;(2)解:在直线334y x =-+中, 令0x =,则3y =,令0y =,则4x =,A ∴点坐标为(4,0),B 点坐标为(0,3),D 点坐标为(,0)t ,4AD t BE ∴=-=,113(4)36(04)222BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;(3)当BD BE =时,在Rt OBD ∆中,90BOD ∠=︒,由勾股定理得:222OB OD DB +=,即2223(4)t t +=-解得:78t =; 当BD DE =时,过点E 作EM x ⊥轴于M ,90BOD EMD ∴∠=∠=︒,//BF OA ,OB ME ∴=在Rt △OBD 和Rt △MED 中,==BD DE OB ME ⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),OD DM t ∴==,由OM BE =得:24t t =- 解得:43t =,综上所述,当78t=或43时,使得△BDE是以BD为腰的等腰三角形.【点睛】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.29.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB,利用AAS定理证明△ACD≌△CBE;(2)分点F沿C→B路径运动和点F沿B→C路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD与△CBE全等.理由如下:∵AD⊥直线l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,ADC CEBDAC ECBCA CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS);(2)由题意得,AM=t,FN=3t,则CM=8-t,由折叠的性质可知,CF=CB=6,∴CN=6-3t,点N在BC上时,△CMN为等腰直角三角形,当点N沿C→B路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N沿B→C路径运动时,由题意得,8-t=18-3t,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.30.(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+3 2【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.【详解】(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0),∴AO=3,BO=6,∵AB=BC,BO⊥AC,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则036k bb=+⎧⎨=⎩,解得:26kb=-⎧⎨=⎩,∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠HCQ,又∵∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,∴点P的纵坐标为:2m﹣6,∵直线AB的表达式为:y=2x+6,∴2m﹣6=2x+6,解得:x=m﹣6,∴点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=92,∴Q(92,﹣3),P(﹣32,3),设直线PQ的解析式为:y=ax+c,∴932332a ca c⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:132ac=-⎧⎪⎨=⎪⎩,∴直线PQ的解析式为:y=﹣x+32.【点睛】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.。
2019-2020学年江苏省无锡市八年级(上)期末数学试卷2019-2020学年江苏省无锡市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.给出下列一组数:$\pi$,$-0.3$,$2$,$0.xxxxxxxx85 \cdots$(两个5之间依次多1个8),其中,无理数有()。
A。
2个 B。
3个 C。
4个 D。
5个2.若点M在第二象限,且点M到x轴的距离为1,到y 轴的距离为2,则点M的坐标为()。
A。
$(2,-1)$ B。
$(1,-2)$ C。
$(-2,1)$ D。
$(-1,2)$3.下列平面图形中,不是轴对称图形为()。
A。
B。
C。
D。
4.下列各组数中,不能作为直角三角形三边长度的是()。
A。
3,4,5 B。
6,7,8 C。
6,8,10 D。
7,24,255.给出下列4个说法:①只有正数才有平方根;②2是4的平方根;③平方根等于它本身的数只有1;④27的立方根是$\pm 3$。
其中,正确的有()。
A。
①② B。
①②③ C。
②③ D。
②③④6.若点$(4,y_1)$,$(-2,y_2)$都在函数$y=-x+b$的图象上,则$y_1$与$y_2$的大小关系是()。
A。
$y_1>y_2$ B。
$y_1<y_2$ C。
$y_1=y_2$ D。
无法确定7.已知一次函数$y=kx-k$,若函数值$y$随着自变量$x$值的增大而增大,则该函数的图象经过()。
A。
第一、二、三象限 B。
第一、二、四象限 C。
第二、三、四象限 D。
第一、三、四象限8.如图,在$\triangle ABC$中,且$CD=AB$,若$\angle B=32^\circ$,$AB=AC$,$D$为边$BA$的延长线上一点,则$\angle D$等()。
A。
$48^\circ$ B。
$58^\circ$ C。
2019-2020学年江苏省无锡市八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 在−1.414,227,√−273,π3,−√2,3.14,√9,0.1515515551…(两个1之间依次多1个5)中,无理数的个数是( ) A. 3个 B. 7个 C. 5个 D. 6个2. 已知点A 在第二象限且到x 轴的距离为3,到y 轴的距离为2,则A 点坐标为( )A. (−2,3)B. (2,−3)C. (−3,2)D. (3,−2)3. 下列不是轴对称图形是( )A. B.C. D.4. 下列各组数中不能作为直角三角形三边长的是( )A. √1,√2,√3B. 7,24,25C. 6,8,10D. 1,2,35. 下列说法中正确的有( ) ①±2都是8的立方根,②√(−2)2=−2,③√81的平方根是3,④−√−83=2.A. 1个B. 2个C. 3个D. 4个 6. 若点(−4,y 1),(2,y 2)都在函数y =−13x +b 的图像上,则y 1与y 2的大小关系是 ( )A. y 1>y 2 B. y 1=y 2 C. y 1<y 2D. 无法确定7. 若一次函数y =(1−2k)x −k 的函数值y 随x 的增大而增大,且此函数的图象不经过第二象限,则k 的取值范围是( )A. k <12B. k >0C. 0≤k <12D. k <0或k >12 8. 如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B =( )A. 40°B. 36°C. 80°D. 25°9.一次函数y=kx+b(k<0)的图象与x轴相交于(2,0),当y>0时,x的取值范围是()A. x<0B. x>0C. x<2D. x>210.已知平面直角坐标系内不同两点A(3,m−1),B(3,−3),若直线AB平行于y轴,且AB=5则m的值为()A. m=3,B. m=7,C. m=−7,D. m=3或m=−7二、填空题(本大题共8小题,共24.0分)11.16的平方根是___________.12.