2020-2021学年北师大版高中数学必修一《集合》章末检测题及答案解析
- 格式:docx
- 大小:78.89 KB
- 文档页数:10
2020-2021北京市高中必修一数学上期末试题含答案一、选择题1.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .22D .23.函数y =a |x |(a >1)的图像是( ) A .B .C .D .4.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦7.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .48.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .69.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .1410.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 11.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+12.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .5二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.14.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______15.如果函数()22279919mm y m m x--=-+是幂函数,且图像不经过原点,则实数m =___________.16.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 17.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .18.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.计算221(1).log 24lglog lg 2log 32+--32601(8)9⎛⎫--- ⎪⎝⎭- 23.设函数()()2log xxf x a b =-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.24.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?25.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?26.若()221x x a f x +=-是奇函数.(1)求a 的值;(2)若对任意()0,x ∈+∞都有()22f x m m ≥-,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .4.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.5.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m∴∈-∞时,8 ()9f x≥-成立,即73m≤,7,3m⎛⎤∴∈-∞⎥⎝⎦,故选B.【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.6.C解析:C【解析】分析:由题意分别确定函数f(x)的图象性质和函数h(x)图象的性质,然后数形结合得到关于k的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log1f x x=+右移一个单位,得()21logy f x x=-=,所以g(x)=2x,h(x-1)=h(-x-1)=h(x+1),则函数h(x)的周期为2.当x∈[0,1]时,()21xh x=-,y=kf(x)-h(x)有五个零点,等价于函数y=kf(x)与函数y=h(x)的图象有五个公共点.绘制函数图像如图所示,由图像知kf(3)<1且kf(5)>1,即:22log41log61kk<⎧⎨>⎩,求解不等式组可得:61log22k<<.即k的取值范围是612,2log⎛⎫⎪⎝⎭.本题选择C选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.7.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <n 所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.8.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.9.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.10.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立; ∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.11.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.12.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
章末综合测评(一) 预备知识(满分:150分 时间:120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∀x ∈R ,使得x 2≥0”的否定形式是( ) A .∀x ∈R ,x 2<0 B .∀x ∈R ,x 2≤0 C .∃x ∈R ,x 2≥0D .∃x ∈R ,x 2<0D [命题“∀x ∈R ,x 2≥0”的否定形式是∃x ∈R ,x 2<0,故选D.]2.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{3,4,5}D .{2,3,4,5}A [图中阴影部分所表示的集合为A ∩(∁UB ),故选A.]3.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x -2x ≤0,B ={0,1,2,3},则A ∩B =( )A .{1,2}B .{0,1,2}C .{1}D .{1,2,3}A [∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -2x ≤0={x |0<x ≤2}, ∴A ∩B ={1,2}.]4.设x ∈R ,则“x 3>8”是“|x |>2” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件A [解不等式x 3>8,得x >2,解不等式|x |>2,得x >2或x <-2, 所以“x 3>8”是“|x |>2” 的充分而不必要条件.故选A.]5.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}C [∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}. 故选C.]6.满足条件M ∪{1,2}={1,2,3}的集合M 的个数是( ) A .4 B .3 C .2D .1 A [∵M ∪{1,2}={1,2,3},∴3∈M ,且可能含有元素1,2, ∴集合M 的个数为集合{1,2},子集的个数4.故选A.]7.