2012届高考物理第一轮课时复习题252
- 格式:doc
- 大小:247.50 KB
- 文档页数:8
一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.用均匀导线做成的正方形线框边长为0.2 m ,正方形的一半放在垂直纸面向里的匀强磁场中,如图所示.当磁场以10 T/s 的变化率增强时,线框中a 、b 两点间的电势差是( )A .U ab =0.1 VB .U ab =-0.1 VC .U ab =0.2 VD .U ab =-0.2 V解析:题图中正方形线框的左半部分磁通量变化而产生感应电动势,从而在线框中有感应电流,把左半部分线框看成电源,其电动势为E ,内电阻为r 2,画出等效电路如图所示.则a 、b 两点间的电势差即为电源的路端电压,设l 是边长,且依题意知ΔB Δt =10 T/s.由E =ΔΦΔt 得E =ΔBS Δt =ΔB Δt l 22=10×0.222 V =0.2 V所以U =IR =Er 2+r 2·R =0.2r ×r 2 V =0.1 V由于a 点电势低于b 点电势,故U ab =-0.1 V ,即B 选项正确.答案:B2.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中.两板间有一个质量为m ,电荷量为+q 的油滴恰好处于平衡状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( )A .正在增强;ΔΦ/Δt =dmg qB .正在减弱;ΔΦ/Δt =dmg nqC .正在减弱;ΔΦ/Δt =dmg qD .正在增强;ΔΦ/Δt =dmg nq解析:油滴平衡有mg =q U C d ,则U C =mgd q ,电容器上极板必带负电,那么螺线管下端相当于电源正极,由楞次定律知,磁场B 正在减弱,又E =n ΔΦΔt ,U C =E ,可得ΔΦΔt =mgd nq .答案:B3.水平放置的光滑导轨MM ′和NN ′间接有电阻R ,导轨左右区域分别处于不同方向的匀强磁场中,磁场方向如图所示,磁感应强度分别为B 1和B 2,虚线为两区域的分界线,一根金属棒ab 放在导轨上且与其垂直,金属棒与导轨电阻均不计,金属棒在水平向右的恒力F 作用下,经过左、右两区域,已知金属棒在左面区域中恰好做速度为v 的匀速直线运动,则金属棒进入右边区域中,下列说法错误的是( )A.若B2=B1,金属棒所受磁场力方向不变,金属棒仍做匀速运动B.若B2=B1,金属棒所受磁场力方向改变,金属棒先做加速运动,再做匀速运动学。
2012年高考物理第一轮考点及考纲复习题(有答案)2012年高考一轮复习考点及考纲解读(八)恒定电流内容要求说明 64.电流。
欧姆定律。
电阻和电阻定律65.电阻率与温度的关系 66.半导体及其应用。
超导及其应用 67.电阻的串、并联。
串联电路的分压作用。
并联电路的分流作用 68.电功和电功率。
串联、并联电路的功率分配 69.电源的电动势和内电阻。
闭合电路的欧姆定律。
路端电压 70.电流、电压和电阻的测量:电流表、电压表和多用电表的使用。
伏安法测电阻 II I I IIII II II名师解读恒定电流部分是高考必考内容之一,特别是电学实验更是几乎每年必考。
常见题型有选择题、实验题、计算题,其中以实验题居多。
高考考查的重点内容有:欧姆定律,串、并联电路的特点,电功及电热,闭合电路的欧姆定律,电阻的测量(包括电流表、电压表内阻的测量)。
其中含容电路、电路动态变化的分析、功率分配问题是命题率较高的知识点,尤其电阻的测量、测量电源的电动势和内电阻更是连续多年来一直连考不断的热点。
复习时要理解串、并联电路的特点,闭合电路欧姆定律的含义,另外,要密切注意半导体、超导等与生产和生活相结合的新情景问题。
样题解读【样题1】(江都市2011届高三联考)一中学生为即将发射的“神州七号”载人飞船设计了一个可测定竖直方向加速度的装置,其原理可简化如图8-1,连接在竖直弹簧上的重物与滑动变阻器的滑动头连接,该装置在地面上静止时其电压表指针指在表盘中央的零刻度处,在零刻度的两侧分别标上对应的正、负加速度值。
关于这个装置在“神州七号”载人飞船发射、运行和回收过程中示数的判断正确的是 A.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数仍为正 B.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数为负 C.飞船在近地圆轨道上运行时,电压表的示数为零D.飞船在近地圆轨道上运行时,电压表的示数所对应的加速度应约为9.8m/s2 [分析] 飞船竖直加速升空的过程和竖直减速返回地面的过程中都发生超重现象,弹簧被压缩,变阻器的滑动头向下滑动,所以电压表的示数正负情况相同,A项正确,B项错误;飞船在近地圆轨道上运行时,处于完全失重状态,加速度等于重力加速度,约为9.8m/s2,C项错误,D项正确。
2012届高考物理第一轮课时复习训练题(有答案和解释)第三节圆周运动及其应用一、单项选择题1.(2009年高考广东卷)如图所示是一个玩具陀螺,a、b和c是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大解析:选B.由于a、b、c三点是陀螺上的三个点,所以当陀螺转动时,三个点的角速度相同,选项B正确,C错误;根据v=ωr,由于a、b、c三点的半径不同,ra=rb>rc,所以有va=vb>vc,选项A、D均错误.2.(2011年北京检测)在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些,汽车的运动可看成是做半径为R的圆周运动,设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A.gRhLB.gRhdC.gRLhD.gRdh解析:选 B.汽车做匀速圆周运动:向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F向=mgtanθ,根据牛顿第二定律:F向=mv2R,tanθ=hd,解得汽车转弯时的车速v =gRhd,所以B对.3.(2011年北京西城检测)如图所示,在同一竖直平面内有两个正对着的半圆形光滑轨道,轨道的半径都是R.轨道端点所在的水平线相隔一定的距离x.一质量为m的小球能在其间运动而不脱离轨道,经过最低点B时的速度为v.小球在最低点B与最高点A对轨道的压力之差为ΔF(ΔF>0),不计空气阻力.则()A.m、x一定时,R越大,ΔF一定越大B.m、x一定时,v越大,ΔF一定越大C.m、R一定时,x越大,ΔF一定越大D.m、R一定时,v越大,ΔF一定越大解析:选C.小球到达最高点A时的速度vA不能为零,否则小球早在到达A点之前就离开了圆形轨道,m、R一定时,x越大,小球到达最高点A时的速度越小,小球在最低点B与最高点A对轨道的压力之差ΔF 一定越大,C正确.二、双项选择题4.(2011年广州一模)如图所示,水平的木板B托着木块A一起在竖直平面内做匀速圆周运动,从水平位置a沿逆时针方向运动到最高点b的过程中()A.B对A的支持力越来越大B.B对A的支持力越来越小C.B对A的摩擦力越来越大D.B对A的摩擦力越来越小解析:选BD.以A为研究对象,由于其做匀速圆周运动,故合外力提供向心力.在水平位置a点时,向心力水平向左,由B对它的静摩擦力提供,f=mω2r;重力与B对它的支持力平衡,即FN=mg.在最高点b 时,向心力竖直向下,由重力与B对它的支持力的合力提供,mg-FN =mω2r,此时f=0.由此可见,B对A的支持力越来越小,B对A的摩擦力也越来越小.5.(2011年深圳模拟)如图所示,M为固定在水平桌面上的有缺口的方形木块,abcd为34圆周的光滑轨道,a为轨道的最高点,de面水平且有一定长度.今将质量为m的小球从d点的正上方高为h处由静止释放,让其自由下落到d处并切入轨道内运动,不计空气阻力,则()A.在h一定的条件下,小球释放后的运动情况与小球的质量无关B.改变h的大小,就能使小球通过a点后,落回轨道内C.无论怎样改变h的大小,都不可能使小球通过b点后落回轨道内D.调节h的大小,使小球飞出de面(即飞到e的右面)是可能的解析:选AD.在h一定的条件下,小球释放后的运动情况与小球的质量无关,小球通过a点时的最小速度为vmin=gR,其中R为圆轨道的半径,所以它落到与de面等高的水平面上时的最小水平位移为smin=vmin2Rg=2R,所以改变h的大小,不可能使小球通过a点后落回轨道内,但使小球飞出de面(即飞到e的右面)是可能的.改变h的大小,使小球通过b点后在ba之间的某一点离开轨道做斜上抛运动并落回轨道内是可能的.故A、D正确.6.(2011年长沙三校测评)2010年2月16日,在加拿大温哥华举行的第二十一届冬奥会花样滑冰双人自由滑比赛落下帷幕,中国选手申雪、赵宏博获得冠军.如图所示,如果赵宏博以自己为转动轴拉着申雪做匀速圆周运动.若赵宏博的转速为30r/min,手臂与竖直方向夹角为60°,申雪的质量是50kg,她触地冰鞋的线速度为4.7m/s,则下列说法正确的是()A.申雪做圆周运动的角速度为πrad/sB.申雪触地冰鞋做圆周运动的半径约为2mC.赵宏博手臂拉力约是850ND.赵宏博手臂拉力约是500N解析:选AC.申雪做圆周运动的角速度等于赵宏博转动的角速度.则ω=30r/min=30×2π/60rad/s=πrad/s,由v=ωr得:r=1.5m,A正确,B 错误;由Fcos30°=mrω2解得F≈850N,C正确,D错误.7.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧管壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度vmin=+B.小球通过最高点时的最小速度vmin=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:选BC.小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力FN与球重力在背离圆心方向的分力Fmg的合力提供向心力,即:FN -Fmg=mv2R+r,因此,外侧管壁一定对球有作用力,而内侧管壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D错误.8.