地球上七大洲的总面积约为149 480 000km2(精确到10 000 000km2).用科学记数法表示这个近似数为______.13.直角三角形的两直角边长分别为6和8,则斜边上的中线长是________.14.等腰三角形的周长为16cm,其中一边为4cm,则另两边的长分别为.15.将一次函数y=3x的图象向上平移2个单位,所得图象的函数表达式为_______________.16.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC沿AD折叠,使AC落在斜边AB上且与AE重合,则CD=______.17.如图,在平面直角坐标系中,点B(−1,4),点A(−7,0),点P是直线y=x−1上一点,且∠ABP=45°,则点P的坐标为______.18.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/ℎ的速度行驶1h后,乙车才沿相同路线行驶,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(ℎ)之间的函数关系如图所示,则两车第一次相遇后,经过________小时第二次相遇.三、解答题(本大题共8小题,共66.0分)19. 计算:(π−3)0+(−1)2019+(−12)−2×√−8320. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE ⊥CD 于E ,BD ⊥CD于D ,AE =5cm ,BD =2cm ,(1)求证:△AEC≌△CDB ;(2)求DE 的长.21.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,−2).(1)求直线AB的函数表达式;(2)若直线AB上的点C在第一象限,且S▵BOC=2,求点C的坐标.22.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.△ABC的面积为70,AB=16,BC=12.求DE的长.23.如图,在△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上的点D处.(1)用尺规作图的方法,在图中找出点E,F的位置,并连接DE,DF(保留作图痕迹,不要求写作法);(2)若ED⊥BC,求证:四边形AEDF是菱形.24.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?25.如图,四边形ABCD是正方形,点E是AD边上的一点(不与点A,D重合),连接CE,以CE为一边作正方形CEFG,使点F,G与点A,B在CE的两侧,连接BE并延长,交GD延长线于点H.(1)求证:△BCE≌△DCG;(2)试判断线段BE与DG的位置关系,并说明理由;(3)填空:若AE=1,AB=4,则点F到GH的距离为______.x的图象交于点A,点P(t,0)是x正半轴上26.如图,一次函数y=−x+7的图象与正比例函数y=34的一个动点.(1)点A的坐标为(______,______);(2)如图1,连接PA,若△AOP是等腰三角形,求点P的坐标:x和y=−x+7的图象于点B,C.是否存在正实(3)如图2,过点P作x轴的垂线,分别交y=34OA,若存在求出t的值;若不存在,请说明理由.数,使得BC=32-------- 答案与解析 --------1.答案:A解析:解:−1.414,227,√−273=3,3.14,√9=3是有理数,π3,−√2,0.1515515551…(两个1之间依次多1个5)是无理数,故选:A .根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式. 2.答案:A解析:解:∵点A 在第二象限,到x 轴的距离是3,到y 轴的距离是2,∴点A 的横坐标是−2,纵坐标是3,∴点A 的坐标为(−2,3).故选:A .根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.3.答案:B解析:此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A.是轴对称图形,故此选项错误;B .不是轴对称图形,故此选项正确;C .是轴对称图形,故此选项错误;D .是轴对称图形,故此选项错误;故选B.4.答案:D解析:解:A、√12+√22=√32,符合勾股定理的逆定理,故错误;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、12+22≠32,不符合勾股定理的逆定理,故正确.故选:D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.答案:A解析:解:①2是8的立方根,错误;②√(−2)2=|−2|=2,错误;③√81=9,9的平方根是±3,错误;④−√−83=−2,正确.则正确的有1个.故选A各项计算得到结果,即可做出判断.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.答案:A解析:本题考查的是一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.根据一次函数的系数k=−13<0知,该函数在定义域内是减函数,即y随x的增大而减小,据此来判断y1与y2的大小关系并作出选择.解:∵一次函数y=−13x+b中的k=−13<0,∴该一次函数是y随x的增大而减小,x+b图象上的两个点,又∵点(−4,y1),(2,y2)是一次函数y=−13∴x1=−4,x2=2,∴x1<x2,∴y1>y2.故选A.7.答案:C解析:本题主要考查了一次函数的性质,一次函数图象与系数的关系.先根据y随x的增大而增大可确定1−2k>0,再由函数的图象不经过第二象限知图象与y轴的交点在y轴的负半轴上或原点,即−k≤0,进而可求出k的取值范围.解:∵一次函数y=(1−2k)x−k的函数值y随x的增大而增大,且此函数的图象不经过第二象限,∴1−2k>0,且−k≤0,.解得0≤k<12故选C.8.答案:B解析:解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α×2α+2α=180°,∴α=36°,∴∠B=36°.故选:B.根据AB=AC可得∠B=∠C,CD=DA可得∠C=∠DAC,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.9.答案:C解析:本题主要考查一次函数和一元一次不等式的关系.先由k<0,得出y随x的变化情况,再求出x的取值范围解:∵k<0∴y随x的增大而减小∵x=2时,y=0∴y>0时,x<2.故选C.10.答案:D解析:本题考查了平行于坐标轴的点的坐标特征以及两点间的距离,根据AB=5列出关于m的方程,解方程求出m的值即可.解:∵AB//y轴,AB=5,∴|m−1−(−3)|=5,即|m+2|=5,∴m+2=5或m+2=−5,解得:m=3或m=−7.故选D.11.答案:±4解析:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵(±4)2=16,∴16的平方根是±4.故答案为±4.12.答案:1.5×108解析:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,由于149 480 000有9位,所以可以确定n=9−1=8,再求结果即可.解:149 480 000=1.4948×108≈1.5×108.故答案为1.5×108.13.答案:5解析:本题考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.解:已知直角三角形的两直角边为6、8,则斜边长为√62+82=10,×10=5,故斜边的中线长为12故答案为5.14.