已知实数a ,b ,c 满足b +c =3a 2-4a +6,c -b =a 2-4a +4,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =a 2-4a +4=(a -2)2≥0,∴c ≥b ; 又b +c =3a 2-4a +6, ∴2b =2a 2+2, ∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎫a -12+34>0, ∴b >a , ∴c ≥b >a .]8.已知a >0,b >0,若不等式m3a +b ≤a +3b ab 恒成立,则m 的最大值为 ( )A .4B .16C .9D .3B [m3a +b≤a +3b ab ,即m ≤(a +3b )(3a +b )ab ;又(a +3b )(3a +b )ab =3a b +3ba +10≥23a b ·3ba=6+10=16,当且仅当a =b 时,取等号,∴m ≤16,故选B.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.不等式mx 2-ax -1>0(m >0)的解集不可能是( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .R C .⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32D .∅BCD [因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D.]10.对于任意实数a ,b ,c ,d ,下列四个命题中其中假命题的是( ) A .若a >b ,c ≠0,则ac >bc B .若a >b ,则ac 2>bc 2 C .若ac 2>bc 2,则a >b D .若a >b >0,c >d ,则ac >bdABD [若a >b ,c <0时,ac <bc ,A 错;B 中,若c =0,则有ac 2=bc 2,B 错;C 正确;D 中,只有c >d >0时,ac >bd ,D 错,故选ABD.]11.已知集合A ={x |x >2},B ={x |x <2m },且A ⊆∁R B ,那么m 的值可以是( ) A .0 B .1 C .2D .3 AB [根据补集的概念,∁R B ={x |x ≥2m }. 又∵A ⊆∁R B ,∴2m ≤2.解得m ≤1,故m 的值可以是0,1.]12.设集合A ={x |x 2-(a +2)x +2a =0},B ={x |x 2-5x +4=0},集合A ∪B 中所有元素之和为7,则实数a 的值为( )A .0B .1C .2D .4ABCD [x 2-(a +2)x +2a =(x -2)(x -a )=0,解得x =2或x =a ,则A ={2,a }.x 2-5x +4=(x -1)(x -4)=0,解得x =1或x =4,则B ={1,4}.当a =0时,A ={0,2},B ={1,4},A ∪B ={0,1,2,4},其元素之和为0+1+2+4=7;当a =1时,A ={1,2},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7;当a =2时,A ={2},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7;当a =4时,A ={2,4},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7.则实数a 的取值集合为{0,1,2,4}.]三、填空题:本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上. 13.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. ⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a [原不等式可化为(x -a )(x -1a )<0,由0<a <1,得a <1a ,∴a <x <1a.]14.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值X 围________.(-∞,1][用数轴表示集合A ,B ,若A ∪B =R ,则a ≤1,即实数a 的取值X 围是(-∞,1].] 15.“∃x ∈[0,3],x 2-a >0”是假命题,则实数a 的取值X 围是________.[9,+∞)[由题意得“∀x ∈[0,3],x 2-a ≤0”是真命题,即a ≥x 2,所以a ≥(x 2)max =9. ] 16.某商家一月份至五月份累计销售额达3 860万元,六月份的销售额为500万元,七月份的销售额比六月份增加x %,八月份的销售额比七月份增加x %,九、十月份的销售总额与七、八月份的销售总额相等,若一月份至十月份的销售总额至少为7 000万元,则x 的最小值为________.20[由题意得七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,所以一月份至十月份的销售总额为3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-115(舍去)或1+x %≥65,即x %≥20%,所以x 的最小值为20.]四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)若集合A={x|-2<x<4},B={x|x-m<0}.(1)若m=3,全集U=A∪B,试求A∩(∁U B).(2)若A∩B=A,某某数m的取值X围.[解](1)当m=3时,由x-m<0,得x<3,∴B={x|x<3},∴U=A∪B={x|x<4},则∁U B={x|3≤x<4},∴A∩(∁U B)={x|3≤x<4}.(2)∵A={x|-2<x<4},B={x|x-m<0}={x|x<m},由A∩B=A得A⊆B,∴m≥4,即实数m的取值X围是[4,+∞).18.(本小题满分12分)解下列不等式:(1)3+2x-x2≥0;(2)x2-(1+a)x+a<0.[解](1)原不等式化为x2-2x-3≤0,即(x-3)(x+1)≤0,故所求不等式的解集为{x|-1≤x≤3}.(2)原不等式可化为(x-a)(x-1)<0,当a>1时,原不等式的解集为(1,a);当a=1时,原不等式的解集为∅;当a<1时,原不等式的解集为(a,1).19.(本小题满分12分)已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},当A∪B=B时,某某数a的取值组成的集合P.[解]由A∪B=B知A⊆B.又A={-4,0},故此时必有B={-4,0},即-4,0为方程x2+2(a+1)x+a2-1=0的两根,于是⎩⎪⎨⎪⎧-4+0=-2(a +1),(-4)×0=a 2-1,得a =1.即P ={1}.20.(本小题满分12分)已知a >b >0,求证:a +b +3>ab +2a +b . [证明]a +b +3-ab -2a -b =12(2a +2b -2ab -4a -2b )+3 =12(a -4a +b -2b +a +b -2ab )+3 =12(a -4a +4+b -2b +1+a +b -2ab -5)+3 =12[(a -2)2+(b -1)2+(a -b )2-5]+3 =12(a -2)2+12(b -1)2+12(a -b )2+12, ∵(a -2)2≥0,(b -1)2≥0,(a -b )2>0, ∴a +b +3-ab -2a -b >0, ∴a +b +3>ab +2a +b .21.(本小题满分12分)已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],某某数m 的值; (2)若A ⊆∁U B ,某某数m 的取值X 围.[解] 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3,∴m =2.(2)∁U B ={x |x <m -2或x >m +2}, ∵A ⊆∁U B ,∴m -2>3或m +2<-1, 即m >5或m <-3.22.(本小题满分12分)已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x 使不等式恒成立?若存在,求出m 的取值X 围;若不存在,请说明理由.[解] 要使不等式mx 2-2x -m +1<0恒成立,即函数y =mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数y =mx 2-2x -m +1为二次函数,其图象需满足开口向下且与x 轴没有公共点,即⎩⎪⎨⎪⎧m <0,Δ=4-4m (1-m )<0,不等式组的解集为空集,即m 不存在. 综上可知,不存在这样的实数m 使不等式恒成立.。