如图所示,光滑半球的半径为R,球心为O,固定在水平面上,其上方有一个光滑曲面轨道AB,高度为R/2.轨道底端水平并与半球顶端相切,质量为m的小球由A点静止滑下.小球在水平面上的落点为C(重力加速度为g),则()A.小球将沿半球表面做一段圆周运动后抛至C点B.小球将从B点开始做平抛运动到达C点C.OC之间的距离为2RD.小球从A运动到C的时间等于(1+2)Rg解析:选BC.小球从A到B由机械能守恒定律得mgR2=12mv2B,vB=gR;由mv2BR=mg可知,小球在半球顶端B点只受重力的作用,符合平抛运动的条件,故选项A错误,而B正确;从B到C,R=12gt2,OC=vBt,联立得t=2Rg,OC=2R,选项C正确;设从A到B的时间为tAB,由于R2Rg,故小球从A运动到C的时间大于(1+2)Rg,选项D 错误.三、非选择题9.如图所示,A、B两个齿轮的齿数分别为z1、z2,各自固定在过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴的转速为n1,求:(1)B齿轮的转速n2;(2)A、B两个齿轮的半径之比;(3)在时间t内,A、B两齿轮转过的角度之比.解析:(1)相同时间内两齿轮咬合通过的齿数是相同的,则n1z1=n2z2,所以n2=z1z2n1.(2)设A、B半径分别是r1、r2,由于两轮边沿的线速度大小相等,则2πn1r1=2πn2r2,所以r1r2=n2n1=z1z2.(3)由ω=2πn得ω1ω2=n1n2=z2z1,再由φ=ωt得时间t内两齿轮转过的角度之比φ1φ2=ω1ω2=z2z1.答案:(1)z1z2n1(2)z1z2(3)z2z110.(2009年高考广东卷)如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A 点的高度为筒高的一半,内壁上有一质量为m的小物块.求:(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;(2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度.解析:(1)当筒不转动时,物块静止在筒壁A点时受到重力、摩擦力和支持力三力作用而平衡,由平衡条件得摩擦力的大小f=mgsinθ=mgHH2+R2支持力的大小FN=mgcosθ=mgRH2+R2.(2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A点受到重力和支持力的作用,它们的合力提供向心力,设筒转动的角速度为ω,则有mgtanθ=mω2R2由几何关系得tanθ=HR联立以上各式解得:ω=2gHR.答案:(1)mgHH2+R2mgRH2+R2(2)2gHR1.(2011年江西五校联考)如图所示,用长为L的轻绳把一个小铁球悬挂在高2L的O点处,小铁球以O为圆心在竖直平面内做圆周运动且恰能到达最高点B处,则有()A.小铁球在运动过程中轻绳的拉力最大为5mgB.小铁球在运动过程中轻绳的拉力最小为mgC.若运动中轻绳断开,则小铁球落到地面时的速度大小为7gL D.若小铁球运动到最低点轻绳断开,则小铁球落到地面时的水平位移为2L解析:选C.小铁球以O为圆心在竖直平面内做圆周运动且恰能到达最高点B处,说明小铁球在最高点B处,轻绳的拉力最小为零,mg=mv2/L,v=gL;由机械能守恒定律得,小铁球运动到最低点时动能mv21/2=mv2/2+mg•2L,在最低点轻绳的拉力最大,由牛顿第二定律F-mg=mv21/L,联立解得轻绳的拉力最大为F=6mg;选项A、B错误.以地面为重力势能参考平面,小铁球在B点处的总机械能为mg•3L+12mv2=72mgL,无论轻绳是在何处断开,小铁球的机械能总是守恒的,因此到达地面时的动能12mv′2=72mgL,落到地面时的速度大小为v′=7gL,选项C正确.小铁球运动到最低点时速度v1=5gL,由s=v1t,L=12gt2,联立解得小铁球落到地面时的水平位移为s=10L,选项D错误.2.(2010年高考重庆卷)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d,手与球之间的绳长为34d,重力加速度为g.忽略手的运动半径和空气阻力.(1)求绳断开时球的速度大小v1和球落地时的速度大小v2.(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t,由平抛运动规律,有竖直方向:14d=12gt2水平方向:d=v1t解得v1=2gd由机械能守恒定律,有12mv22=12mv21+mg(d-34d),解得v2=52gd.(2)设绳能承受的最大拉力大小为T,这也是球受到绳的最大拉力大小.球做圆周运动的半径为R=34d由圆周运动向心力公式,有T-mg=mv21R得T=113mg.(3)设绳长为l,绳断时球的速度大小为v3,绳承受的最大拉力不变,有T-mg=mv23l,解得v3=83gl绳断后球做平抛运动,竖直位移为d-l,水平位移为s,时间为t1.有d -l=12gt21,s=v3t1得s=-,当l=d2时,s有极大值smax=233d.答案:(1)2gd52gd(2)113mg(3)d2233d。
2012届高考一轮物理复习(人教版)课时训练选修3-3 热学第2讲气体、固体与液体一、选择题(本题共4小题,共24分)1.分子动能随分子速率的增大而增大,早在1859年麦克斯韦就从理论上推导出了气体分子速率的分布规律,后来有许多实验验证了这一规律.下列描述分子动能与温度关系正确的是()A.气体内部所有分子的动能都随温度的升高而增大B.气体温度升高,其内部个别分子的动能可能减小C.不同气体相同温度下,分子的平均动能相同,平均速率也相同D.当气体温度一定时,其内部绝大多数分子动能相近,动能很小或很大的很少解析:气体内部绝大多数分子的动能随温度的升高而增大,但极个别分子动能反而减小,选项A错误、B正确;温度相同,分子平均动能相同,但不同气体分子质量不一定相同,故平均速率不一定相同,选项C错误;温度一定时,分子的速率遵循统计规律,选项D正确.答案:BD2. 如图2-26所示,两个绝热相通的容器M、N间装有阀门K ,M中充满气体,气体分子间的相互作用力可以忽略,N中为真空,打开阀门K后,M中的气体进入N中,最终达到平衡状态,则()A.气体体积膨胀,对外做功,内能减小图2-26B.气体体积膨胀,温度降低,压强减小C.分子的平均动能不变,但分子的密度减小了,所以气体压强也要减小D.N中的气体能自发地全部退回到M中解析:由于N中为真空,打开阀门K后虽然气体体积膨胀,但没有对外做功,且绝热容器也不与外界交换热量,则气体内能不变,温度也不变,分子的平均动能也不变,但分子的密度减小,气体压强减小.根据热力学第二定律可知,N中的气体不能自发地全部退回到M中.答案:C3.一定质量的理想气体,在某一状态下的压强、体积和温度分别为p0、V0、T0,在另一状态下的压强、体积和温度分别为p1、V1、T1,则下列关系错误的是()A .若p 0=p 1,V 0=2V 1,则T 0=12T 1 B .若p 0=p 1,V 0=12V 1,则T 0=2T 1 C .若p 0=2p 1,V 0=2V 1,则T 0=2T 1D .若p 0=2p 1,V 0=V 1,则T 0=2T 1解析:根据p 0V 0T 0=p 1V 1T 1可以判断出选项A 、B 、C 错误,D 正确. 答案:ABC4. 如图2-27所示,一定质量的理想气体从状态A 变化到状态B ,再由状态B 变化到状态C ,最后变化到状态A 的过程中,下列说法正确的是 ( )A .从状态A 变化到状态B 的过程中,气体膨胀对外做功,放出热量B .从状态B 变化到状态C 的过程中,气体体积不变,压强减小,放出热量C .从状态C 变化到状态A 的过程中,气体压强不变,体积减小,放出热量D .若状态A 的温度为300 K ,则状态B 的温度为600 K解析:气体从状态A 变化到状态B 的过程中,气体体积增大,膨胀对外做功,压强升高,根据pV T=C 可知,其温度升高,根据热力学第一定律可知,气体要吸热,选项A 错误;从状态B 变化到状态C 的过程中,气体体积不变W =0,压强减小,则温度降低,由ΔU =W +Q 可知气体放热,选项B 正确;从状态C 变化到状态A 的过程中,气体体积减小W>0,压强不变,则温度降低,由ΔU =W +Q 可知气体放热,选项C 正确;由pV T=C 可求出状态B 的温度为1 200 K ,选项D 错误. 答案:BC二、非选择题(本题共8分,共76分)5.(1)外力对气体做功100 J ,气体向外放热20 J ,在这个过程中气体的内能________(填“增加”或“减少”),其改变量是________ J.(2)晶体在熔化过程中所吸收的热量,主要用于________.A .破坏空间点阵结构,增加分子动能,不改变体积B .破坏空间点阵结构,增加分子势能,改变体积C .重新排列空间点阵结构,增加分子势能,同时增加分子动能和改变体积D .重新排列空间点阵结构,但不增加分子势能和动能,也不改变体积解析:(2)晶体熔化过程中保持温度不变,所以分子的平均动能不变,所以选项AC 都不对;晶体分子是有序排列的空间点阵结构,熔化成液体后分子排列是无序的,故选项图2-27D不对;晶体熔化的过程是破坏空间点阵结构的过程,空间点阵结构被破坏以后,分子排列无序,故体积改变,分子势能增加,选项B正确.答案:(1)增加80(2)B6.(1)关于下列实验事实,说法正确的是________.A.随着低温技术的发展,物体的温度可以降到0 KB.由气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积C.吸收了热量的物体,其温度可以降低D.分子间引力和斥力可以单独存在(2)在如图2-28所示的气缸中封闭着一定质量的常温理想气体,一重物用细绳经滑轮与缸中光滑的活塞相连接,重物和活塞均处于平衡状态.如果将缸内气体的摄氏温度降低一半,则缸内气体的体积________.A.仍不变B.为原来的一半C.小于原来的一半D.大于原来的一半解析:(1)本题考查分子动理论,热力学第一定律.