答案:6cm,6cm解析:此题考查了等腰三角形的性质与三角形的三边关系.此题比较简单,注意掌握分类讨论思想的应用.从等腰三角形的腰为长为4cm与等腰三角形的底边为4cm两种情况去分析求解即可求得答案.解:若等腰三角形的腰为长为4cm,设底边长为xcm,则有x+4×2=16,解得:x=8,∵4+4=8,∴以4cm为腰不能构成三角形;若等腰三角形的底边为4cm,设腰长为xcm,则有2x+4=16,解得:x=6,∴三角形的另两边的长分别为6cm,6cm.故答案为6cm,6cm.15.答案:y=3x+2解析:解:将正比例函数y=3x的图象向上平移2个单位后所得函数的解析式为y=3x+2,故答案为:y=3x+2.根据“上加下减”的平移规律进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.16.答案:3解析:解:∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=√62+82=10.∵△AED由△ACD翻折而成,∴AE=AC=6,CD=DE,∴BE=AB−AE=10−6=4.设CD=x,则DE=CD=x,BD=8−x,在Rt△BDE中,∵BE2+DE2=BD2,即42+x2=(8−x)2,解得x=3.故答案为:3.先根据勾股定理求出AB的长,再由图形翻折变换的性质得出AE=AC=6,设CD=x,则DE=CD= x,BD=8−x,在Rt△BDE中,根据勾股定理求出x的值即可.本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.17.答案:(−52,72)解析:解:将线段BA 绕点B 逆时针旋转90°得到线段BA′,则A′(3,−2),取AA′的中点K(−2,−1),直线BK 与直线y =x −2的交点即为点P .∵直线BK 的解析式为y =5x +9,由{y =5x +9y =x −1,解得{x =−52y =72, ∴点P 坐标为(−52,72),故答案为:(−52,72).将线段BA 绕点B 逆时针旋转90°得到线段BA′,则A′(3,−2),取AA′的中点K(−2,−1),直线BK 与直线y =x −2的交点即为点P.求出直线BK 的解析式,利用方程组确定交点P 坐标即可本题考查一次函数图象上的点的特征,等腰直角三角形的性质,待定系数法等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题. 18.答案:5.4解析:此题主要考查了一次函数的应用,本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲,则说明乙每小时比甲快40km ,则乙的速度为120km/ℎ.由图象第2−6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,当乙在B 休息1h 时,甲前进80km ,乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则两车第一次相遇后,经过6−2+1+0.4=5.4小时第二次相遇.故答案为5.4.19.答案:解:(π−3)0+(−1)2019+(−12)−2×√−83=1−1+4×(−2)=−8解析:首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 20.答案:解:(1)∵∠ACB =90°,∴∠ACE +∠DCB =90°,∵AE ⊥CD 于E ,∴∠ACE +∠CAE =90°,∴∠CAE =∠DCB ,∵BD ⊥CD 于D ,∴∠D =90°,在△AEC 和△CDB 中,∴△AEC≌△CDB(AAS);(2)∵△AEC≌△CDB ,∴AE =CD =5cm ,CE =BD =2cm ,∴DE =CD −CE =3cm .解析:本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,解答本题的关键是根据已知条件判定三角形的全等.(1)利用等腰直角三角形的性质和已知条件易证△AEC≌△CDB ;(2)根据全等三角形的性质可得AE =CD ,CE =BD ,所以DE 可求出.21.答案:解:(1)设直线AB 的解析式为y =kx +b(k ≠0),∵直线AB 过点A(1,0)、B(0,−2),∴{k +b =0b =−2,解得{k =2b =−2, ∴直线AB 的解析式为y =2x −2;(2)设点C 的坐标为(x,y),∵S △BOC =2, ∴12⋅2⋅|x|=2,解得x =±2,∵ 点C 在第一象限∴x =2∴y =2×2−2=2,∴点C 的坐标是(2,2).解析:本题考查的是待定系数法求一次函数的解析式、一次函数的应用.(1)设直线AB 的解析式为y =kx +b(k ≠0),将点A(1,0)、B(0,−2)分别代入解析式即可组成方程组,从而得到AB 的解析式;(2)设点C 的坐标为(x,y),根据三角形面积公式以及S △BOC =2,结合点C 在第一象限,求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标.22.答案:解:如图,过点D 作DF ⊥BC 于F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,∴DE =DF ,S ΔABC =12×16·DE +12×12·DF =70, 所以14DE =70,解得DE =5.答:DE 长为5.解析:过点D作DF⊥BC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再利用△ABC 的面积列出方程求解即可.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.23.答案:(1)解:如图,点E、F为所作;(2)证明:∵把∠A沿着EF对折,使点A落在BC上的点D处,∴∠EDF=∠A=60°,∠AFE=∠DFE,∵ED⊥BC,∠C=90°,∴DE//AC,∴∠DFC=∠EDF=60°,∴∠AFE=∠DFE=12(180°−∠EFC)=12(180°−60°)=60°,∴△AEF和△DEF都是等边三角形,∴DF=DE=EF=FA=AE,∴四边形AEDF是菱形.解析:(1)连接AD,然后作AD的垂直平分线即可;(2)先根据折叠的性质得∠EDF=∠A=60°,∠AFE=∠DFE,再利用ED⊥BC得到DE//AC,所以∠DFC=∠EDF=60°,接着利用邻补角可计算出∠AFE=∠DFE=60°,于是可判定△AEF和△DEF 都是等边三角形,从而利用四边相等的四边形为菱形进行判定.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与折叠的性质.24.答案:解:(1)当0≤x≤50时,设y=kx,根据题意得50k=1500,解得k=30;∴y =30x ;当x >50时,设y =k 1x +b ,根据题意得,{50k +b =150070k +b =1980,解得{k =24b =300, ∴y =24x +300.∴y ={30x(0≤x ≤50)24x +300(x >50); (2)设购进甲种水果为a 千克,则购进乙种水果(100−a)千克,∴40≤a ≤60,当40≤a ≤50时,w 1=30a +25(100−a)=5a +2500.当a =40 时.w min =2700元,当50<a ≤60时,w 2=24a +300+25(100−a)=−a +2800.当a =60时,w min =2740元,∵2740>2700,∴当a =40时,总费用最少,最少总费用为2700元.此时乙种水果100−40=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.解析:本题主要考查了待定系数法求一次函数解析式,一次函数的图象以及一元一次不等式的应用.(1)由图可知y 与x 的函数关系式是分段函数,利用待定系数法求解析式即可.