第一章预备知识§1集合1.3集合的基本运算第1课时交集和并集课后篇巩固提升基础达标练1.设集合A={0,2,4,6,8,10},B={x|2x-3<4},则A∩B=()A.{4,8}B.{0,2,6}C.{0,2}D.{2,4,6}{x|x<3.5},又A={0,2,4,6,8,10},∴A∩B={0,2}.2.已知集合M={-1,0,1,2}和N={0,1,2,3}的关系的Venn图如图所示,则阴影部分所表示的集合是()A.{0}B.{0,1}C.{0,1,2}D.{-1,0,1,2,3}M∩N={0,1,2},故选C.3.(多选题)(2020山东泰安高一质检)满足{1,3}∪A={1,3,5}的集合A可能是()A.{5}B.{1,5}C.{3}D.{1,3,5}{1,3}∪A={1,3,5},知A⊆{1,3,5},且A中至少有1个元素5.所以A={5}或A={1,5}或A={1,3,5}.4.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}5.(2020安徽池州高三期末)已知集合A={(x,y)|x-2y+1=0},B={(x,y)|x-y=0},则A∩B=()A.{x=1,y=1}B.{1,1}C.{(1,1)}D.⌀A表示直线x-2y+1=0的点的集合,集合B表示直线x-y=0的点的集合,所以A∩B表示两条直线的交点,解所以A∩B={(1,1)}.6.(2020广东珠海高一期末)已知集合A={-2,0,2},B={y|y=x2,x∈A},则A∪B=()A.{-4,4,-2,2,0}B.{-2,2,0,4}C.{-4,4,0,2}D.{0,2,4}B={y|y=x2,x∈A}={0,4},A={-2,0,2},所以A∪B={-2,0,2,4}.7.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=.,可知a=1,b=6,∴2a-b=-4.48.已知关于x的方程3x2+px-7=0的解集为A,方程3x2-7x+q=0的解集为B,若A∩B=.求A∪B.A∩B=,∴-∈A,且-∈B.由-∈A,设3x2+px-7=0的另一根为m.由根与系数的关系得m=-,解得m=7.∴A=,同理B=,∴A∪B=.9.(2020江苏南京师大附中高一月考)已知集合A={x|1≤x≤5},B={x|-2<x<3}.(1)求A∪B;(2)若C={x|x∈A∩B,x∈Z},试写出集合C的所有子集.∵A={x|1≤x≤5},B={x|-2<x<3}.∴A∪B={x|-2<x≤5}.(2)∵A∩B={x|1≤x<3},∵C={x|x∈A∩B,x∈Z},∴C={1,2},集合C的子集有⌀,{1},{2},{1,2}.能力提升练1.(多选题)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},则使A∪B=A的实数m的取值范围可以是()A.{m|-3≤m≤4}B.{m|-3<m<4}C.{m|2<m<4}D.{m|m≤4}A∪B=A,∴B⊆A.①若B≠⌀,则m+1<2m-1,解得m>2.∵A={x|-2≤x≤7},B={x|m+1<x<2m-1},∴m+1≥-2,且2m-1≤7,解得-3≤m≤4.此时2<m≤4.②若B=⌀,则m+1≥2m-1,解得m≤2,符合题意.综上,实数m满足m≤4即可.2.设集合A={x|x为合数},B={x|x为质数},N表示自然数集,若E满足A∪B∪E=N,则这样的集合E中最少含有的元素个数为()A.1B.2C.3D.4设集合A={x|x为合数},B={x|x为质数},N表示自然数集,∴A∪B中只比N中少两个元素:0和1.∵E满足A∪B∪E=N,∴E中的元素一定有0,1,并且还可以有其他自然数.∴集合E中最少含有元素个数为2.3.(2020湖北荆州中学高一期末)定义集合的商集运算为=x x=,m∈A,n∈B,已知集合S={2,4,6},T=x x=-1,k∈S,则集合∪T中的元素个数为()A.5B.6C.7D.8解析∵集合的商集运算为=x x=,m∈A,n∈B,集合S={2,4,6},∴T=x x=-1,k∈S={0,1,2},∴= 0,,1,∴∪T=0,,1,2.∴集合∪T元素的个数为7个.4.(2020江西南康中学高一月考)已知方程x2+px+q=0的两个不相等实根为α,β.若集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=⌀,求p,q的值.A∩C=A知A⊆C,又A={α,β},则α∈C,β∈C.而A∩B=⌀,故α∉B,β∉B.显然既属于C又不属于B的元素只有1和3.令α=1,β=3.对于方程x2+px+q=0的两根α,β,根据根与系数的关系可得p=-4,q=3.5.已知集合A={x|-2<x<3},B={x|m<x<m+9}.(1)若A∪B=B,求实数m的取值范围;(2)若A∩B≠⌀,求实数m的取值范围.A∪B=B,∴A⊆B,∴解得-6≤m≤-2,∴实数m的取值范围是[-6,-2].(2)当A∩B=⌀时,3≤m,或m+9≤-2,解得m≥3,或m≤-11,∴当A∩B≠⌀时,-11<m<3,∴实数m的取值范围是(-11,3).素养培优练(2020上海育才中学高一月考)设集合A={x|0≤x+a≤1},B={x|a-1≤x≤0},其中a∈R,求A∩B.a-1>0,即a>1时,B=⌀时,A∩B=⌀;当a-1=0,即a=1时,A={x|-1≤x≤0},B={0},则A∩B={0};当a-1<0,即a<1时,1-a>0.若-a>0,即a<0时,如右图所示,A∩B=⌀.若-a=0,即a=0时,如下图所示,A={x|0≤x≤1},B={x|-1≤x≤0},则A∩B={0}.若a-1<-a<0,即0<a<时,如下图所示,A∩B={x|-a≤x≤0}.若-a≤a-1,即≤a<1时,如右图所示,A∩B={x|a-1≤x≤0}.综上所述,当a<0或a>1时,A∩B=⌀;当a=0或a=1时,A∩B={0};当0<a<时,A∩B={x|-a≤x≤0};≤a<1时,A∩B={x|a-1≤x≤0}.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
