ch1-1样本空间及事件
- 格式:ppt
- 大小:1.60 MB
- 文档页数:44
第十章概率10.1随机事件与概率10.1.1有限样本空间与随机事件素养目标·定方向素养目标学法指导1.理解样本点和有限样本空间的含义.(数学抽象)2.理解随机事件与样本点的关系.(逻辑推理)1.类比集合的有关概念来认识样本空间. 2.类比集合与集合之间的关系来认识随机事件.必备知识·探新知知识点1随机试验及样本空间1.随机试验的概念和特点(1)随机试验:我们把对__随机现象__的实现和对它的观察称为随机试验,简称试验,常用字母E来表示.(2)随机试验的特点:①试验可以在相同条件下__重复__进行;②试验的所有可能结果是__明确可知__的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的__每个可能的基本结果__称为样本点用__w__表示样本点样本空间全体__样本点__的集合称为试验E的样本空间用__Ω__表示样本空间有限样本空间如果一个随机试验有n个可能结果w1,w2,…,w n,则称样本空间ΩΩ={w1,w2,…,w n}={w1,w2,…,w n}为有限样本空间知识点2三种事件的定义随机事件我们将样本空间Ω的__子集__称为随机事件,简称事件,并把只包含__一个__样本点的事件称为基本事件,随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生必然事件Ω作为自身的子集,包含了__所有的__样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件不可能事件空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件[知识解读]1.随机试验的三个特点(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.关于样本点和样本空间(1)样本点是指随机试验的每个可能的基本结果,全体样本点的集合称为试验的样本空间;(2)只讨论样本空间为有限集的情况,即有限样本空间.3.事件与基本事件(1)随机事件是样本空间的子集.随机事件是由若干个基本事件构成的,当然,基本事件也是随机事件.(2)必然事件与不可能事件不具有随机性,是随机事件的两个极端情形.关键能力·攻重难题型探究题型一事件类型的判断典例1在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;(3)没有水分,种子发芽;(4)某电话总机在60秒内接到至少15个电话;(5)在标准大气压下,水的温度达到50 ℃时会沸腾;(6)同性电荷相互排斥.[分析]依据事件的分类及其定义,在给出的条件下,判断事件是否发生.[解析]结合必然事件、不可能事件、随机事件的定义可知.(1)对任意实数,都满足加法的交换律,故此事件是必然事件.(2)从6张号签中任取一张,得到4号签,此事件可能发生,也可能不发生,故此事件是随机事件.(3)适宜的温度和充足的水分,是种子萌发不可缺少的两个条件,没有水分,种子就不可能发芽,故此事件是不可能事件.(4)电话总机在60秒内接到至少15个电话,此事件可能发生,也可能不发生,故此事件是随机事件.(5)在标准大气压下,水的温度达到100 ℃时,开始沸腾,水温达到50 ℃,水不会沸腾,故此事件是不可能事件.(6)根据“同种电荷相互排斥,异种电荷相互吸引”的原理判断,该事件是必然事件.[归纳提升]判断一个事件是随机事件、必然事件还是不可能事件,首先一定要看条件,其次是看在该条件下所研究的事件是一定发生(必然事件)、不一定发生(随机事件),还是一定不发生(不可能事件).【对点练习】❶指出下列事件是必然事件、不可能事件,还是随机事件:(1)我国东南沿海某地明年将受到3次冷空气的侵袭;(2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标.[解析](1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件.(3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件.题型二确定试验的样本空间典例2下列随机事件中,一次试验各指什么?试写出试验的样本空间.(1)先后抛掷两枚质地均匀的硬币多次;(2)从集合A={a,b,c,d}中任取3个元素;(3)从集合A={a,b,c,d}中任取2个元素.[解析](1)一次试验是指“先后抛掷两枚质地均匀的硬币一次”,试验的样本空间为:{(正,反),(正,正),(反,反),(反,正)}.(2)一次试验是指“从集合A中一次选取3个元素组成集合”,试验的样本空间为:{(a,b,c),(a,b,d),(a,c,d),(b,c,d)}.(3)一次试验是指“从集合A中一次选取2个元素”,试验的样本空间为:{(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}.[归纳提升]不重不漏地列举试验的所有样本点的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验中的条件.(2)根据日常生活经验,按照一定的顺序列举出所有可能的结果,可应用画树状图、列表等方法解决.【对点练习】❷袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和样本空间.(1)从中任取1球;(2)从中任取2球.[解析](1)条件为:从袋中任取1球.样本空间为{红,白,黄,黑}.(2)条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,样本空间为{(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑)}.题型三随机事件的表示典例3一个口袋内装有除颜色外完全相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球.(1)一共有多少个样本点?(2)写出“2个球都是白球”这一事件的集合表示.[解析](1)分别记白球为1,2,3号,黑球为4,5号,则这个试验的样本点为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个[其中(1,2)表示摸到1号球和2号球].(2)记A表示“2个球都是白球”这一事件,则A={(1,2),(1,3),(2,3)}.[归纳提升]1.判随机事件的结果是相对于条件而言的,要确定样本空间,(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出所有样本点.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.2.试验中当试验的结果不唯一时,一定要将各种可能都要考虑到,尤其是有顺序和无顺序的情况最易出错.【对点练习】❸做抛掷红、蓝两枚骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数.写出:(1)这个试验的样本空间;(2)这个试验的结果的个数;(3)指出事件A={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}的含义;(4)写出“点数之和大于8”这一事件的集合表示.[解析](1)这个试验的样本空间Ω为{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}.(2)这个试验的结果的个数为36.(3)事件A的含义为抛掷红、蓝两枚骰子,掷出的点数之和为7.(4)记B=“点数之和大于8”,则B={(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)}.易错警示忽视试验结果与顺序的关系而致误典例4已知集合M={-2,3},N={-4,5,6},从这两个集合中各取一个元素分别作为点的横、纵坐标.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数.[错解](1)这个试验的基本事件空间Ω={(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6)}.(2)这个试验的基本事件的总数是6.[错因分析]题中要求从两个集合中各取一个元素分别作为点的横、纵坐标,所以集合N 中的元素也可以作为横坐标,错解中少了以下基本事件:(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3).[正解](1)这个试验的基本事件空间Ω={(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6),(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3)}.(2)这个试验的基本事件的总数是12.【对点练习】❹同时抛掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是(D)A.3B.4C.5D.6[解析](1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.。
§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。
一、 基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。
例如掷一枚硬币,我们关心的是出现正面还是出现反面这两个可能结果。
若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。
1、 基本事件通常,据我们研究的目的,将随机试验的每一个可能的结果,称为基本事件。
因为随机事件的所有可能结果是明确的,从而所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反面”,“出现正面”是两个基本事件,又如在掷骰子试验中“出现一点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。
2、 样本空间基本事件的全体,称为样本空间。
也就是试验所有可能结果的全体是样本空间,样本空间通常用大写的希腊字母Ω表示,Ω中的点即是基本事件,也称为样本点,常用ω表示,有时也用A,B,C 等表示。
在具体问题中,给定样本空间是研究随机现象的第一步。
例1、 一盒中有十个完全相同的球,分别有号码1、2、3……10,从中任取一球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英文字母使用状况时,通常选用这样的样本空间: Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是比较简单的样本空间。
例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果一定是非负整数而且很难制定一个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有无穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。