(2)设购进甲种水果为a 千克,则购进乙种水果(100−a)千克,根据实际意义可以确定a 的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用.25.答案:13√1717解析:证明:(1)∵四边形ABCD 是正方形,四边形FGCE 是正方形∴CD =CB ,CG =CE ,∠GCE =∠DCB =90°∴∠GCD =∠ECB ,且CD =CB ,CG =CE∴△GCD≌△ECB(SAS)(2)BE ⊥DG理由如下:∵△GCD≌△ECB∴∠GDC=∠EBC,∵AD//BC∴∠EBC=∠HED=∠GDC,∵∠GDC+∠HDE=90°∴∠HED+∠HDE=90°∴∠DHE=90°∴BE⊥DG(3)如图,过点F作FN⊥GH于点N,过点C作CM⊥GH于点M,∵AE=1,AB=4∴AD=CD=AB=4,DE=AD−AE=3,BE=√AE2+AB2=√17∴CE=√CD2+DE2=5∴CG=CE=5∵△GCD≌△ECB∴BE=DG=√17∵∠FGC=90°∴∠FGD+∠DGC=90°,∠FGD+∠GFD=90°∴∠GFD=∠DGC,且FG=GC,∠FNG=∠CMG=90°∴△FGN≌△GCM(AAS)∴FN=GM∵CM2=CG2−GM2,CM2=CD2−MD2,∴25−GM2=16−(√17−GM)2,∴GM=13√17 17∴点F到GH的距离FD=13√1717故答案为:13√1717(1)由正方形的性质可得CD=CB,CG=CE,∠GCE=∠DCB=90°,由“SAS”可证△GCD≌△ECB;(2)由全等三角形的性质和平行线的性质可得∠EBC=∠HED=∠GDC,由余角的性质可得∠DHE= 90°,即BE⊥DG;(3)过点F作FN⊥GH于点N,过点C作CM⊥GH于点M,由勾股定理求EB,CE的长,由△FGN≌△GCM,可得FN=GM,由勾股定理列出方程,可求GM的长,即可得点F到GH的距离.本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,利用勾股定理列出方程是本题的关键.26.答案:4 3解析:解:(1)解{y=−x+7y=34x得{x=4y=3,∴点A的坐标为(4,3),故答案为:(4,3);(2)∵A(4,3),∴OA=√32+42=5,当OP=OA=5时,△AOP是等腰三角形,∴P(5,0),当AP=OA=5时,△AOP是等腰三角形,则OP=8,∴P(8,0);当OP=PA时,△AOP是等腰三角形,则点P在OA的垂直平分线上,如图1,设OA的垂直平分线交OA于H,∴OH=12OA=52,过A作AG⊥x轴于G,∴△OPH∽△OAG,∴OHOG =OPOA,∴524=OP5,∴OP=258,∴P(258,0),综上所述,P(5,0)或(8,0)或(258,0);(3)∵P(t,0),∴B(t,34t),C(t,−t+7),∵BC=32OA,∴−t+7−34t=32×5或34t+t−7=32×5,解得:t=−27或t=587,∵t>0,∴t=587.(1)解方程组即可得到结论;(2)根据勾股定理得到OA=√32+42=5,当OP=OA=5时,△AOP是等腰三角形,当AP=OA=5时,△AOP是等腰三角形,当OP=PA时,△AOP是等腰三角形,于是得到结论;(3)由P(t,0),得到B(t,34t),C(t,−t+7),根据BC=32OA,解方程即可得到结论.本题考查了一次函数的综合题,解方程组求点的坐标,等腰三角形的性质,相似三角形的判定和性质,正确的识别图形是解题的关键.。
无锡市2019-2020学年数学八上期末模拟学业水平测试试题(1)一、选择题1.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x 千米/小时,则方程可列为( )A .180x +4060=1801.5x B .180x -4060=1801.5x x - C .1801.5x x - +1=180x ﹣4060D .1801.5x x - +1=180x +40602.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1 B .x≥2 C .x >1 D .x >23.化简2422x x x+--结果是( ) A .12x + B .x+2 C .2x x - D .x-24.若x+y=6,x-y=5,则x 2-y 2等于( )A .11B .15C .30D .605.计算结果为x 2-5x -6的是( )A .(x -6)(x +1)B .(x -2)(x +3)C .(x +6)(x -1)D .(x +2)(x -3)6.下列各式中计算正确的是( )A .236x x x ⋅=B .842x x x ÷=C .()326326a b a b -=-D .()3412x x -=-7.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右对折,接着对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则展开后的图形是( )A. B. C. D.8.如图,ABCD 四点在同一条直线上,△ACE ≌△BDF ,则下列结论正确的是( )A.△ACE 和△BDF 成轴对称B.△ACE 经过旋转可以和△BDF 重合C.△ACE 和△BDF 成中心对称D.△ACE经过平移可以和△BDF重合9.如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD 的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A B C.D.10.如图,点D,E分别在线段AB,AC上,CD与BE相交于点O,已知AB=AC,那么添加下列一个条件∆≅∆的是()后,仍无法判定ABE ACD∠=∠B.AD=AE C.BE=CD D.BD=CEA.B C11.如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有()①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周长等于BC的长.A.0个;B.1个;C.2个;D.3个.12.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°13.如图,AE∥BF,∠1=110°,∠2=130°,那么∠3的度数是()A.40°B.50°C.60°D.70°14.已知三角形的两边长分别为3cm和9cm,则下列长度的四条线段中能作为第三边的是()A.12cm B.10cm C.6cm D.3cm15.在△ABC 中,AB=10,BC=12,BC 边上的中线AD=8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12 二、填空题16.如果()()121212121m n a a a a =+-+-+对于任意自然数a 都成立,则m =______,n =______. 17.已知m+2n+2=0,则2m •4n 的值为_____.18.如图,6AB cm =,4AC BD cm ==.CAB DBA ∠=∠,点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s .设点Q 的运动速度为/x cm s ,若使得ACP BPQ ∆≅∆全等,则x 的值为_____.19.已知AD 是△ABC 的高,∠BAD =70°,∠CAD =25°,则∠BAC 的度数是_____20.如图,ABC 90∠=,P 为射线BC 上任意一点(点P 和点B 不重合),分别以AB ,AP 为边在ABC ∠内部作等边ABE 和等边APQ ,连结QE 并延长交BP 于点F ,连接EP ,若FQ 11=,AE =EP =______.三、解答题21.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?22.(发现)任意三个连续偶数的平方和是4的倍数。