1.2 集合的基本关系学习目标核心素养1.理解集合的包含与相等的含义.(难点) 2.能识别集合的子集、真子集,会判断集合间的关系.(难点、易混点)1.通过对集合之间包含与相等的含义以及子集、真子集概念的学习,培养数学抽象素养.2.借助子集、真子集的应用,培养逻辑推理素养.1.Venn图为了直观地表示集合间的关系,常用平面上封闭曲线的内部表示集合,称为Venn图.2.子集文字叙述对于两个集合A与B,如果集合A中的任何一个元素都属于集合B,即若a∈A,则a∈B,那么称集合A是集合B的子集.符号表示若a∈A⇒a∈B,则A⊆B.图形表示性质(1)任何一个集合都是它本身的子集,即A⊆A.(2)空集是任何集合的子集,即∅⊆A.(3)若A⊆B,B⊆C,则A⊆C.思考1:符号“∈”与“⊆”有何不同?提示:“∈”表示元素与集合的关系,而“⊆”表示集合与集合的关系.3.集合相等对于两个集合A与B,如果集合A是集合B的子集,且集合B也是集合A的子集,那么称集合A与集合B相等,记作A=B.思考2:如何证明集合相等?提示:证明这两个集合互为子集.4.真子集对于两个集合A与B,如果A⊆B,且A≠B,那么称集合A是集合B的真子集,记作A B.1.设M={}1,2,3,N={}1,则下列关系正确的是( )A.N∈M B.N MC .N ⊆MD .N ⊇MC [由1∈M ,知N ⊆M .]2.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆DB [根据四边形的定义和分类,可知选B.] 3.集合{}0,1的子集有________个.4 [集合{}0,1的子集分别是∅,{}0,{}1,{}0,1.] 4.已知集合{}16⊆{}a 2,a +3,7,求实数a 的值.[解] (1)由已知,得16∈{}a 2,a +3,7,所以a 2=16或a +3=16,解得a =-4,4或13,当a =4时,a +3=7,集合{}a 2,a +3,7的元素不满足互异性,所以,实数a 的值为-4,13.集合间的关系的判断【例1】 判断下列各组中集合间的关系.(1)A ={} |x x 是等腰三角形,B ={x |x 是等边三角形}; (2)A ={} |x x ()x -1=0,B ={}0,1; (3)A ={} |x -1<x <4,B ={} |x x <5;(4)A =⎩⎨⎧⎭⎬⎫ |x x =n +12,n ∈Z ,B ={x ⎪⎪⎪x =12n +1,n ∈Z }.[解] (1)因为等边三角形一定是等腰三角形,但等腰三角形不一定是等边三角形,故B A .(2)A =B .(3)把集合A 与B 在数轴上表示出来,根据定义易得A B . (4)A =⎩⎨⎧⎭⎬⎫ |x x =2n +12,n ∈Z ,B =⎩⎨⎧⎭⎬⎫ |x x =n +22,n ∈Z ,又{} |x x =2n +1,n ∈Z {} |x x =n +2,n ∈Z ,所以AB .判断两集合关系的常用方法(1)化简集合,从元素的属性中寻找两集合间的关系; (2)利用列举法表示各集合,从元素中寻找关系.提醒:在判断集合间的关系时,要注意数轴及Venn 图的应用,它可以直观地帮助我们发现集合间的关系.[跟进训练] 1.设A ={}|x x =2n -1,n ∈Z ,B ={}|x x =2n +1,n ∈Z ,C ={} |x x =4n -1,n ∈Z ,判断它们之间的关系.[解] 因为A ={} |x x =2n -1,n ∈Z ={x |x =2()n -1+1,n ∈Z }⊆B ,B ={} |x x =2n +1,n ∈Z ={}x |x =2()n +1-1,n ∈Z ⊆A ,所以A =B .因为C ={} |x x =4n -1,n ∈Z ={x |x =2×2n -1,n ∈Z }⊆A ,又-3∈A ,但-3C ,所以C A .综上,C A =B .子集个数问题【例2】 已知{}1,2M ⊆{}1,2,3,4,5,试写出满足条件的所有集合M . [思路点拨] 先分析集合M 中元素的特点,然后分类列举.[解] 集合M 含有元素1,2,且含有3,4,5中的至少一个元素,依据集合元素的个数分类列举如下:含有3个元素:{}1,2,3,{}1,2,4,{}1,2,5;含有4个元素:{}1,2,3,4,{}1,2,3,5,{}1,2,4,5; 含有5个元素:{}1,2,3,4,5. 故满足条件的集合M 共有上述7个集合.1.解决此类问题,一般先分析集合元素的特征,然后按集合元素个数分类列举. 2.若一个集合有n 个元素,则它有2n个子集;有2n-1个真子集.[跟进训练]2.已知集合B ={}1,2,A ={}x |x ⊆B , (1)写出集合A ;(2)判断B 与A 的关系.[解] (1)集合B 的子集分别是∅,{}1,{}2,{}1,2,所以A ={}∅,{}1,{}2,{}1,2;(2)B A .集合间的关系的应用 [探究问题]1.已知{}x |-1≤x ≤1⊆{}x |a ≤x ≤b ,试求a ,b 满足的条件. 提示:a ≤-1且b ≥1.2.已知{}x |a ≤x ≤b ⊆{}x |-1≤x ≤1,试求a ,b 满足的条件. 提示:对集合{}x |a ≤x ≤b 是否为空集讨论, 当{}x |a ≤x ≤b 为空集,即a >b 时,满足题意; 当{}x |a ≤x ≤b 非空时,-1≤a ≤b ≤1, 故a ,b 满足的条件是a >b 或-1≤a ≤b ≤1.【例3】 已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ⊆A ,求实数m 的取值范围.[思路点拨] 将集合间的关系转化为元素间的关系,由于B 可能为空集,故需分B =∅与B ≠∅两种情况讨论.[解] 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上得m ≤4.1.对于本例中的集合A ,B ,是否存在实数m 使A ⊆B?[解] 若A ⊆B ,则⎩⎪⎨⎪⎧m +1<-22m -1>7 ,该不等式组无解,故实数m 不存在.2.若将本例中的“A ={x |-2≤x ≤7}”改为“A ={}x |x ≤-2,或x ≥7”,其他条件不变,求实数m 的取值范围.[解] 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎪⎨⎪⎧m +1<2m -1,2m -1≤-2,或⎩⎪⎨⎪⎧m +1<2m -1,m +1≥1,解得m ≥6,综上得x ≤2或m ≥6.1.对于B ⊆A ,在未指明B 非空时,应分B =∅与B ≠∅两种情况讨论.2. 对于B ≠∅这种情况,在确定参数的取值时,可借助数轴来完成,将两个集合在数轴上表示出来,分清实心点与空心圈,由集合之间的关系,列出关于参数的不等式,解不等式求出参数的取值范围.1.在判断集合间的关系时,要注意数轴及Venn 图的应用,它可以直观的帮助我们发现集合间的关系,这是数形结合思想的应用.2.若一个集合有n 个元素,则它的有2n个子集;有2n-1个真子集. 3.由集合间的关系求参数的取值范围时,要考虑空集是否符合题意.1.思考辨析(正确的画“√”,错误的画“×”) (1)空集是任何集合的真子集.( )(2)任何一个集合不可能是其自身的真子集. ( ) (3)任何一个集合至少有两个子集.( ) (4)若A 不是B 的子集,则A 中至少存在一个元素不属于B . ( )[答案] (1)× (2)√ (3)× (4)√2.集合A ={}x ∈N |0≤x <3真子集的个数是( ) A .3 B .4 C .7 D .8C [因为A ={}0,1,2,所以其真子集的个数是23-1=7.]3.设x ,y ∈R ,A ={}()x ,y |y =x ,B =⎩⎨⎧⎭⎬⎫()x ,y ⎪⎪⎪y x=1,则集合A ,B 的关系是________.[答案] B A4.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求实数a 的取值范围; (2)若B ⊆A ,求实数a 的取值范围. [解] (1)当A B 时,a >2. (2)当B ⊆A 时,1≤a ≤2.。