绝对温度是不可能达到的,A项错误;由气体的摩尔体积和阿伏加德罗常数只能算出每个分子平均占有的空间体积,B项错误;根据热力学第一定律可知,物体吸收了热量,如果同时对外做功,并且做功大于吸收的热量,则物体的内能减少,温度降低,C项正确;分子间的引力和斥力是同时存在的,不可能单独存在,D项错误.(2)对气缸活塞研究,大气压强不变,绳的拉力不变,活塞重力不变,因此缸内的气体的压强恒定不变,气体的摄氏温度降低一半,由T=t+273可知,则缸内的气体的热力学温度降低的小于原来的一半,根据理想气体状态方程pVT=K可知,缸内气体的体积大于原来的一半.答案:(1)C(2)D7.(1)下面的叙述中正确的是()A.物体的温度升高,物体中分子热运动加剧,但有些分子的热运动动能可能减小B.对气体加热,气体的内能可能增大,也可能不变,但不可能减少C.物质内部分子间吸引力随着分子间距离增大而减小,排斥力随着分子间距离增大而增大D.布朗运动是悬浮颗粒之间碰撞作用不平衡而造成的(2)汽车轮胎气压过高或过低了对轮胎都有损害,轮胎气压过高容易发生爆胎事故,气压过低轮胎磨损严重,而且轮胎使用寿命会大大降低.一般的正常的轮胎气压应该在2个到2.5个大气压之间.假设某汽车轮胎内的气体的体积为V0,压强为一个标准大气压p0.①现在要让轮胎的气压变为2p0,需要注入多少一个标准大气压的空气?如果给车装载了很多货物,轮胎的体积变为原来的80%,此时轮胎内的气体压强又是多少?(假设轮图2-28胎与外界进行充分的热交换)②上述两问中,轮胎内气体是吸热还是放热?简要说明理由.解析:(1)温度升高说明分子的平均动能增加,大量分子做的是无规则热运动,无法实现所有的分子动能都增大,A 项对.对气体加热,在没有涉及做功的情况下,无法判断气体内能的变化情况,B 项错.在物质内部分子间的吸引力和排斥力都随着分子间距离增大而减小,C 项错.布朗运动是液体分子对悬浮颗粒碰撞作用不平衡而造成的,D 项错.(2)①a :注入空气时,气体初态压强为p 0,体积为V 1;末态压强为2p 0,体积为V 0,由玻意耳定律p 0V 1=2p 0V 0代入数据得V 1=2V 0故注入空气的体积为2V 0-V 0=V 0.b :装载货物时,气体初态压强为2p 0,体积为V 0;末态压强为p 2,体积为0.8V 0,由玻意耳定律2p 0V 0=p 20.8V 0代入数据得p 2=2.5p 0.②外界对气体做功而温度不变,根据热力学第一定律可知气体放热.答案:(1)A (2)①2.5p 0 ②放热.外界对气体做功而温度不变,根据热力学第一定律可知气体放热.8. 温度计是生活、生产中常用的仪器.图2-29所示为一个简易温度计装置,两端开口的细长玻璃管穿过橡皮塞插入烧瓶内,玻璃管内装有一小段有色液柱,封闭住一定质量的气体.当外界温度发生变化时,液柱将上下移动,经实验确定A 、D 间的刻度范围为20~80℃,且A 、D 间刻度均匀.(1)液柱下端处于D 点时,若封闭气体的密度为ρ,摩尔质量为M ,那么气体分子间的平均距离的表达式为________.(阿伏加德罗常数为N A ,ρ、M均为国际单位)(2)液柱下端处于A 、D 间中点时,封闭气体的密度为ρ的多少倍? 解析:(1)本题考查分子动理论相关知识.由题意可知,被封闭气体的摩尔体积为:V =M ρ,则每个分子所占据的体积为:v 0=V N A,气体分子所占据的空间可以视为正立方体,所以分子间距为d =3v 0= 3M ρN A. (2)液柱从D 到A 过程中,气体做等压变化;液柱处于A 、D 间中点时对应的温度为50℃.由气体实验定律知V 1V 2=T 1T 2=273+20273+50=293323,所以ρ2ρ1=V 1V 2=293323, 图2-29即此时密度为ρ的293323倍.答案:(1) 3MρN A (2)2933239.(1)以下说法正确的是________.A .满足能量守恒定律的宏观过程都是可以自发进行的B .熵是物体内分子运动无序程度的量度C .若容器中用活塞封闭着刚好饱和的一些水汽,当保持温度不变向下缓慢压活塞时,水汽的质量减少,密度不变D .当分子间距离增大时,分子间引力增大,而分子间斥力减小(2)如图2-30所示,由导热材料制成的气缸和活塞将一定质量的理想气体封闭在气缸内,活塞与气缸壁之间无摩擦,活塞上方存有少量液体,将一细管插入液体,利用虹吸现象,使活塞上方液体缓慢流出,在此过程中,大气压强与外界的温度均保持不变,下列各个描述理想气体状态变化的图象中与上述过程相符合的是________图,该过程为________过程(选填“吸热”、“放热”或“绝热”).(3)如图2-31,一集热箱里面封闭着一定量的气体,集热板作为箱的活塞且始终正对着太阳,其面积为S ,在t 时间内集热箱里气体膨胀对外做功的数值为W ,其内能增加了ΔU ,不计封闭气体向外散的热.已知照射到集热板上太阳光的能量有50%被箱内气体吸收,求:①这段时间内集热箱里气体共吸收的热量;②太阳光照在集热板单位面积上的辐射功率.解析:(1)自然界中与热现象有关的宏观过程都具有方向性,故A 错误;熵是物体内分子运动无序程度的量度,B 正确;向下压缩时气体温度不变,饱和汽压值不变,密度不变,体积减小则水汽的质量变小,C 正确;分子间的引力和斥力都随着分子间距离的增大而减小,D 错误.(2)气体的温度不变,压强减小则体积增大,由气体的等温变化特点得D 图正确.该过程气体体积增大对外界做功,温度不变则内能不变,由热力学第一定律得气体需要从外界吸热.(3)①根据ΔU =Q -W 得Q =ΔU +W②由Q =50%PSt 得太阳光在垂直单位面积上的辐射功率为P =2(W +ΔU )St .答案:(1)BC (2)D 吸热(3)①ΔU +W ②2(W +ΔU )St图2-30 图2-3110.(1)一定质量的理想气体发生如图2-32所示的状态变化,状态A与状态B的体积关系为V A________V B(选填“大于”、“小于”或“等于”);若从A状态到C状态的过程中气体对外做了100 J的功,则此过程中气体________(选填“吸热”或“放热”).(2)蒸汽机、内燃机等热机以及电冰箱工作时都利用了气体状态变化来实现能量的转移和转化,我们把这些气体称为工质.某热机经过一个循环后,工质从高温热源吸热Q1,对外做功W,又对低温热源放热Q2,工质完全回复初始状态,内能没有变化.根据热力学第一定律,在工质的一个循环中,Q1、Q2、W三者之间满足的关系是()A.Q1-Q2=W B.Q1+Q2=WC.Q1+W=Q2D.W-Q2=Q1(3)冬天到了,很多同学用热水袋取暖.现某一热水袋内水的体积约为400 cm3,它所包含的水分子数目约为多少个?(计算结果保留一位有效数字,已知1 mol水的质量约为18 g,阿伏加德罗常数取6.0×1023 mol-1)解析:(1)从A到B气体做等压变化,温度升高体积增大,从A到C气体做等温变化,压强减小体积增大,气体对外做功,内能不变必须吸热.(2)根据热力学第一定律,在工质的一个循环中,内能没变,则Q1-Q2=W.(3)包含的水分子数N=mM N A=ρVM N A=1.0×103×4×10-41.8×10-2×6.0×1023=1×1025(个).答案:(1)小于吸热(2)A(3)1×1025个11.(1)如图2-33所示,用F表示两分子间的作用力,E p表示分子间的分子势能,在两个分子之间的距离由10r0变为r0的过程中________.A.F不断增大,E p不断减小B.F先增大后减小,E p不断减小C.F不断增大,E p先增大后减小D.F、E p都是先增大后减小(2)两端开口、内表面光滑的U形管处于竖直平面内,如图2-34所示,质量均为m=10 kg的活塞A、B在外力作用下静止于左右管中同一高度h处,将管内空气封闭,此时管内外空气的压强均为p0=1.0×105 Pa.左管和水平管横截面积S1=10 cm2,右管横截面积S2=20 cm2,水平管长为3h.现撤去外力让活塞在管中下降,求两活塞稳定后所处的高度.(活塞厚度略大于水平管直径,管内气体初末状态同温,g取10 m/s2)解析:(1)分子间的作用力是矢量,分子势能是标量,由图象知F先增大后变小,E p不断减小,选项B正确.(2)撤去外力后左侧向下的压强图2-32图2-33图2-34p 左=p 0+mg/S 1=2.0×105 Pa =2p 0右侧向下的压强p 右=p 0+mg/S 2=1.5×105 Pa =1.5p 0故活塞均下降,且左侧降至水平管口.设右侧降至高为x 处,此时封闭气体压强变为p ′=1.5p 0对封闭气体p 0(4hS 1+hS 2)=1.5p 0(3hS 1+xS 2),x =0.5h.答案:(1)B (2)0.5h12.如图2-35所示,绝热的活塞S 把质量为m 的理想气体密封在水平放置的固定的绝热气缸内,活塞可在气缸内无摩擦地滑动,气缸内的电热丝通电后对缸内气体加热.气缸处在大气中,大气压强为p 0,初始时,气体的体积为V 0,压强为p 0,热力学温度为T 0.(1)已知该理想气体的摩尔质量为M ,阿伏加德罗常数为N A ,求初始时气缸内气体分子的平均间距l. (2)已知气缸内的理想气体温度升高1 K 时其内能增加量为常数C.从初始状态开始,在电热丝中通以弱电流对缸内气体缓慢加热,并持续一段时间,然后停止通电,最后测得气体的体积为V 1,求此过程中电热丝传给气体的热量Q.解析:(1)气缸内气体分子个数n =m MN A V 0=nl 3联立解得l = 3MV 0mN A. (2)设加热后气体的体积为V 1时,热力学温度为T 1 由盖-吕萨克定律得:V 0T 0=V 1T 1T 1=V 1V 0T 0 气体对外界做功W =p 0Sl =p 0ΔV =p 0(V 1-V 0)根据热力学第一定律得Q =ΔU +W =C(T 1-T 0)+p 0(V 1-V 0)=(CT 0+p 0V 0)(V 1-V 0)V 0.图2-35答案:(1) 3MV 0mN A (2)(CT 0+p 0V 0)(V 1-V 0)V 0。