无锡市2019-2020学年数学八上期末模拟学业水平测试试题(4)一、选择题1.下列变形不正确的是( )A .(0)b b mm a a m⋅=≠⋅ B .x x y y =-- C .x xy y-=- D .2211x x x x x +=-+ 2.将分式2x yx y+中的x ,y 的值同时扩大为原来的3倍,则分式的值( )A .扩大3倍B .缩小到原来的19C .缩小到原来的13D .不变3.如果分式有意义,那么x 的取值范围是( )A.x≠0B.x=﹣1C.x≠﹣1D.x≠1 4.下列多项式能用完全平方公式分解因式的是( ).A .a 2-ab +b 2B .x 2+4x – 4C .x 2-4x +4D .x 2-4x +25.如图一,在边长为a 的正方形中,挖掉一个边长为b 的小正方形(a>b ),把余下的部分剪成一个矩形(如图二),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()2222a b a b a ab b +-=+-6.因式分解2(1)(1)a a a -+-结果是( ) A .2(1)(1)a a -+ B .3(1)a - C .2(1)(1)a a -+D .2(1)(1)a a -+7.如图是一个风筝的图案,它是以直线AF 为对称轴的轴对称图形,下列结论中不一定成立的是( )A .ABD ≌ACDB .AF 垂直平分EGC .直线BG ,CE 的交点在AF 上D .DEG 是等边三角形8.如图,CD 是△ABC 的边AB 上的中线,且CD =12AB ,则下列结论错误的是( )A .∠B =30° B .AD =BDC .∠ACB =90°D .△ABC 是直角三角形 9.若等腰三角形的两边长为3和7,则该等腰三角形的周长为( )A .10B .13C .17D .13或1710.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为19 cm ,△ABD 的周长为13 cm ,则AE的长为( )A.3cmB.6cmC.12cmD.16cm11.在ABC ∆和DEF ∆中,①A E ∠=∠,AB EF =,C D ∠=∠;②A D ∠=∠,AB EF =,B E ∠=∠;③A F ∠=∠,AB DF =,B D ∠=∠;④A F ∠=∠,AB EF =,CB ED =;⑤A D ∠=∠,B E ∠=∠,BC EF =能判断这两个三角形全等的条件有( )A .①②④B .①③⑤C .④⑤D .①③12.如图,在Rt △ABC 中,∠A=90°,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,若AE=1,则BE 的长为( )A .2B C D .113.△ABC 的三条边分别为5、x 、7,则x 的取值范围为( ) A .5<x <7 B .2<x <12 C .5≤x≤7 D .2≤x≤12 14.若一个多边形的内角和比外角和的2倍少180°,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形15.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产--“抖空竹”引入阳光特色大课间.下面左图是某同学“抖空竹”时的一个瞬间,小聪把它抽象成右图的数学问题:已知AB//CD ,EAB 80∠=,ECD 110∠=,则E ∠的度数是( )A.30B.40C.60D.70二、填空题16.132的五次方根是__________________; 17.如图,如果甲图中的阴影面积为S 1,乙图中的阴影面积为S 2,那么12S S =________.(用含a 、b 的代数式表示)【答案】a ba+ 18.在△ABC 中,AB=5, AC=7,则BC 边上的中线a 的取值范围是__________ 19.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____. 20.如图,等边三角形的边长为4,点是△ABC 的中心,,的两边与分别相交于,绕点顺时针旋转时,下列四个结论正确的个数是( ) ①;②;③;④周长最小值是9.A.1个B.2个C.3个D.4个三、解答题21.先化简,再求值:22214-2+442a a a a a a a a ---⎛⎫÷ ⎪+++⎝⎭,其中a =. 22.因式分解:(1)2x 2-8xy +8y 2; (2)4x 3-4x 2y -(x -y).23.如图,在所给网格图(每个小正方形的边长都是1)中完成下列各题: (1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1; (2)求出△A 1B 1C 1的面积;(3)在DE 上画出点Q ,使QA+QC 最小.24.已知:如图,点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,AM=AC=CM ,BC=CN=BN ,∠ACM=∠BCN=60°,AN 交MC 于点E ,BM 交CN 于点F. (1)求证:AN=BM; (2)求证:判断△CEF 形状25.已知任意一个三角形的三个内角的和是180°,如图1,在ABC 中,∠ABC 的角平分线BO 与∠ACB 的角平分线CO 的交点为O.(1)若∠A=70°,求∠BOC 的度数; (2)若∠A=α,求∠BOC 的度数;(3)如图2,若BO 、CO 分别是∠ABC 、∠ACB 的三等分线,也就是∠OBC=13∠ABC ,∠OCB=13∠ACB ,∠A=α,求∠BOC 的度数.【参考答案】*** 一、选择题16.1217.无 18.16a << 19.32° 20.B 三、解答题 21.122.(1)2(x-2y)2;(2)(x-y)(2x+1)(2x-1) 23.(1)见解析;(2)3;(3)见解析. 【解析】 【分析】(1)直接利用轴对称变换的性质得出对应点位置进而得出答案; (2)直接利用三角形面积求法得出答案;(3)直接利用最短路线求法得出Q 点位置. 【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)△A 1B 1C 1的面积为:12×2×3=3; (3)如图所示:点Q 的位置,使QA+QC 最小. 【点睛】此题主要考查了轴对称变换以及三角形面积求法和最短路线问题,正确得出对应点位置是解题关键. 24.(1)证明见解析;(2)△CEF 是等边三角形,理由见解析. 【解析】 【分析】(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS 得到△ACN ≌△MCB ,结论得证; (2)由(1)中的全等可得∠CAN=∠CMB ,进而得出∠MCF=∠ACE ,由ASA 得出△CAE ≌△CMF ,即CE=CF ,又ECF=60°,所以△CEF 为等边三角形. 【详解】(1)∵△ACM ,△CBN 是等边三角形, ∴AC=MC ,BC=NC ,∠ACM=∠NCB=60°, ∴∠ACM+∠MCN=∠NCB+∠MCN ,即∠ACN=∠MCB ,在△ACN 和△MCB 中,AC MC ACN MCB NC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△MCB (SAS ), ∴AN=BM ;(2)△CEF 是等边三角形, 理由:∵△CAN ≌△CMB , ∴∠CAN=∠CMB ,又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°, ∴∠MCF=∠ACE ,在△CAE 和△CMF 中,CAE CMF CA CM ACE MCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAE ≌△CMF (ASA ), ∴CE=CF ,∴△CEF 为等腰三角形, 又∵∠ECF=60°,∴△CEF为等边三角形.【点睛】本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,要求能够掌握并熟练运用.25.(1)125°;(2)90°+12α;(3)120°+13α。