章末检测一、选择题1.若a <12,则化简4(2a -1)2的结果是( )A.2a -1 B .-2a -1 C.1-2aD .-1-2a2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1)3.幂函数的图象过点⎝⎛⎭⎫2,14,则它的单调递增区间是( ) A .(0,+∞) B .[0,+∞) C .(-∞,0)D .(-∞,+∞)4.已知U ={y |y =log 2x ,x >1},P ={y |y =1x,x >2},则∁U P 等于( )A.⎣⎡⎭⎫12,+∞B.⎝⎛⎭⎫0,12 C .(0,+∞)D .(-∞,0]∪⎣⎡⎭⎫12,+∞5.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( )A.14B.12C .2D .46.函数y =lg x +lg(5-3x )的定义域是( )A .[0,53)B .[0,53]C .[1,53)D .[1,53]7.函数y =2+log 2(x 2+3)(x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)8.已知2x =72y =A ,且1x +1y=2,则A 的值是( )A .7B .7 2C .±7 2D .989.若实数x ,y 满足|x -1|-ln 1y=0,则y 关于x 的函数的图象形状大致是( )10.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 6711.方程log 2x +log 2(x -1)=1的解集为M ,方程22x +1-9·2x +4=0的解集为N ,那么M与N 的关系是( ) A .M =N B .M N C .MND .M ∩N =∅12.设偶函数f (x )=log a |x +b |在(0,+∞)上具有单调性,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)=f (a +1)B .f (b -2)>f (a +1)C .f (b -2)<f (a +1)D .不能确定二、填空题13.函数f (x )=log 5(2x +1)的单调增区间是________.14.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是________. 15.已知函数f (x )=2x +3,f -1(x )是f (x )的反函数,若mn =16 (m ,n 为正实数),则f-1(m )+f-1(n )的值为________.16.设f (x )=lg 2+x 2-x,则f ⎝⎛⎭⎫x 2+f ⎝⎛⎭⎫2x 的定义域为________________. 三、解答题17.化简下列各式:(1)22.53150.064-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦-3338-π0;(2)2lg 2+lg 31+12 lg 0.36+14lg 16.18.如果函数f (x )=(m 2-m -1)223m m x --是幂函数,且在区间(0,+∞)内是减函数,求满足条件的实数m 的值.19.设函数f (x )=2x +a2x -1(a 为实数).(1)当a =0时,若函数y =g (x )为奇函数,且在x >0时g (x )=f (x ),求函数y =g (x )的解析 式;(2)当a <0时,求关于x 的方程f (x )=0在实数集R 上的解. 20.已知函数f (x )=1x a- (a >0且a ≠1).(1)若函数y =f (x )的图象经过P (3,4)点,求a 的值; (2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程. 21.已知函数f (x )=a x -1a x +1(a >1).(1)判断函数的奇偶性; (2)求该函数的值域;(3)证明:f (x )是R 上的增函数.22.已知常数a 、b 满足a >1>b >0,若f (x )=lg(a x -b x ).(1)求y =f (x )的定义域;(2)证明:y =f (x )在定义域内是增函数;(3)若f (x )恰在(1,+∞)内取正值,且f (2)=lg 2,求a 、b 的值.答案1.C 2.C 3.C 4.A 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.C 13.⎝⎛⎭⎫-12,+∞ 14.(1,4) 15.-2 16.(-4,-1)∪(1,4) 17.解 (1)原式=253112536427110008-⎧⎫⎡⎤⎪⎪⎪⎪⎛⎫⎛⎫⎢⎥--⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎪⎪⎩⎭=1521335233431102⎛⎫⨯-⨯ ⎪⎝⎭⎡⎤⎡⎤⎛⎫⎛⎫--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦=52-32-1=0. (2)原式=2lg 2+lg 31+12lg 0.62+14lg 24=2lg 2+lg 31+lg 2×310+lg 2=2lg 2+lg 31+lg 2+lg 3-lg 10+lg 2=2lg 2+lg 32lg 2+lg 3=1.18.解 由题意知⎩⎪⎨⎪⎧m 2-m -1=1m 2-2m -3<0,∴⎩⎪⎨⎪⎧m 2-m -2=0m 2-2m -3<0,∴⎩⎪⎨⎪⎧m =2或m =-1-1<m <3,∴m =2. 从而有f (x )=x -3是幂函数,且在区间(0,+∞)内是减函数. 19.解 (1)当a =0时,f (x )=2x -1,由已知g (-x )=-g (x ),则当x <0时,g (x )=-g (-x ) =-f (-x )=-(2-x -1) =-(12)x +1,由于g (x )为奇函数,故知x =0时,g (x )=0, ∴g (x )=⎩⎪⎨⎪⎧2x -1, x ≥0-(12)x+1, x <0.(2)f (x )=0,即2x +a2x -1=0,整理,得:(2x )2-2x +a =0, 所以2x =1±1-4a2,又a <0,所以1-4a >1, 所以2x=1+1-4a2, 从而x =log 21+1-4a2. 20.解 (1)∵函数y =f (x )的图象经过P (3,4),∴a 3-1=4,即a 2=4.又a >0, 所以a =2.(2)由f (lg a )=100知,a lg a -1=100. ∴lg a lg a -1=2(或lg a -1=log a 100). ∴(lg a -1)·lg a =2. ∴lg 2a -lg a -2=0, ∴lg a =-1或lg a =2, ∴a =110或a =100.(3)当a >1时,f ⎝⎛⎭⎫lg 1100>f (-2.1); 0<a <1时,f ⎝⎛⎭⎫lg 1100<f (-2.1).因为,f ⎝⎛⎭⎫lg 1100=f (-2)=a -3, f (-2.1)=a -3.1,当a >1时,y =a x 在(-∞,+∞)上为增函数, ∵-3>-3.1,∴a -3>a -3.1. 即f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a -3.1, 即f ⎝⎛⎭⎫lg 1100<f (-2.1). 21.(1)解 ∵定义域为x ∈R ,且f (-x )=a -x -1a -x +1=1-a x 1+a x =-f (x ),∴f (x )是奇函数.(2)解 f (x )=a x +1-2a x +1=1-2a x +1,∵a x +1>1,∴0<2a x +1<2,即f (x )的值域为(-1,1).(3)证明 设x 1,x 2∈R ,且x 1<x 2,f (x 1)-f (x 2)=1111x x a a -+-2211x x a a -+=121222(1)(1)x x x x a a a a -++<0 (∵分母大于零,且a >1时,y =a x 为R 上的增函数,由x 1<x 2得1xa <2xa ), ∴f (x )是R 上的增函数. 22.(1)解 ∵a x -b x >0,∴a x >b x ,∴(ab)x >1. ∵a >1>b >0,∴ab>1.∴y =(ab )x 在R 上递增.∵(a b )x >(ab)0,∴x >0. ∴f (x )的定义域为(0,+∞). (2)证明 设x 1>x 2>0, ∵a >1>b >0,∴a x 1>a x 2>1,0<b x 1<b x 2<1. ∴-b x 1>-b x 2>-1. ∴a x 1-b x 1>a x 2-b x 2>0.又∵y =lg x 在(0,+∞)上是增函数, ∴lg(a x 1-b x 1)>lg(a x 2-b x 2), 即f (x 1)>f (x 2).∴f (x )在定义域内是增函数.(3)解 由(2)得,f (x )在定义域内为增函数, 又恰在(1,+∞)内取正值, ∴f (1)=0.又f (2)=lg 2,∴⎩⎪⎨⎪⎧ lg (a -b )=0,lg (a 2-b 2)=lg 2.∴⎩⎪⎨⎪⎧a -b =1,a 2-b 2=2.解得⎩⎨⎧a =32,b =12.。