2012届高考一轮物理复习(人教版)课时训练第十章 交变电流 传感器第二讲 变压器 电能的输送(本卷共12小题全部为选择题,共120分)1.图10-2-19为某小型水电站的电能输送示意图,A 为升压变压器,其输入功率为P 1,输出功率为P 2,输出电压为U 2;B 为降压变压器,其输入功率为P 3,输入电压为U 3.A 、B 均为理想变压器,输电线的总电阻为r ,则下列关系式正确的是( )图10-2-19A .P 1>P 2B .P 2=P 3C .U 2>U 3D .U 2=U 3解析:由变压器原理知,P 1=P 2=P 3+ΔP =P 4+ΔP ,U 2=U 3+ΔU ,选C.答案:C2.(2010·天津理综,7)为探究理想变压器原、副线圈电压、电流的关系,将原线圈接到电压有效值不变的正弦交流电源上,副线圈连接相同的灯泡L 1、L 2,电路中分别接了理想交流电压表V 1、V 2和理想交流电流表A 1、A 2,导线电阻不计,如图10-2-20所示.当开关S 闭合后( )图10-2-20A .A 1示数变大,A 1与A 2示数的比值不变B .A 1示数变大,A 1与A 2示数的比值变大C .V 2示数变小,V 1与V 2示数的比值变大D .V 1示数不变,V 1与V 2示数的比值不变解析:交流电源的电压有效值不变,即V 1示数不变,因U 1U 2=n 1n 2,故V 2示数不变,V 1与V 2示数的比值不变,D 对.S 闭合使负载总电阻减小,I 2=U 2R ,所以I 2增大.因I 1I 2=n 2n 1,所以A 1示数增大,A 1与A 2示数比值不变,A 对. 答案:AD3.如图10-2-21所示,一理想变压器原副线圈匝数比为n 1∶n 2=4∶1,原线圈ab 间接一电压为u =2202sin 100πt (V)的交流电源,灯泡L 标有“36 V 18 W ”,当滑动变阻器R 的滑片处在某位置时,电流表示数为0.25 A ,灯泡L 刚好正常发光,则()图10-2-21A .滑动变阻器R 消耗的功率为36 WB .定值电阻R 0的电阻值为19 ΩC .流过灯泡L 的交变电流频率为25 HzD .将滑动变阻器R 的滑片向上滑时,灯泡L 的亮度变暗解析:本题考查理想变压器及电路的动态分析的相关知识.根据电流表示数和原副线圈的匝数之比可知副线圈中的电流大小为1 A ,灯泡正常发光可知,灯泡所在支路电流为0.5 A ,故滑动变阻器所在支路电流为0.5 A ,电压为36 V ,根据P =UI 可知滑动变阻器消耗的功率为18 W ,故A 错;根据原副线圈的匝数之比可知副线圈两端的电压的有效值为55 V ,则R 0两端电压为19 V ,R 0的电阻为19 Ω,故B 正确;原副线圈电流的频率应相同为50 Hz ,故C 错误;滑动变阻器滑片向上滑,阻值增大,则并联电阻的阻值变大,并联电路两端电压变大,灯泡将变亮,故D 错误,此题为中等难度题.答案:B4. 如图10-2-22所示为远距离高压输电的示意图.关于远距离输电,下列表述正确的是( )A .增加输电导线的横截面积有利于减少输电过程中的电能损失B .高压输电是通过减小输电电流来减少电路的发热损耗的C .在输送电压一定时,输送的电功率越大,输电过程中的电能损失越小D .高压输电必须综合考虑各种因素,不一定是电压越高越好解析:根据P =I 2R 可知,在电流I 一定的情况下,减小电阻R 可以减少电路上的电能损失,而R =ρL S,所以增大输电线横截面积S 有利于减少输电过程中的电能损失,A 对;由公式P =I 2R 可得,若设输送的电功率为P ′,则P =P ′2U 2R ,可见,在输送电压U 一定时,输送的电功率P ′越大,输电过程中的电能损失越大,C 错误.答案:ABD5. 如图10-2-23所示,理想变压器的原线圈两端输入的交变电压保持恒定.则当开关S 合上时,下列说法正确的是()图10-2-22图10-2-23A.电压表的示数变小B.原线圈的电流增大C.流过R1的电流不变D.变压器的输入功率减小解析:本题考查交流电.由于原、副线圈两端电压不变,当开关S闭合时,回路中总电阻减小,根据闭合电路欧姆定律可知干路上电流增加,但并联电路两端电压不变,选项A错误,B正确;由于R1两端电压不变,由部分电路欧姆定律可知,通过R1的电流不变,选项C正确;由于理想变压器输入功率与输出功率相等,输出电压不变,电流增加,输出功率增加,选项D错误.答案:BC6. (2010·东北三省四市联考)如图10-2-24,一理想自耦变压器的原线触头P与线圈始终接触良好,下列判断正确的是()A.若通过电路中A、C两处的电流分别为I A、I C则I A>I CB.若仅将触头P向A端滑动,则电阻R消耗的电功率增大图10-2-24 C.若仅使电阻R增大,则原线圈的输入电功率增大D.若在使电阻R增大的同时,将触头P向A端滑动,则通过A处的电流增大解析:自耦变压器是指它的绕组是初级和次级在同一绕组上的变压器.通过改变初、次级的线圈匝数比的关系来改变初、次级线圈两端电压,实现电压的变换.原、副线圈两端电压与其匝数成正比.理想自耦变压器的原线圈接有正弦交变电压,若仅将触头P 向A端滑动,电阻R两端的电压增大,则电阻R消耗的电功率增大,选项B正确.答案:B7.“5·12”汶川大地震发生后,山东省某公司向灾区北川捐赠一批柴油发电机.该柴油发电机说明书的部分内容如表所示.现在用一台该型号的柴油发电机给灾民临时安置区供电,发电机到安置区的距离是400 m,输电线路中的火线和零线均为GBCZ60型单股铜导线,该型导线单位长度的电阻为2.5×10-4Ω/m.安置区家用电器的总功率为44 kW,当这些家用电器都正常工作时,下列说法中正确的是()A.输电线路中的电流为20 AB.输电线路损失的电功率为8 000 WC.发电机实际输出电压是300 VD.如果该柴油发电机发的电是正弦交流电,则输出电压最大值是300 V解析:I 线=I 0=P 0U 0=4.4×104220A =200 A ;线路损失功率P 线=I 2线R 线=8 000 W ,线路两端电压U =I 线R 线=40 V ,所以发电机输出电压为260 V ;如果该柴油发电机发的电是正弦交流电,则输出电压最大值是260 2 V.答案:B8.如图10-2-25甲所示,为一种可调压自耦变压器的结构示意图,线圈均匀绕在圆环型铁芯上,若AB 间输入如图乙所示的交变电压,转动滑动触头P 到如图甲中所示位置,在BC 间接一个55 Ω的电阻(图中未画出),则()图10-2-25A .该交流电的电压瞬时值表达式为u =2202sin(25πt )VB .该交流电的频率为25 HzC .流过电阻的电流接近于4 AD .电阻消耗的功率接近于220 W解析:由题中图乙可知正弦交流电的周期T =0.04 s ,则f =1T=25 Hz ,ω=2πf =50π rad/s ,所以该交流电的电压瞬时值的表达式为u =2202sin(50πt )V ,A 错误,B 正确;从题图甲中可以看出,自耦变压器的副线圈的匝数约是原线圈匝数的12,故副线圈两端的电压约为110 V ,流过电阻的电流约为2 A ,C 项错误;电阻消耗的功率P =U 2I 2=220 W ,D 项正确.答案:BD9. (2010·海南卷,9)如图10-2-26所示,一理想变压器原副线圈匝数之比为4∶1,原线圈两端接入一正弦交流电源;副线圈电路中R 为负载电阻,交流电压表和交流电流表都是理想电表.下列结论正确的是( )A .若电压表读数为6 V ,则输入电压的最大值为24 2 VB .若输入电压不变,副线圈匝数增加到原来的2倍,则电流表的读数减小到原来的一半C .若输入电压不变,负载电阻的阻值增加到原来的2倍,则输入功率也增加到原来的2倍D .若保持负载电阻的阻值不变,输入电压增加到原来的2倍,则输出功率增加到原来的4倍解析:本题考查变压器的原理以及交流电的有关知识,意在考查考生对交变电流的认识和理解.因为电压表的读数为6 V ,则变压器的输出电压的有效值为6 V ,由U 1U 2=n 1n 2, 图10-2-26故U 1=4U 2=24 V ,所以输入电压的最大值为U m =2U 1=24 2 V ,所以选项A 正确;若输入电压不变,副线圈匝数增加,则U 2增大,由I 2=U 2R可知,电流表示数增大,所以选项B 不对;输入电压和匝数比不变,则电压值不变,当负载电阻R 变大时,则I 2=U 2R,电流变小,故P 1=P 2=U 2I 2,所以输入功率也减小,所以选项C 错;若负载电阻R 不变,输入电压变为原来的2倍,则输出电压也变为原来的2倍,I 2=U 2R则输出电流也变为原来的2倍,故输出功率P 2=U 2I 2变为原来的4倍,所以选项D 正确. 答案:AD10.(2011·临沂模拟)随着社会经济的发展,人们对能源的需求也日益扩大,节能变得越来越重要.某发电厂采用升压变压器向某一特定用户供电,用户通过降压变压器用电,若发电厂输出电压为U 1,输电导线总电阻为R ,在某一时段用户需求的电功率为P 0,用户的用电器正常工作的电压为U 2.在满足用户正常用电的情况下,下列说法正确的是( )A .输电线上损耗的功率为P 20R U 22B .输电线上损耗的功率为P 20R U 21C .若要减少输电线上损耗的功率可以采用更高的电压输电D .采用更高的电压输电会降低输电的效率解析:设发电厂输出功率为P ,则输电线上损耗的功率ΔP =P -P 0,ΔP =I 2R =P 2R U 21,A 、B 项错误;采用更高的电压输电,可以减小导线上的电流,故可以减少输电线上损耗的功率,C 项正确;采用更高的电压输电,输电线上损耗的功率减少,则发电厂输出的总功率减少,故可提高输电的效率,D 项错误. 答案:C11.如图10-2-27所示,理想变压器原、副线圈的匝数比为3∶1,L 1、L 2、L 3为三只规格均为“9 V 6 W ”的相同灯泡,各电表均为理想交流电表,输入端接入如图10-2-28所示的交变电压,则以下说法中不正确的是( )图10-2-27 图10-2-28A .电流表的示数为2 AB .电压表的示数为27 2 VC .副线圈两端接入耐压值为9 V 的电容器恰能正常工作D .变压器副线圈中交变电流的频率为50 Hz解析:副线圈两端电压有效值是9 V ,三只规格均为“9 V 6 W ”的相同灯泡并联,电流表的示数为2 A ,A 正确;电压表示数为有效值27 V ,B 错;副线圈两端电压最大值是9 2 V ,副线圈两端接入耐压值为9 V 的电容器不能正常工作,C 错;交变电流的周期是0.02 s ,变压器副线圈中交变电流的频率为50 Hz ,D 正确.答案:BC12.一个探究性学习小组利用示波器,绘制出了一个原、副线圈 匝数比为2∶1的理想变压器的副线圈两端输出电压u 随时间t 变化的图象,如图10-2-29所示(图线为正弦曲线).则下列说法正确的是( )A .该变压器原线圈输入电压的瞬时值表达式为u =20sin(100πt )VB .接在副线圈两端的交流电压表的示数为7.1 VC .该变压器原线圈输入频率为50 HzD .接在副线圈两端的阻值为20 Ω的白炽灯消耗的功率为2.5 W解析:由图象知该交变电压的最大值为10 V ,周期为4×10-2 s ,其角速度ω=2πTrad/s ,则原线圈输入电压的瞬时值表达式为u =20sin(50πt )V ,A 项错误;交流电压表的示数为有效值,U =102V ≈7.1 V ,B 项正确;该交变电压的频率f =1T =25 Hz ,变压器不改变交变电流的频率,C 项错误;计算白炽灯的功率要用有效值,P =U 2R=2.5 W ,D 项正确. 答案:BD图10-2-29。