无锡市八年级上学期期末数学试卷 (解析版)一、选择题1.下列四个图标中,是轴对称图形的是( ) A .B .C .D .2.下列实数中,无理数是( ) A .227B .3πC .4-D .3273.若分式12xx -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 4.一次函数y =﹣2x+3的图象不经过的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .106.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE 7.下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,138.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x > 9.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A .1B .5C .7D .4910.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52D .y =12x +12二、填空题11.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____. 12.在311,2π,122-,0,0.454454445…,319中,无理数有______个.13.阅读理解:对于任意正整数a ,b ,∵()20a b-≥,∴20a ab b -+≥,∴2a b ab +≥,只有当a b =时,等号成立;结论:在2a b ab +≥(a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab .若1m ,1m m +-有最小值为__________.14.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___. 15.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -.把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.16.使函数6y x =-有意义的自变量x 的取值范围是_______.17.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.18.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______19.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.20.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.三、解答题21.如图,已知一次函数2y x =-的图像与y 轴交于点A ,一次函数4y x b =+的图像与y 轴交于点B ,且与x 轴以及一次函数2y x =-的图像分别交于点C 、D ,点D 的坐标为()2,m -.(1)关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为______________.(2)关于x 的不等式24x x b -≥+的解集为__________________.(3)求四边形OADC 的面积;(4)在x 轴上是否存在点E ,使得以点C ,D ,E 为顶点的三角形是直角三角形?若存在,求出点E 的坐标:若不存在,请说明理由.22.如图①,A 、B 两个圆柱形容器放置在同一水平桌面上,开始时容器A 中盛满水,容器B 中盛有高度为1 dm 的水,容器B 下方装有一只水龙头,容器A 向容器B 匀速注水.设时间为t (s),容器A 、B 中的水位高度A h (dm)、B h (dm)与时间t (s)之间的部分函数图像如图②所示.根据图中数据解答下列问题:(1)容器A 向容器B 注水的速度为 dm 3/s(结果保留π),容器B 的底面直径m = dm; (2)当容器B 注满水后,容器A 停止向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为4πdm 3/s.请在图②中画出容器B 中水位高度B h 与时间 (4t ≥)的函数图像,说明理由;(3)当容器B 注满水后,容器A 继续向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为2πdm 3/s ,直至容器A 、B 水位高度相同时,立即停止放水和注水,求容器A 向容器B 全程注水时间.(提示:圆柱体积=圆柱的底面积×圆柱的高)23.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。
学年第一学期期末试卷2019—2020初二数学分)满分:100(考试时间:100分钟分)3分,共24一、选择题(每题( ) .下面图案中是轴对称图形的有13个4个 D.A.1个 B.2个 C.( ) ,斜边与一条直角边之比为13∶5,这个三角形三边长分别是.Rt△ABC中,∠C=90,周长为60210、26、2485; C.10、、6; D.4A.5、、3 ; B.13、12、??15,a?a?()在第四象限,且到x轴的距离为3.已知点P2,则点P的坐标为,-4));C.(-2,4);D.(2A.(4,-2);B.(-4,2)x,y(yxy(x,y)x?b?y??x ( ) 4. 点在直线,则上,若大小关系是、与11222121y?y?yy?yy A、无法确定 B、D、 C、211122两个部分,则这个等AB=AC,一边上的中线BD将这个三角形的周长分为15和125..等腰△ABC中,腰三角形的底边长为()107或 D.或7 B.11 C.711 A.y(千米)随时间(时)变化的图象(全程)如图 6.在无锡全民健身越野赛中,甲、乙两选手的行程千米; 10 ②第 1 小时两人都跑了列四种说法:①起跑后所示.下 1 小时内,甲在乙的前面;)(③甲比乙先到达终点;④两人都跑了 20 千米.正确的有D.②③④A.①②③④ B.①②③ C.①②④,请按照图中所标注的数据,计算图中实线所围成的图且 BC=CDAE.如图,⊥AB 且 AE=AB,BC⊥CD 7 )(形的面积 S 是68.50 B.62 C.65 DA.,则图、FE、OABBCABC中,AB=AC,D是的中点,AC的垂直平分线分别交AC、AD、于点8.如图,△)(中全等三角形的对数是4对C B.2对.3对 D..A1对第7题图第8题图第6题 24分)分,共二、填空题(每空2 ___________的取值范围是.x3x.函数169.的算术平方根是y=-中自变量.等腰三角形的一内角为1040°,则它的底角为°.13184900精确到十万位的近似值是.11.2若一次函数的值是_______,l12.若一次函数y=(m+)x+m-l是正比例函数.则m yy?,(x,y),(xy)当x?x时,2的取值范围是,的图像上有两个点m,则lm+)x+m-ly=(22212111.______x4x?y?3y?2x?bb.13.当的交点在为时,直线轴上与直线若将这条直线向左平移,恰好过坐标原点,则平移后,(0,5),B(20),14.已知直线AB经过点A_______________________. 的直线解析式为 15.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________(只添一个条件即可).ABCRt△ABCAC?4BC△?390?C?进行折叠,使顶cm,16.