第一章章末检测(时间:120 分钟 满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.设集合 M ={1,2,4,8},N ={x |x 是 2 的倍数},则 M ∩N 等于( ) A .{2,4} B .{1,2,4} C .{2,4,8} D .{1,2,8} 2.若集合 A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则 A ∩B 等于( ) A .{x |-1≤x ≤1} B .{x |x ≥0} C .{x |0≤x ≤1}D .∅3.若ax 2a >0),且 f ( 2),则 a 等于( )A .12B .12C.0 D .2 4.若函数 f (x )满足 f (3x +2)=9x +8,则 f (x )的解析式是( ) A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2 或 f (x )=-3x -45.设全集 U ={1,2,3,4,5},集合 M ={1,4},N ={1,3,5},则 N ∩(∁U M )等于( ) A .{1,3} B .{1,5} C .{3,5} D .{4,5}6. 已知函数 f (x )=1在区间[1,2]上的最大值为 A ,最小值为 B ,则 A -B 等于( )xA.1 2B. -1 2C.1 D .-1 7.f (x )=ax 2+(a 3-a )x (-∞,-1]上递增,则 a 的取值范围是( ) A .a B a ≤ 3 C .0<D a <0+3 (x >10)8.设 f (x )f (x +5)) (x ≤10),则 f (5)的值是( )A .24B .21C .18D .169.f (x )=(m -1)x 2+2mx +3 为偶函数,则 f (x )在区间(2,5)上是( ) A .增函数 B .减函数 C. 有增有减 D .增减性不确定10. 设 集 合 A =[01 1 , ),B =[ ,1],函数 f (x )=+1, x ∈A2 ,若 x 0∈A ,且 f [f (x 0)] 2 2 ∈A ,则 x 0 的取值范围是( ) A .(0,1] B .(11 , ](1-x ), x ∈B4 4 2 C .(1,1) D .[0,3]4 2 8 11. 若函数 f (x )=x 2+bx +c 对任意实数 x 都有 f (2+x )=f (2-x ),那么( ) A .f (2)<f (1)<f (4) B .f (1)<f (2)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 12. 若 f (x )和 g (x )都是奇函数,且 F (x )=f (x )+g (x )+2,在(0,+∞)上有最大值 8,则在(-∞,0)上 F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值-4二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知函数 y =f (x )是 R 上的增函数,且 f (m +3)≤f (5),则实数 m 的取值范围是 .14. 函数 f (x )=-x 2+2x +3 在区间[-2,3]上的最大值与最小值的和为 .15. 若函数 f (x )=x 2+(a +1)x +a为奇函数,则实数 a = .x16.如图,已知函数 f (x )的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式 f (x )-f (-x )>-1 的解集是 .三、解答题(本大题共 6 小题,共 70 分)17.(10 分)设集合 A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中 p 、q 为常数,x∈R ,当 A ∩B ={12}时,求 p 、q 的值和 A ∪B .18.(12 分)已知函数 f (x )=x +2,x -6(1)点(3,14)在 f (x )的图象上吗? (2)当 x =4 时,求 f (x )的值; (3)当 f (x )=2 时,求 x 的值.19.(12 分)函数 f (x )是 R 上的偶函数,且当 x >0 时,函数的解析式为 f (x )=2-1.x(1) 用定义证明 f (x )在(0,+∞)上是减函数; (2) 求当 x <0 时,函数的解析式.20.(12 分)函数 f (x )=4x 2-4ax +a 2-2a +2 在区间[0,2]上有最小值 3,求 a 的值.21.(12 分)已知函数 f (x )对一切实数 x ,y ∈R 都有 f (x +y )=f (x )+f (y ),且当 x >0 时,f (x )<0,又 f (3)=-2.(1) 试判定该函数的奇偶性;(2) 试判断该函数在 R 上的单调性;(3) 求 f (x )在[-12,12]上的最大值和最小值.22.(12 分)已知函数 y =x + t有如下性质:如果常数xt >0,那么该函数在(0, t ]上是减函数,在[ t ,+∞)上是增函数.(1) 已知 f (x ) 4x 2-12x -3x ∈[0,1],利用上述性质,求函数 f (x )的单调区间和值域;= ,2x +1(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a 的值.第一章章末检测答案解析1.C [因为N={x|x 是2 的倍数}={…,0,2,4,6,8,…},故M∩N={2,4,8},所以C 正确.]2.C [A={x|-1≤x≤1},B={y|yA∩B={x|0≤x≤1}.]3.A [f( 2)=2a-2=2,∴a=124.B [f(3x+2)=9x+8=3(3x+2)+2,∴f(t)=3t+2,即f(x)=3x+2.]5.C [∁U M={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.]6.A [f(x)=1在[1,2]上递减,x∴f(1)=A,f(2)=B,∴A-B=f(1)-f(2)=1-1=1.]2 27.D [由题意知a<0,-a3-a≥-1,2a-a22+1≥-1,即a2≤3.a<0.]8.A [f(5)=f(f(10))=f(f(f(15)))=f(f(18))=f(21)=24.]9.B [f(x)是偶函数,即f(-x)=f(x),得m=0,所以f(x)=-x2+3,画出函数f(x)=-x2+3 的图象知,f(x)在区间(2,5)上为减函数.] 10.C [∵x0∈A,∴f(x0)=x0+1∈B,2∴f[f(x0)]=f(x0+1)=2(1-x0-1),2 2即f[f(x0)]=1-2x0∈A,所以0≤1-2x0<1,2即1<x0≤1,又x0∈A,4 2∴1<x0<1,故选C.]4 211.A [由f(2+x)=f(2-x)可知:函数f(x)的对称轴为x=2,由二次函数f(x)开口方向,可得f(2)最小;又f(4)=f(2+2)=f(2-2)=f(0),在x<2 时y=f(x)为减函数.