2011高考物理热点预测专题2·牛顿定律及其应用高考预测:从近年来的高考来看,2010年高考中,本专题可能以下列题型出现:1.选择题。
一般可结合“弹簧模型”、牛顿定律等知识,考查考生对加速度和牛顿第二定律的理解。
2.实验题。
近几年本专题实验主要考查加速度的测量及牛顿第二定律,另外“探究加速度与力和质量的关系”的实验有好几年没有列入高考中,而新教材中专门列出一节的内容。
这一重大变化,应引起大家足够的重视。
3.计算题。
牛顿运动定律及其应用历年高考的必考内容。
近年这部分内容的考查更趋向于对考生分析问题、应用知识的能力以及牛顿运动定律与运动学等知识的综合问题。
一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得4分,选对但不全的得2分,有选错的或不答的得0分。
)1、一辆汽车恒定的功率牵引下,在平直的公路上由静止出发,在4min的时间里行驶了1800m,在4min末汽车的速度是( )A.等于7.5m/sB.一定小于15m/sC.可能等于15m/sD.可能大于15m/s2、如图所示,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平面上做匀减速运动,不计其他外力及空气阻力,则中间一质量为m的土豆A受到其他土豆对它的作用力应是( )A.mg B.mgμC.2-mg1μ+1μmg D.23、同学们在由静止开始向上运动的电梯里,把一测量加速度的小探头固定在一个质量2-20图象(设F为手提拉力,g=9.8 m/s2)中正确的是()4、如图2-21所示,一根轻弹簧竖直直立在水平面上,下端固定。
在弹簧正上方有一个物块从高处自由下落到弹簧上端O ,将弹簧压缩。
当弹簧被压缩了x 0时,物块的速度减小到零。
从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a 随下降位移大小x 变化的图象,可能是图2-22中的( )5、如图所示,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是( )A.向右做加速运动B.向右做减速运动C.向左做加速运动D.向左做减速运动6、物体A 、B 均静止在同一水平面上,其质量分别为A m 和B m ,与水平面间的动摩擦因数分别为A μ和B μ,现用水平力F 分别拉物体A 、B ,它们的加速度a 与拉力F 的关系图象如图2-24所示,由图象可知( )A .B A m m > B .B A m m <C .B A μμ>D .B A μμ<7、如图2-25所示,质量为2m 的物块A ,与水平地面的摩擦不计,质量为m 的物块B 与地面的摩擦因数为μ,在已知水平推力F 的作用下,A 、B 做加速运动,则A 和B 之间的作用力为( )图2-25A .32mg F μ+ B .322mg F μ+C .323mgF μ+ D .32mg μ8、一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15㎏的重物,重物静止于地面上,有一质量m=10㎏的猴子,从绳的另一端沿绳向上爬如图8所示,不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度约为( )A 、25m/s ²B 、5m/s ²C 、10m/s ²D 、15 m/s ² 9、一个小孩从滑梯上滑下的运动可看作匀加速直线运动,第一次小孩单独从滑梯上滑下,加速度为α1,第二次小孩抱上一只小狗后再从滑梯上滑下(小狗不与滑梯接触),加速度为α2,则 ( )A .α1=α2B .αl <α2C .αl >α 2D .无法判断αl 与α2的大小10、物体由静止的传送带顶端从静止开始下滑到底端所用时间为t ,若在物体下滑过程中,传送带开始顺时针转动,如图4所示,物体滑到底端所用时间t ˊ,则关于t 和t ˊ的关系一定有( )A .t ˊ>tB . t ˊ=tC .t ˊ< tD .不能确定。
2012届高考一轮物理复习(人教版)课时训练第五章机械能守恒定律第4讲实验五探究动能定理1.如图5-4-7所示,是某研究性学习小组做探究“橡皮筋做的功和物体速度变化的关系”的实验,图中是小车在一条橡皮筋作用下弹出,沿木板滑行的情形,这时,橡皮筋对小车做的功记为W.当我们用2条、3条……完全相同的橡皮筋并在一起进行第2次、第3次……实验时,每次橡皮筋都拉伸到同一位置释放.小车每次实验中获得的速度由打点计时器所打的纸带测出.图5-4-7除了图中的已给出的实验器材外,还需要的器材有() A.交流电源B.天平C.秒表D.刻度尺答案:AD2.在“探究动能定理”的实验中,某同学是用下面的方法和器材进行实验的:放在长木板上的小车,由静止开始在几条完全相同的橡皮筋的作用下沿木板运动,小车拉动固定在它上面的纸带,纸带穿过打点计时器.关于这一实验,下列说法中正确的是() A.长木板要适当倾斜,以平衡小车运动中受到的阻力B.重复实验时,虽然用到橡皮筋的条数不同,但每次应使橡皮筋拉伸的长度相同C.利用纸带上的点计算小车的速度时,应选用纸带上打点最密集的部分进行计算D.利用纸带上的点计算小车的速度时,应选用纸带上打点最均匀的部分进行计算解析:在本题的实验中,由于小车在运动中受到阻力(摩擦力和纸带的阻力),所以要使长木板适当倾斜,以平衡小车运动过程中受到的阻力,重复实验时,为了使橡皮筋对小车所做的功与它的条数成正比,所以用到橡皮筋的条数虽然不同,但每次应使橡皮筋拉伸的长度相同,利用纸带上的点计算小车的速度时,由于要计算的是小车脱离橡皮筋后匀速运动的速度,所以应选用纸带上打点最均匀的部分进行计算,故A,B,D选项是正确的.答案:ABD3.探究力对原来静止的物体做的功与物体获得的速度的关系,实验装置如图5-4-8所示,实验主要过程如下:图5-4-8(1)设法让橡皮筋对小车做的功分别为W、2W、3W、…;(2)分析打点计时器打出的纸带,求出小车的速度v1、v2、v3…;(3)作出W-v草图;(4)分析W-v图象.如果W-v图象是一条直线,表明W∝v;如果不是直线,可考虑是否存在W∝v2、W∝v3、W∝v等关系.以下关于该实验的说法中正确的是________.A.本实验设法让橡皮筋对小车做的功分别为W、2W、3W、….所采用的方法是选用同样的橡皮筋,并在每次实验中使橡皮筋拉伸的长度保持一致.当用1条橡皮筋进行实验时,橡皮筋对小车做的功为W,用2条、3条、…橡皮筋并在一起进行第2次、第3次、…实验时,橡皮筋对小车做的功分别是2W、3W、….B.小车运动中会受到阻力,用补偿的方法,可以使木板适当倾斜.C.某同学在一次实验中,得到一条记录纸带.纸带上打出的点,两端密、中间疏.出现这种情况的原因,可能是没有使木板倾斜或倾角太小.D.根据记录纸带上打出的点,求小车获得的速度的方法,是以纸带上第一点到最后一点的距离来进行计算解析:由于选用同样的橡皮筋,并且每次实验中橡皮筋拉伸的长度相同,因此每条橡皮筋对小车做的功都相同,故A正确;小车在运动中受到的阻力,采取平衡摩擦力的方法补偿,让木板固定在有打点计时器的一端适当抬高,使重力的下滑分力与摩擦力平衡,故B正确;纸带上的点两端密、中间疏,说明小车先在橡皮筋拉力作用下加速,后在阻力作用下减速,故C正确;由于橡皮筋松弛后,小车做匀速运动,此时的速度是橡皮筋对小车做功后的最大速度,故求速度应用匀速的那一段的数据,而不应该使用从第一点到最后一点的数据来计算,故D项错,A、B、C正确.答案:ABC4.用图5-4-9甲所示的装置进行探究动能定理的实验,实验时测得小车的质量为m,木板的倾角为θ.实验过程中,选出一条比较清晰的纸带,用直尺测得各点与A点间的距离如图5-4-9乙所示.已知打点计时器打点的周期为T,重力加速度为g,小车与斜面间摩擦可忽略不计.图5-4-9若取BD 段研究小车的动能变化,求动能的变化正确的表达式是 ( )A .mg (d 3-d 1)sin θB .mg (d 3-d 1)C.12m ⎝⎛⎭⎫d 4-d 22T 2 D .md 4(d 4-2d 2)/8T 2 答案:D5.探究能力是进行物理学研究的重要能力之一.物体因绕轴转动而具有的动能叫转动动能,转动动能的大小与物体转动的角速度有关.为了研究某一砂轮的转动动能E k 与角速度ω的关系,某同学采用了下述实验方法进行探索:如图5-4-10所示,先让砂轮由动力带动匀速旋转,测得其角速度ω,然后让砂轮脱离动力,由于克服转轴间 图5-4-10 摩擦力做功,砂轮最后停下,测出砂轮脱离动力到停止转动的圈数n ,通过分析实验数据, 得出结论.经实验测得的几组ω和n 如下表所示:另外已测试砂轮转轴的直径为1 cm ,转轴间的摩擦力为10πN. (1)计算出砂轮每次脱离动力的转动动能,并填入上表中.(2)由上述数据推导出该砂轮的转动动能E k 与角速度ω的关系式为________________. 解析:(1)从脱离动力到最后停止转动,由动能定理得-F f ·n ·πD =0-E k0,即E k0=nF f πD =0.1n 将n 的不同数值代入可得到相应的转动动能如下表:答案:(1)(2)E k =2ω26.某实验小组采用如图5-4-11所示的装置探究“动能定理”,图中小车中可放置砝码.实 验中,小车碰到制动装置时,钩码尚未到达地面.打点计时器工作频率为50 Hz.图5-4-11(1)实验的部分步骤如下:①在小车中放入砝码,把纸带穿过打点计时器,连在小车后端,用细线连接小车和钩码; ②将小车停在打点计时器附近,________,________,小车拖动纸带,打点计时器在纸 带上打下一列点,________;③改变钩码或小车中砝码的数量,更换纸带,重复②的操作.(2)图5-4-12是钩码质量为0.03 kg ,砝码质量为0.02 kg 时得到的一条纸带,在纸带上 选择起始点O 及A 、B 、C 、D 和E 五个计数点,可获得各计数点到O 的距离x 及对应时刻小车的瞬时速度v,请将C点的测量结果填在表1中的相应位置.图5-4-12图5-4-13(3)在小车的运动过程中,对于钩码、砝码和小车组成的系统,________做正功,________ 做负功.(4)实验小组根据实验数据绘出了图中的图线(其中Δv2=v2-v20).根据图线5-4-13可获得的结论是______________________________________________________________.要验证“动能定理”,还需测量的物理量是摩擦力和________.答案:(1)②接通打点计时器电源,释放小车,关闭打点计时器电源(2)5.05~5.100.48~0.50(3)重力(钩码的重力)摩擦力(阻力)(4)Δv2∝x(速度平方的变化与位移成正比)小车的质量。