如图,已知 cm,中,.现将B,A?DE. cm点重合,则折痕,50和39的面积分别为,DE=DG,△ADG和△AED17.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F 的面积为.则△EDF BMMANBCBACABACMNABC=90°,=45°.=若,点∠,在边,上,且∠=118.如图,等腰直角三角形中, MN CN的长为.,则=3A AC B DM E F N A BE 题第16 B D C第15题第18题C题第17 三、解答题(共52分)).计算题:(每题3分,共计6分19216??5)(x;求x(1)已知:11?33??()27?525??)计算2 :(4AAxOy,1,(本题20.4分)如图,在平面直角坐标系3中,点)(B,1).点5(B PP同时满足)只用直尺(无刻度)和圆规,求作一个点,使点(1O xOyPABP到∠到,下列两个条件:①点②点两点的距离相等;的两边的距离相等.(要求保留作图痕迹,不必写出作法)PP)作出点)在(1_________后,点.的坐标为(2ABD6分)如图,将矩形纸片ABCD沿对角线折叠,使点21.(本题交BC于点E.落在平面上的F 点处,DF ;≌△BFEDCE(1)求证:△3CD?3的长. DB=2)若,求BE,(2o,分)已知:如图,.(本题5△ABC中,ACB,∠=90AC=BC221A,求证:BDBDAEACD是上一点,⊥交的延长线于AE,且E=BD2EB2C. ABC的平分线BD是∠汽车三种运输,124、(本题8分)如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t.(1)AB= cm,AB边上的高为 cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.Ayyx,轴交于点 +1 的图象与25.(本题8分)如图,已知函数 =xyBxykxb的+1 以及,﹣1),与一次函数== + 的图象经过点轴(0nDDC)的坐标为( 1、,,且点,图象分别交于点bnk;= (1)则,= ,= D xyykxb的取X+1 的函数值大于函数(2)函数 ==+的函数值,则值范围是A AOCD的面积;(3)求四边形DPCxP为顶点的三角形,轴上是否存在点,,使得以点 4()在O C P若不存在,请说明理由.的坐标;是直角三角形?若存在求出点B、、,求这个三角形的面积.小华1310三边的长分别为5、、AB中,△8.26(分)在ABC BCACABC △)同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1,再在网格中画出格点3的高,而借用网格就ABC,如图三个顶点都在小正方形的顶点处)1所示.这样不需求△(即△ABC .能计算出它的面积.这种方法叫做构图法....△ABC的面积为:分)(1)(28、17,请在图2的正方形网格中画出相应的△DEF)(2(3分)若△DEF 三边的长分别为5,、并利用构图法求出它的面积....(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17,请利用第2小题解题方法求六边形花坛ABCDEF的面积.(3分)42020无锡市新区八上数学期末试题答案2019— 24分)一.选择题:(每题3分,共8 67 题号1 2 3 4 524分)二.填空题:(每题2分,共6,×或 11. 3.210 m<-1 12.1 ≥3 10. 70°40°9.4,x58.b=-16. 14.y=15. x (不唯一)13BD=CD 231.8751018. 17 .5.552分)三.解答题:(共5(-1,-9;2)9+ ;(19. 1))AB中垂线与∠XOY平分线的交点分)。
无锡市初二数学期末试卷统考卷(含答案)一、选择题(每题4分,共40分)1. 下列选项中,不是正数的是()。
A. 3B. 0C. 1D. 2.52. 若a=3,b=2,则a+b的值为()。
A. 5B. 1C. 5D. 13. 下列各数中,是无理数的是()。
A. √9B. √16C. √3D. √14. 已知等差数列的前5项和为25,公差为2,首项为()。
A. 1B. 3C. 5D. 75. 下列函数中,是一次函数的是()。
A. y=2x²B. y=3x+1C. y=x³D. y=√x6. 已知平行线l1:3x+4y+5=0,l2:3x+4y6=0,则两平行线的距离为()。
A. 1B. 2C. 3D. 47. 下列各式中,是同类二次根式的是()。
A. √2 和√3B. √5 和√10C. √8 和√12D. √18 和√508. 若等腰三角形的底边长为10,腰长为13,则该三角形的面积为()。
A. 60B. 65C. 80D. 859. 已知一组数据的方差为9,则这组数据的标准差为()。
A. 3B. 6C. 9D. 1210. 下列命题中,真命题的是()。
A. 对顶角相等B. 相似三角形的面积比等于边长比C. 全等三角形的面积相等D. 平行四边形的对角线互相垂直二、填空题(每题4分,共40分)11. 若|x|=5,则x的值为______。
12. 已知数列{an}的通项公式为an=3n1,则第5项的值为______。
13. 若二元一次方程组的解为x=2,y=3,则该方程组的一个方程可以是______。
14. 在平面直角坐标系中,点A(3,4)关于原点的对称点坐标为______。
15. 已知扇形的半径为5,圆心角为60°,则该扇形的面积为______。
16. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围分别为______。
17. 若平行四边形的邻边长分别为6和8,则该平行四边形的面积为______。
学校 班级 姓名 考试号…………………………………………………………………………………………………………………………………………………………2019—2020学年第一学期期末试卷初二数学(考试时间:100分钟 满分:100分)一.选择题(本大题共10小题,每题3分,共30分.)1. 16的算术平方根是…………………………………………………………………( )A .4B .-4C .±4D .±22.下列图形中是轴对称图形的有………………………………………………………( )A .1个B .2个C .3个D .4个3. 把19547精确到千位的近似数是…………………………………………………( )A .1.95×103B .1.95×104C .2.0×104D .1.9×104 4.以下列各组数为三角形的边长,能构成直角三角形的是…………………………( )A .2、3、4B .5、5、6C . 2、3、 5D .2、3、 5 5.平面直角坐标系中点(2,-5)所在的象限是………………………………… ( )A .第一象限错误!未找到引用源。
B .第二象限C .第三象限错误!未找到引用源。