∵0<1<2,∴f(0)>f(1)>f(2),即f(2)<f(1)<f(4).]=- ≠,, 12.D [由题意知 f (x )+g (x )在(0,+∞)上有最大值 6,因 f (x )和 g (x )都是奇函数,所以f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )],即 f (x )+g (x )也是奇函数,所以 f (x )+g (x )在(-∞,0)上有最小值-6, ∴F (x )=f (x )+g (x )+2 在(-∞,0)上有最小值-4.]13.m ≤2解析 由函数单调性可知,由 f (m +3)≤f (5)有 m +3≤5, 故 m ≤2. 14.-1解析 f (x )=-x 2+2x +3=-(x -1)2+4,∵1∈[-2,3],∴f (x )max =4,又∵1-(-2)>3-1,由 f (x )图象的对称性可知,f (-2)的值为 f (x )在[-2,3]上的最小值,即 f (x )min =f (-2)=-5,∴-5+4=-1. 15.-1解析 由题意知,f (-x )=-f (x ), x 2-(a +1)x +a x 2+(a +1)x +a 即 =- ,-xx ∴(a +1)x =0 对 x ≠0 恒成立, ∴a +1=0,a =-1.16.(-1,-1)∪[0,1)2解析 由题中图象知,当 x ≠0 时,f (-x )=-f (x ),所以 f (x )-[-f (x )]>-1,∴f (x )>-1,2 由题图可知,此时-1<x <-1或 0<x <1.当 x =0 时,2f (0)=-1,f (0)-f (-0)=-1+1=0,0>-1 满足条件.因此其解集是{x |-1<x <-12 0≤x <1}.17.解 ∵A ∩B ={1 2 },∴1∈A .2∴2( 1)2+3p (1 2 2)+2=0.∴p =-5.∴A ={1,2}.3 2 又∵A ∩B = 1 1B .∴ 1 2 { },∴ ∈2 21 2( ) +2 +q =0.∴q =-1.2 ∴B ={1,-1}.∴A ∪B ={-1 12 22}.18.解 (1)∵f (3) 3+2 5 14. 3-63 ∴点(3,14)不在 f (x )的图象上.(2)当 x =4 时,f (4) 4+2 = =-3. 4-6 (3)若 f (x )=2,则x +2=2,x -6∴2x -12=x +2,∴x =14. 19.(1)证明 设 0<x 1<x 2,则f (x 1)-f (x 2)=( 2 -1)-( 2-1)x 1 x 2= 或2(x 2-x 1) = ,x 1x 2∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0, ∴f (x 1)-f (x 2)>0, 即 f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数. (2)解 设 x <0,则-x >0,∴f (-x )=- 2-1,x又 f (x )为偶函数,∴f (-x )=f (x )=-2-1,x 即 f (x )=-2-1(x <0). x20.解 ∵f (x )=4(x -a)2-2a +2,2①当a≤0,即 a ≤0 时,函数 f (x )在[0,2]上是增函数.2∴f (x )min =f (0)=a 2-2a +由 a 2-2a +2=3,得 a =∵a ≤0,∴a =1- 2.②当 0<a<2,即 0<a <4 时,2 f (x )min =f (a)=-2a +2.2由-2a +2=3,得 a =- 1∉(0,4),舍去.2③当a≥2,即 a ≥4 时,函数 f (x )在[0,2]上是减函数,2f (x )min =f (2)=a 2-10a +18.由 a 2-10a +18 a =∵a ≥4,∴a =5综上所述,a =1 a =521.解 (1)令 x =y =0,得 f (0+0)=f (0)=f (0)+f (0) =2f (0),∴f (0)=0.令 y =-x ,得 f (0)=f (x )+f (-x )=0, ∴f (-x )=-f (x ), ∴f (x )为奇函数.(2)任取 x 1<x 2,则 x 2-x 1>0,∴f (x 2-x 1)<0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)<0, 即 f (x 2)<f (x 1)∴f (x )在 R 上是减函数.(3)∵f (x )在[-12,12]上是减函数, ∴f (12)最小,f (-12)最大.又 f (12)=f (6+6)=f (6)+f (6)=2f (6) =2[f (3)+f (3)]=4f (3)=-8, ∴f (-12)=-f (12)=8.∴f (x )在[-12,12]上的最大值是 8,最小值是-8.22.解 (1)y =f (x ) 4x 2-12x -3 4= =2x +1+ -8,2x +1设 u =2x +1,x ∈[0,1],1≤u ≤3,2x +1≤ 则 y =u +4-8,u ∈[1,3].u由已知性质得,当 1≤u ≤2,即 0≤x 1时, 2所以减区间为[0,1];2f (x )单调递减;当 2≤u ≤3,即 1≤x ≤1 时,f (x )单调递增;2 所以增区间为[1,1];2 由 f (0)=-3, f (1)=-4,f (1)=-11 2 3得 f (x )的值域为[-4,-3]. (2) g (x )=-x -2a 为减函数,故 g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意,f (x )的值域是 g (x )的值域的子集,1-2a ≤-4 2a ≥-3∴a =32 . ,。
2020-2021学年高一上数学新教材必修一
第1章:集合的含义
一、选择题
1.下列各组对象不能构成集合的是()
A.拥有手机的人B.2019年高考数学难题
C.所有有理数D.小于π的正整数
2.集合M是由大于-2且小于1的实数构成的,则下列关系式正确的是()
A.5∈M B.0∉M
C.1∈M D.-π
2∈M
3.若a是R中的元素,但不是Q中的元素,则a可以是() A.3.14 B.-5
C.3
7 D.7
4.已知集合Ω中的三个元素l,m,n分别是△ABC的三边长,则△ABC一定不是()
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
5.下列各组中集合P与Q,表示同一个集合的是()
A.P是由元素1,3,π构成的集合,Q是由元素π,1,|-3|构成的集合
B.P是由π构成的集合,Q是由3.141 59构成的集合
C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合
D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集
二、填空题
6.若1∈A,且集合A与集合B相等,则1________B(填“∈”或“∉”).7.设集合A是由1,k2为元素构成的集合,则实数k的取值范围是________.8.用符号“∈”或“∉”填空:
第1 页共7 页。