2012年高考第一轮复习(共218页)2012年高考第一轮复习之一-------力物体的平衡复习要点1.力的概念及其基本特性2.常见力的产生条件,方向特征及大小确定3.受力分析方法4.力的合成与分解5.平衡概念及平衡条件6.平衡条件的应用方法二、难点剖析1.关于力的基本特性力是物体对物体的作用。
力作用于物体可以使受力物体形状发生改变;可以使受力物体运动状态(速度)发生改变。
影响力的“使物体变形”和“使物体变速”效果的因素有:力的大小、力的方向和力的作用点,我们反影响力的作用效果的上述三个因素称为“力的三要素”。
对于抽象的力概念,通常可以用图示的方法使之形象化:以有向线段表示抽象的力。
在研究与力相关的物理现象时,应该把握住力概念的如下基本特性。
(1)物质性:由于力是物体对物体的作用,所以力概念是不能脱离物体而独立存在的,任意一个力必然与两个物体密切相关,一个是其施力物体,另一个是其受力物体。
把握住力的物质性特征,就可以通过对形象的物体的研究而达到了解抽象的力的概念之目的。
(2)矢量性:作为量化力的概念的物理量,力不仅有大小,而且有方向,在相关的运算中所遵从的是平行四边形定则,也就是说,力是矢量。
把握住力的矢量性特征,就应该在定量研究力时特别注意到力的方向所产生的影响,就能够自觉地运用相应的处理矢量的“几何方法”。
(3)瞬时性:力作用于物体必将产生一定的效果,物理学之所以十分注重对力的概念的研究,从某种意义上说就是由于物理学十分关注力的作用效果。
而所谓的力的瞬时性特征,指的是力与其作用效果是在同一瞬间产生的。
把握住力的瞬时性特性,应可以在对力概念的研究中,把力与其作用效果建立起联系,在通常情况下,了解表现强烈的“力的作用效果”往往要比直接了解抽象的力更为容易。
(4)独立性:力的作用效果是表现在受力物体上的,“形状变化”或“速度变化”。
而对于某一个确定的受力物体而言,它除了受到某个力的作用外,可能还会受到其它力的作用,力的独立性特征指的是某个力的作用效果与其它力是否存在毫无关系,只由该力的三要素来决定。
2012届高考物理总复习课时训练卷(附参考答案)1.在跳高运动的发展史上,其中有以下四种不同的过杆姿势,如图所示,则在跳高运动员消耗相同能量的条件下,能越过最高横杆的过杆姿势为()解析:运动员经过助跑后,跳起过杆时,其重心升高,在四种过杆姿势中背越式相对于杆的重心位置最低,所以在消耗相同能量的条件下,该种过杆姿势能越过更高的横杆.选项D正确.答案:D2.如图所示,一质量均匀的不可伸长的绳索重为G,A、B两端固定在天花板上,今在最低点C施加一竖直向下的力将绳索拉至D点,在此过程中绳索AB的重心位置将()A.逐渐升高B.逐渐降低C.先降低后升高D.始终不变解析:由题意知外力对绳索做正功,机械能增加,重心升高,故选A. 答案:A3.(2010年福建龙岩)体育比赛中的“3m跳板跳水”的运动过程可简化为:质量为m的运动员走上跳板,跳板被压缩到最低点C,跳板又将运动员竖直向上弹到最高点A,然后运动员做自由落体运动,竖直落入水中,跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,他在水中减速下降高度为h,而后逐渐浮出水面,则下列说法正确的是(g为当地的重力加速度)()A.运动员从C点到A点运动过程中处于超重状态B.运动员从C点开始到落水之前机械能守恒C.运动员从入水至速度减为零的过程中机械能减少了(F-mg)h D.运动员从入水至速度减为零的过程中机械能减少了Fh解析:运动员从C点到A点的运动过程,跳板对运动员的弹力先是大于重力,后小于重力,最后弹力为零,故运动员先处于超重状态,后处于失重状态,A错误;运动员从C点开始到落水之前,除重力做功外,跳板弹力对运动员做功,运动员机械能增加,B错误;运动员从入水至速度减为零的过程中,除重力(或弹力)以外的力对运动员所做的功等于其机械能的变化量,故C错误,D正确.答案:D4.如图所示,一轻弹簧左端与物体A相连,右端与物体B相连.开始时,A、B均在粗糙水平面上不动,弹簧处于原长状态.在物体B上作用一水平向右的恒力F,使物体A、B向右运动.在此过程中,下列说法中正确的为()A.合外力对物体A所做的功等于物体A的动能增量B.外力F做的功与摩擦力对物体B做的功之和等于物体B的动能增量C.外力F做的功及摩擦力对物体A和B做功的代数和等于物体A和B 的动能增量及弹簧弹性势能增量之和D.外力F做的功加上摩擦力对物体B做的功等于物体B的动能增量与弹簧弹性势能增量之和解析:由动能定理可知,合外力对物体A所做的功等于物体A的动能增量,合外力对B做的功等于物体B动能的增量,而合外力对B所做的功等于外力F做的功、摩擦力对B做的功和弹簧弹力对B做的功之和,选项A正确,B错误;物体B克服弹簧弹力做的功应大于弹簧的弹性势能的增加量,所以外力F做的功及摩擦力对物体A和B做功的代数和应大于物体B的动能增量及弹簧弹性势能增量之和,选项D错误;取整体为研究对象,由功能关系可以判断,外力F做的功及摩擦力对物体A和B做功的代数和等于系统的机械能的增量,选项C正确.答案:AC5.(2010年福建古田一中)如图所示,把小车放在光滑的水平桌面上,用轻绳跨过定滑轮使之与盛有砂子的小桶相连,已知小车的质量为M,小桶与砂子的总质量为m,把小车从静止状态释放后,在小桶下落竖直高度为h的过程中,若不计滑轮及空气的阻力,下列说法中正确的是()A.绳拉车的力始终为mgB.当M远远大于m时,才可以认为绳拉车的力为mgC.小车获得的动能为mghD.小车获得的动能为Mmgh/(M+m)解析:整体在小桶和砂子重力mg作用下做加速运动,只有在M远远大于m时,才可以认为绳拉车的力为mg,选项A错误,B正确;由能的转化与守恒定律可知,小桶和砂子减少的重力势能mgh转化为整体的动能,所以小车获得的动能为Mmgh/(M+m),选项C错误,D正确.答案:BD6.(2010年东营第一中学)如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A位置)上,随跳板一同向下运动到最低点(B位置).对于运动员从开始与跳板接触到运动至最低点的过程,下列说法中正确的是()A.运动员到达最低点时,其所受外力的合力为零B.在这个过程中,运动员的动能一直在减小C.在这个过程中,跳板的弹性势能一直在增加D.在这个过程中,运动员所受重力对他做的功小于跳板的作用力对他做的功解析:A位置运动员只受重力,向下运动所受到跳板给他的支持力越来越大,运动员先加速后减速;动能先增大后减小,B位置速度为0,但向上的合力最大,由动能定理可知,D对.答案:CD7.(2010年辽宁沈阳)如图所示甲、乙两种粗糙面不同的传送带.倾斜于水平地面放置.以同样恒定速率v向上运动.现将一质量为m的小物体(视为质点)轻轻放在A处,小物体在甲传送带上到达B处时恰好达到传送带的速率v;在乙传送带上到达离B竖直高度为h的C处时达到传送带的速率v.已知B处离地面高度为H,则在物体从A到B的运动过程中()A.两种传送带对小物体做功相等B.将小物体传送到B处,两种传送带消耗的电能相等C.两种传送带与小物体之间的动摩擦因数不同D.将小物体传送到B处,两种系统产生的热量相等解析:A→B,由动能定理,W-MgH=12mv2,A对;动摩擦因数μ明显不同;A→B摩擦力做功一样,但甲一直产生热量,而乙中只有AC 段产生热量,所以产生热量不同,再由能量守恒则消耗的电能不等.答案:AC8.(2010年安徽安庆二模)如图所示有三个斜面1、2、3,斜面1与2底边相同,斜面2和3高度相同,同一物体与三个斜面的动摩擦因数相同,当他们分别沿三个斜面从顶端由静止下滑到底端时,下列说法正确的是()A.沿2、3斜面运动的时间t2>t3B.沿1、2斜面运动过程中克服摩擦力做功W1C.沿1、3斜面运动过程中物体损失的机械能ΔE1>ΔE3D.物块在三种情况下到达底端的动能Ek1>Ek2>Ek3解析:设2、3高度为h,倾角为θ,a=gsinθ-μgcosθ,所以hsinθ=12at2t=2hasinθ=2hg sinθ-μcosθ sinθ,所以t21、2底边为l,则W=μmgcosθ•lcosθ=μmgl,所以W1=W2;W=μmgcosθ•hsinθ=μmghcotθ,所以W2答案:D9.如图所示,一个小环沿竖直放置的光滑圆环轨道做圆周运动.小环从最高点A(初速度为零)滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h的变化图象可能是图中的()解析:考虑环下降过程中受到的各个力的做功情况,重力做正功,圆环对小环的支持力始终与小环运动方向垂直,不做功,由动能定理ΔEk =12mv2=mgh,v2与h的关系为线性关系,又因h=0时,v也为零.所以图象过原点,只有B符合条件,选B.答案:B10.当今流行一种“蹦极”运动,如图所示,距河面45m高的桥上A点系弹性绳,另一端系住重50kg男孩的脚,弹性绳原长AB为15m,设男孩从桥面自由下坠直至紧靠水面的C点,末速度为0.假定整个过程中,弹性绳遵循胡克定律,绳的质量、空气阻力忽略不计,男孩视为质点.