D .第四象限6.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为………………( )A . 9B . 12C . 7或9D . 9或12 7.一次函数y =-2x +1的图象与y 轴的交点坐标是………………………………( )A .(-2, 0)B .(12,0) C .(0,2) D .(0,1)8. 如图,点E 、F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE , 还需要添加一个条件是………………………………………( )A .AD ∥BCB .DF ∥BEC .∠D =∠B D .∠A =∠C9. 如图,在△ABC 中,∠C =90º,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为………………( )A .3-1B .3+1C .5-1D .5+110. 在平面直角坐标系中,点P 在由直线y =-x +3,直线y =4和直线x =1所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2),则QP +QR 的最小值为( )A .17B .5+2C .3 5D .4二.填空题(本大题共8小题,每题2分,共16分.)11.-2的绝对值是 .12.平面直角坐标系中,点A (0,-1)与点B (3,3)之间的距离是 . 13.如果等腰三角形的一个外角是100°,那么它的顶角的度数为 . 14.若一次函数y =2x +b (b 为常数)的图象经过点(b ,9),则b = . 15.如图,在△ABC 中,AC =4cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7cm ,则BC 的长为 cm .16.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102º,则∠ADC = 度. 17.如图,在平面直角坐标系中,点A 、B 的坐标分别为(3,2)、(-1,0),若将线段BA 绕点B 顺时针旋转90°得到线段BA ',则点A '的坐标为 . 18.如图,在△ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°,若BM =1,CN =3,则MN 的长为 .三.解答题(本大题共7小题,共54分. 解答需写出必要的文字说明或演算步骤)19.(8分)(1)计算:3-8-(12)-1+20160; (2)求 (x -1)2-25=0中x 的值.(第16题图)(第15题图)(第)20.(6分)如图,点B 、E 、C 、F 在同一条直线上,∠A =∠D ,∠B =∠DEF ,BE =CF .求证:AC =DF .21.(8分)在平面直角坐标系中,一条直线经过A (-1,5)、B (-2,a )、C (3,-3)三点.(1)求a 的值;(2)设这条直线与y 轴交于点D ,求△OBD 的面积.22.(6分)某公司市场营销部的营销员有部分收入按照业务量或销售额提成,即多卖多得. 营销员的月提成收入y (元)与其每月的销售量x (万件)成一次函数关系,其图象如图所示. 根据图象提供的信息,解答下列问题: (1)求出y (元)与x (万件)(其中x ≥0)之间的函数关系式;(2)已知该公司营销员李平12月份的销售量为1.2万件,求李平12月份的提成收入.CB A23.(8分)已知,如图所示,在Rt △ABC 中,∠C =90º, (1)作∠B 的平分线BD 交AC 于点D ;(要求:尺规作图,保留作图痕迹,不写作法.) (2)若CD =6,AD =10,求AB的长.24.(8分)如图,Rt △ABC 中,∠CAB =90º,∠ACB =30º,D 是AB 上一点(不与A 、B 重合),DE ⊥BC 于E ,若P 是CD 的中点,请判断△P AE 的形状,并说明理由.25.(10分)如图1和图2,在20×20的等距网格(每格边长是1个单位)中,Rt △ABC从点A 与点M 重合的位置开始,以每秒1个单位的速度先向下平移,当BC 边与网的底部重合时,继续以同样的速度向右平移,当点C 与点P 重合时Rt △ABC 停止移动.设运动时间为x 秒,△QAC 的面积为y .(1)如图1,当Rt △ABC 向下平移到Rt △A 1B 1C 1的位置时,在网格中画出Rt △A 1B 1C 1关于直线QN 成轴对称的图形; (2)如图2,在Rt △ABC 向下平移的过程中,求出y 与x 的函数关系式,并直接写出当x 取何值时,y 取得最大值和最小值? 最大值和最小值分别是多少?(3)在Rt △ABC 向右平移的过程中,请你说明当x 取何值时,y 取得最大值和最小值?最大值和最小值分别是多少?AB CDP E--------------------------------------------密----------封----------线----------内----------请----------不----------要----------B 1A 图1初二数学期末考试参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分.)1.A.2.B.3.C.4.D.5.D.6.B.7.D.8.C.9.D.10.A.二、填空题(本大题共8小题,每小题2分,共16分.)11.2.12.5.13.80º或20º.14.3.15.3.16.52º.17.(1,-4).18.10 .三、解答题(本大题共7小题,共54分.解答时应写出文字说明、证明过程或演算步骤.)19.(本题共有2小题,每小题4分,共8分)(1)解:原式=-2-2+1………………(3分)=-3………………………(4分)(2)解:x-1=±5…………………………(2分)x=6或-4…………………(4分)20.(本题满分6分)证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF…………………………(2分)又∵∠A=∠D,∠B=∠DEF,∴△ABC≌△DEF(AAS)……………(5分)∴AC=DF……………………………………………………………………(6分)21.(本题满分8分)(1)求出直线解析式y=-2x+3………………………………………………………(3分)a=-2×(-2)+3=7………………………………………………………………(4分)(2)D(0,3)……………………………………………………………………………(5分)S△OBD=3……………………………………………………………………………(7分)画图给1分…………………………………………………………………………(8分)22.(本题满分6分)(1)y=800x+600(x≥0)……………………………………………………………(3分)(2)当x=1.2时,y=800×1.2+600=1560……………………………………………(6分)23.(本题满分8分)(1)作图,略………………………………………………………………………………(3分)(2)作DE⊥AB于E,则DE=CD=6…………………………………………………(4分)在Rt△ADE中,AE=AD2-DE2=102-62=8………………………………(5分)设AB=x,则BC=BE=x-8,于是在Rt△ABC中,x2-(x-8)2=162…………(7分)解得x=20,即AB的长是20 ……………………………………………………(8分)24.(本题满分8分)判断出△P AE的形状为等边三角形…………………………………………………(2分)证明:∵在Rt△CAD中,∠CAD=90º,P是斜边CD的中点,∴P A=PC=12CD……………………………………………………………(3分)∴∠APD=2∠ACD…………………………………………………………(4分)同理,在Rt△CED中,PE=PC=12CD,∠DPE=2∠DCB……………(5分)∴P A=PE,即△P AE是等腰三角形………………………………………(6分)∴∠APE=2∠ACB=2×30º=60º,………………………………………(7分)∴等腰△P AE是等边三角形…………………………………………………(8分)25.(本题满分10分)(1)画图略………………………………………………………………………………(2分)(2)y=2x+40(0≤x≤16)……………………………………………………………(4分)当x=0时,y取得最小值,y最小=40.……………………………………………(5分)当x=16时,y取得最大值,y最大=72.……………………………………………(6分)(3)y=-2x+104(16≤x≤32)………………………………………………………(8分)当x=16时,y取得最大值,y最大=72.……………………………………………(9分)当x=32时,y取得最小值,y最小=40.…………………………………………(10分)【或用轴对称的思想解释,在△ABC自左向右平移的过程中,均对应着(2)中自上而下平移的某个位置,这两个三角形关于直线QN成轴对称,也能确定面积的最大、最小值】。