弹性势能可用公式:Ep=kx22(k为弹性绳的劲度系数,x为弹性绳的形变长度)计算.(g=10m/s2)则:(1)男孩在最低点时,绳具有的弹性势能为多大?绳的劲度系数又为多大?(2)在整个运动过程中,男孩的最大速度又为多大?解析:男孩从桥面自由下落到紧靠水面的C点的过程中,重力势能的减少量对应弹性势能的增加量,男孩速度最大时,应为加速度为零的位置.(1)由功能转化关系可知,mgh=Ep,Ep=50×10×45J=2.25×104J又Ep=12kx2,x=45m-15m=30m所以k=2Epx2=2×2.25×104302N/m=50N/m.(2)男孩加速度为零时,mg=kx′,得x′=10m,由能的转化和守恒定律得:mg(hAB+x′)=12kx′2+12mv2m,所以vm=20m/s.答案:(1)2.25×104J50N/m(2)20m/s11.(2010年江苏无锡)如图所示,质量m=1kg的物块从h=0.8m高处沿光滑斜面滑下,到达底部时通过光滑圆弧BC滑至水平传送带CD上,CD部分长L=2m.传送带在皮带轮带动下以v=4m/s的速度逆时针传动,物块与传送带间动摩擦因数μ=0.3.求:(1)物块滑到C、D两点时的速度大小各为多少?(2)物块从C滑到D的过程中,皮带对物块做多少功?(3)物块从C滑到D的过程中,因摩擦产生的热量是多少?解析:(1)由机械能守恒定律mgh=12mv21解得物块到达C点的速度v1=2gh=4m/s物块在皮带上滑动的加速度a=μg=3m/s2由运动学公式-2aL=v22-v21解得物块到达D点的速度v2=v21-2aL=2m/s(2)皮带对物块做功W=-μmgL=-6J(3)物块从C滑到D的时间t1=v2-v1-a=23s 物块与皮带相对滑动距离s1=vt1+L物块在皮带上滑动的过程中产生的热量Q=μmgs1得Q=14J答案:(1)4m/s2m/s(2)-6J(3)14J。
廊坊八中2012年高考一轮复习课时作业 课时作业28 法拉第电磁感应定律 自感 涡流时间:45分钟 满分:100分一、选择题(8×8′=64′)1.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2 Wb ,则( ) A .线圈中感应电动势每秒增加2 V B .线圈中感应电动势每秒减少2 V C .线圈中感应电动势始终为2 VD .线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2 V 解析:由E =ΔΦΔt 知:ΔΦ/Δt 恒定,所以E =2 V.答案:C2.下列关于感应电动势大小的说法中,正确的是( ) A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B .线圈中磁通量越大,产生的感应电动势一定越大C .线圈放在磁感应强度越强的地方,产生的感应电动势一定越大D .线圈中磁通量变化越快,产生的感应电动势越大解析:由法拉第电磁感应定律E =n ΔΦΔt 知,感应电动势与磁通量的变化率成正比,与磁通量的大小、磁通量的变化和磁感应强度无关,故只有D 项正确.答案:D3.如图1所示,MN 、PQ 为两条平行的水平放置的金属导轨,左端接有定值电阻R ,金属棒ab 斜放在两导轨之间,与导轨接触良好,磁感应强度为B 的匀强磁场垂直于导轨平面,设金属棒与两导轨接触点之间的距离为L ,金属棒与导轨间夹角为60°,以速度v 水平向右匀速运动,不计导轨和棒的电阻,则流过金属棒中的电流为( )图1A .I =BL vRB .I =3BL v2RC .I =BL v 2RD .I =3BL v3R解析:因为导体棒匀速运动,所以平均感应电动势的大小等于瞬时感应电动势的大小 又因为题中L 的有效长度为3L 2,故E =B v 3L 2 据闭合电路欧姆定律得I =3BL v2R. 答案:B图24.如图2所示是法拉第做成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘;图中a 、b 导线与铜盘的中轴线处在同一平面内;转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看逆时针匀速转动铜盘的角速度为ω.则下列说法正确的是( )A .回路中有大小和方向作周期性变化的电流B .回路中电流大小恒定,且等于BL 2ω2RC .回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘D .若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘,灯泡中也会有电流流过解析:铜盘在转动的过程中产生恒定的电流I =BL 2ω2R ,A 错B 对;由右手定则可知铜盘在转动的过程中产生恒定的电流从b 导线流进灯泡,再从a 导线流向旋转的铜盘,C 正确;若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘时闭合回路磁通量不发生变化,灯泡中没有电流流过,D 错误.答案:BC图35.一个由电阻均匀的导线绕制成的闭合线圈放在匀强磁场中,如图3所示,线圈平面与磁场方向成60°角,磁感应强度随时间均匀变化,用下列哪种方法可使感应电流增加一倍( )A .把线圈匝数增加一倍B .把线圈面积增加一倍C .把线圈半径增加一倍D .改变线圈与磁场方向的夹角解析:设导线的电阻率为ρ,横截面积为S 0,线圈的半径为r ,则I =ER =nΔΦΔt R =nπr 2ΔBΔt sin θρn ·2πrS 0=S 0r 2ρ·ΔB Δt ·sin θ可见将r 增加一倍,I 增加1倍,将线圈与磁场方向的夹角改变时,sin θ不能变为原来的2倍(因sin θ最大值为1),若将线圈的面积增加一倍,半径r 增加(2-1)倍,电流增加(2-1)倍,I 与线圈匝数无关.答案:C图46.如图4所示的电路中,线圈L 的自感系数足够大,其直流电阻忽略不计,L A 、L B 是两个相同的灯泡,下列说法中正确的是( )A .S 闭合后,L A 、LB 同时发光且亮度不变 B .S 闭合后,L A 立即发光,然后又逐渐熄灭C .S 断开的瞬间,L A 、L B 同时熄灭D .S 断开的瞬间,L A 再次发光,然后又逐渐熄灭解析:线圈对变化的电流有阻碍作用,开关接通时,L A 、L B 串联, 同时发光,但电流稳定后线圈的直流电阻忽略不计,使L A 被短路,所以A 错误,B 正确;开关断开时,线圈阻碍电流变小,产生自感电动势,使L A 再次发光,然后又逐渐熄灭,所以C 错误,D 正确.答案:BD7.图5如图5所示是高频焊接原理示意图.线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝产生大量热量,将金属熔化,把工件焊接在一起,而工件其他部分发热很少.以下说法正确的是( )A .电流变化的频率越高,焊缝处的温度升高得越快B .电流变化的频率越低,焊缝处的温度升高得越快C .工件上只有焊缝处温度升得很高是因为焊缝处的电阻小D .工件上只有焊缝处温度升得很高是因为焊缝处的电阻大解析:在互感现象中产生的互感电动势的大小与电流的变化率成正比,电流变化的频率越高,感应电动势越大,由欧姆定律I =ER 知产生的涡流越大,又P =I 2R ,R 越大P 越大,焊缝处的温度升高得越快.答案:AD8.(2010·浙江高考)半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图6甲所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图6乙所示.在t =0时刻平板之间中心有一重力不计,电荷量为q 的静止微粒.则以下说法正确的是( )图6A.第2秒内上极板为正极B.第3秒内上极板为负极C.第2秒末微粒回到了原来位置D.第2秒末两极板之间的电场强度大小为0.2πr2/d解析:根据法拉第电磁感应定律可知感应电动势大小(即电容器两极间电压大小)始终为0.1πr2,由楞次定律可判定0~1 s下极板为正极、1~3 s上极板为正极,3~4 s下极板为正极,选项A正确,B、D错误;第2 s末微粒离原位置最远,选项C错误.图7答案:A二、计算题(3×12′=36′)9.(2009·全国卷Ⅱ)图8如图8,匀强磁场的磁感应强度方向垂直于纸面向里,大小随时间的变化率ΔBΔt=k,k为负的常量.用电阻率为ρ、横截面积为S的硬导线做成一边长为l的方框.将方框固定于纸面内,其右半部位于磁场区域中.求:(1)导线中感应电流的大小;(2)磁场对方框作用力的大小随时间的变化率. 解析:(1)导线框的感应电动势为ε=ΔΦΔt ①ΔΦ=12l 2ΔB ②导线框中的电流为I =εR③式中R 是导线框的电阻,根据电阻率公式有R =ρ4lS ④联立①②③④式,将ΔB Δt =k 代入得I =klS8ρ⑤(2)导线框所受磁场的作用力的大小为f =BIl ⑥ 它随时间的变化率为Δf Δt =Il ΔBΔt ⑦由⑤⑦式得Δf Δt =k 2l 2S8ρ⑧图910.(2010·山东济宁质检)如图9所示,匀强磁场的磁感应强度B =0.1 T ,金属棒AD 长0.4 m ,与框架宽度相同,电阻r =1.3 Ω,框架电阻不计,电阻R 1=2 Ω,R 2=1 Ω.当金属棒以5 m/s 速度匀速向右运动时,求:(1)流过金属棒的感应电流为多大?(2)若图中电容器C 为0.3 μF ,则电容器中储存多少电荷量? 解析:(1)棒产生的电动势E =Bl v =0.2 V 外电阻R =R 1R 2R 1+R 2=23Ω通过棒的感应电流I =ER +r =0.1 A(2)电容器两板间的电压U =IR =115 V带电量Q =CU =2×10-8 C 答案:(1)0.1 A (2)2×10-8 C11.(2010·广州三校联考)如图10甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L =0.2 m ,电阻R =0.4 Ω,导轨上停放一质量m =0.1 kg 、电阻r =0.1 Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B =0.5 T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示.求:图10(1)金属杆在5 s 末的运动速率; (2)第4 s 末时外力F 的功率. 解析:(1)因为:U =BL v R +r R ,a =Δv Δt所以:ΔU Δt =BLR R +r ·ΔvΔt 即:a =0.5 m/s 2金属棒做匀加速直线运动v 5=at 5=2.5 m/s (2)v 4=at 4=2 m/s ,此时:I =BL v 4R +r=0.4 A F 安=BIL =0.04 N对金属棒:F -F 安=ma ,F =0.09 N 故:P F =F v 4=0.18 W 答案:(1)2.5 m/s (2)0.18 W。
廊坊八中2012年高考一轮复习课时作业 课时作业25 磁场对运动电荷的作用时间:45分钟 满分:100分一、选择题(8×8′=64′)图11.如图1所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d 点垂直于磁场方向射入,沿曲线dpa 打到屏MN 上的a 点,通过pa 段用时为t ,若该微粒经过p 点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN 上.两个微粒所受重力均忽略.新微粒运动的( )A .轨迹为pb ,至屏幕的时间将小于tB .轨迹为pc ,至屏幕的时间将大于tC .轨迹为pb ,至屏幕的时间将等于tD .轨迹为pa ,至屏幕的时间将大于t解析:碰撞过程其动量守恒,所以碰撞前后动量不变.由r =m vqB 知,微粒的轨道半径不变,故其轨迹仍为pa ,但由于碰后其运动速率比原来小,所以至屏幕时间将大于t .答案:D2.质子(p )和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α.则下列选项正确的是( )A .R p ∶R α=1∶2 T p ∶T α=1∶2B .R p ∶R α=1∶1 T p ∶T α=1∶1C .R p ∶R α=1∶1 T p ∶T α=1∶2D .R p ∶R α=1∶2 T p ∶T α=1∶1解析:由洛伦兹力提供向心力,则q v B =m v 2R ,R =m v qB ,由此得:R p R α=m p q p ·q αm α=m q ·2q 4m =12由周期T =2πm qB 得:T p T α=m p q p ·q αm α=R p R α=12,故A 选项正确.答案:A图23.如图2所示,水平导线中有电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( )A .沿路径a 运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小解析:由r =m vBq知B 减小,r 越来越大,故电子的径迹是a .图3答案:B4.如图3所示是电视机中显像管的偏转线圈示意图,它由绕在磁环上的两个相同的线圈串联而成,线圈中通有如图3所示方向的电流.当电子束从纸里经磁环中心向纸外射来时(图中用符号“·”表示电子束).它将( )A .向上偏转B .向下偏转C .向右偏转D .向左偏转解析:由右手定则判断在偏转线圈内部存在水平向左的磁场,再由左手定则判定电子束向上偏转.答案:A5.如图4所示,在半径为R 的圆形区域内有匀强磁场.在边长为2R 的正方形区域里也有匀强磁场,两个磁场的磁感应强度大小相同.两个相同的带电粒子以相同的速率分别从M 、N 两点射入匀强磁场.在M 点射入的带电粒子,其速度方向指向圆心;在N 点射入的带电粒子,速度方向与边界垂直,且N 点为正方形边长的中点,则下列说法正确的是( )图4A .带电粒子在磁场中飞行的时间可能相同B .从M 点射入的带电粒子可能先飞出磁场C .从N 点射入的带电粒子可能先飞出磁场D .从N 点射入的带电粒子不可能比M 点射入的带电粒子先飞出磁场图5解析:画轨迹草图如图5所示,容易得出粒子在圆形磁场中的轨迹长度(或轨迹对应的圆心角)不会大于在正方形磁场中的,故A 、B 、D 正确.答案:ABD6.如图6所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里.P 为屏上的一小孔,PC 与MN 垂直.一群质量为m 、带电荷量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( )图6A.2m vqB B.2m v cos θqBC.2m v (1-sin θ)qBD.2m v (1-cos θ)qB图7解析:能打到的范围中最远点为2R 处,其中R 为轨迹半径,R =m vqB ,最近点为2R cos θ处,所以总长度L =2R -2R cos θ=2m v (1-cos θ)qB.答案:D图87.如图8所示,MN 为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B 1=2B 2,一带电荷量为+q 、质量为m 的粒子从O 点垂直MN 进入磁感应强度为B 1的磁场,则经过多长时间它将向下再一次通过O 点( )A.2πm qB 1B.2πm qB 2C.2πm q (B 1+B 2)D.πm q (B 1+B 2)图9解析:粒子在磁场中的运动轨迹如图9所示.由周期公式T =2πmqB 知,粒子从O 点进入磁场到再一次通过O 点的时间t =2πm qB 1+πm qB 2 =2πmqB 2,所以B 选项正确.答案:B8.(2010·重庆高考)如图10所示,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧.这些粒子的质量、电荷量以及速度大小如下表所示.图10由以上信息可知,从图中a 、b 、c 处进入的粒子对应表中的编号分别为( ) A .3、5、4 B .4、2、5 C .5、3、2D .2、4、5解析:由左手定则可以判断a 、b 带同种电荷,且与C 电性相反,再由R =m vqB 可以判断5个粒子做圆周运动的半径分别为m v 2qB 、2m v qB 、3m v qB 、3m v qB 、2m vqB ,结合题图半径可以判断只有选项D 正确.答案:D二、计算题(3×12′=36′)图119.如图11中MN 表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B .一带电粒子从平板上的狭缝O 处以垂直于平板的初速度v 射入磁场区域,最后到达平板上的P 点.已知B 、v 以及P 到O 的距离l ,不计重力,求此粒子的电荷量q 与质量m 之比.解析:粒子初速度v 垂直于磁场,粒子在磁场中受洛伦兹力而做匀速圆周运动,设其半径为R ,由洛伦兹力公式和牛顿第二定律,有q v B =m v 2R因粒子经O 点时的速度垂直于OP ,故OP 为直径,l =2R 由此得q m =2vBl答案:q m =2vBl图1210.如图12所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A 2A 4为边界的两个半圆形区域Ⅰ、Ⅱ中,A 2A 4与A 1A 3的夹角为60°.一质量为m 、带电荷量为+q 的粒子以某一速度从Ⅰ区的边缘点A 1处沿与A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入Ⅱ区,最后再从A 4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t ,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力).解析:图13设粒子的入射速度为v ,已知粒子带正电,故它在磁场中先顺时针做圆周运动,再逆时针做圆周运动,最后从A 4点射出.用B 1、B 2、R 1、R 2、T 1、T 2分别表示在磁场Ⅰ区和Ⅱ区中磁感应强度、轨道半径和周期q v B 1=m v 2R 1 q v B 2=m v 2R 2T 1=2πR 1v =2πm qB 1,T 2=2πR 2v =2πmqB 2,设圆形区域的半径为r .如图13所示,已知带电粒子过圆心且垂直A 2A 4进入Ⅱ区磁场.连接A 1A 2,△A 1OA 2为等边三角形,A 2为带电粒子在Ⅰ区磁场中运动轨迹的圆心,其轨迹的半径R 1=A 1A 2=OA 2=r圆心角∠A 1A 2O =60°,带电粒子在Ⅰ区磁场中运动的时间为t 1=16T 1带电粒子在Ⅱ区磁场中运动轨迹的圆心在OA 4的中点,即R 2=12r ,在Ⅱ区磁场中运动的时间为t 2=12T 2带电粒子从射入到射出磁场所用的总时间t =t 1+t 2由以上各式可得B 1=5πm 6qt B 2=5πm3qt .答案:B 1=5πm 6qt B 2=5πm3qt11.如图14所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B =5.0×10-3 T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27kg 、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205 V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域.图14(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间. 解析:(1)粒子在电场中被加速,由动能定理得qU =12m v 2α粒子在磁场中偏转,则牛顿第二定律得q v B =m v 2r联立解得r =1B2mU q =10.0052×6.64×10-27×12053.2×10-19=2(m).(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(如图15所示). (3)带电粒子在磁场中的运动周期T =2πr v =2πmqB图15α粒子在两个磁场中分别偏转的弧度为π4,在磁场中的运动总时间t =14T =πm2qB = 3.14×6.64×10-272×3.2×10-19×5×10-3 =6.5×10-6(s).答案:(1)2(m) (2)略 (3)6.5×10-6(s)。