第一章集合1.1集合的概念与表示................................................................................................. - 1 -第1课时集合的概念.......................................................................................... - 1 -第2课时集合的表示.......................................................................................... - 5 -1.2子集、全集、补集................................................................................................. - 9 -1.3交集、并集 .......................................................................................................... - 14 -第1章测评 ................................................................................................................... - 19 - 1.1集合的概念与表示第1课时集合的概念1.(2020江苏南京高一检测)下列判断正确的个数为()①所有的等腰三角形构成一个集合;②倒数等于它自身的实数构成一个集合;③质数的全体构成一个集合;④由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4,故①正确;若=a,则a2=1,解得a=±1,构成的集合中的元素为1,-1,故②正确;质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故③正确;集合中的元素具有互异性,由2,3,4,3,6,2构成的集合含有4个元素,分别为2,3,4,6,故④错误.故选C.2.下列说法:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的是()A.②④B.②③C.①②D.①④N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.3.用符号∈或∉填空:(1)-2N+;(2)(-4)2N+;(3)Z;(4)π+3Q.∉(2)∈(3)∉(4)∉4.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=.x∈N,2<x<a,且集合P中恰有三个元素,∴集合P中的三个元素为3,4,5,∴a=6.5.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.a∈A且3a∈A,∴解得a<2.又a∈N,∴a=0或1.6.(2020河北师范大学附属中学高一期中)设由“我和我的祖国”中的所有汉字组成集合A,则A中的元素个数为()A.4B.5C.6D.7,集合A中的元素分别为我、和、的、祖、国,共5个元素.故选B.7.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可2∈A可知,m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A 的元素为0,3,2,符合题意.8.(2020上海高一月考)如果集合中的三个元素对应着三角形的三条边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,该三角形一定不可能是等腰三角形.故选D.9.(多选)(2020北京高一检测)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数A,C,D中的元素都是确定的,能构成集合,选项B中“难题”的标准不明确,不符合确定性,不能构成集合.故选ACD.10.(多选)(2020广东深圳第二高级中学高一月考)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是()A.-1B.-2C.6D.2a2,2-a,4组成一个集合A,且集合A中含有3个元素,所以a2≠2-a,a2≠4,2-a≠4,解得a≠±2,且a≠1.故选AC.11.(多选)(2020山东济南高一检测)已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.0∉MB.2∈MC.-4∈MD.4∈M,分4种情况讨论:①当x,y,z全部为负数时,则xyz也为负数,则=-4;②当x,y,z中只有一个负数时,则xyz为负数,则=0;③当x,y,z中有两个负数时,则xyz为正数,则=0;④当x,y,z全部为正数时,则xyz也为正数,则=4.则M中含有三个元素-4,0,4.分析选项可得C,D正确.故选CD.12.(2020山东潍坊高一检测)如果有一集合含有三个元素1,x,x2-x,则实数x满足的条件是.≠0,且x≠1,且x≠2,且x≠x≠1,x2-x≠1,x2-x≠x,解得x≠0,且x≠1,且x≠2,且x≠.13.若方程ax2+x+1=0的解构成的集合只有一个元素,则a的值为.或a=0时,原方程为一元一次方程x+1=0,满足题意,所求元素即为方程的根x=-1;当a≠0时,由题意知方程ax2+x+1=0只有一个实数根,所以Δ=1-4a=0,解得a=.所以a的值为0或.14.集合A是由形如m+n(m∈Z,n∈Z)的数构成的,试分别判断a=-,b=,c=(1-2)2与集合A的关系.a=-=0+(-1)×,而0∈Z,-1∈Z,∴a∈A.∵b=,而∉Z,∉Z,∴b∉A.∵c=(1-2)2=13+(-4)×,而13∈Z,-4∈Z,∴c∈A.15.设A为实数集,且满足条件:若a∈A,则∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.若a∈A,则∈A.又2∈A,∴=-1∈A.∵-1∈A,∴∈A.∵∈A,∴=2∈A.∴A中必还有另外两个元素,且为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无实数解.∴a≠,∴集合A不可能是单元素集.第2课时集合的表示1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7,B={2,3,4,5,6,8},共有6个元素,故选C.3.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.集合3,,…用描述法可表示为()A.x x=,n∈N*B.x x=,n∈N*C.x x=,n∈N*D.x x=,n∈N*解析由3,,即从中发现规律,x=,n∈N*,故可用描述法表示为x x=,n∈N*.5.(2020山东济宁高一检测)已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为B=.-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.6.已知集合A={x|x2+2x+a=0},若1∈A,则A=.-3,1}x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1 000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.(2020福建厦门翔安一中高一期中)已知集合M={x|x(x+2)(x-2)=0},则M=()A.{0,-2}B.{0,2}C.{0,-2,2}D.{-2,2}M={x|x(x+2)(x-2)=0}={-2,0,2}.9.(2020河北沧州高一期中)已知集合M={a,2a-1,2a2-1},若1∈M,则M中所有元素之和为()A.3B.1C.-3D.-1a=1,则2a-1=1,矛盾;若2a-1=1,则a=1,矛盾,故2a2-1=1,解得a=1(舍)或a=-1,故M={-1,-3,1},元素之和为-3.故选C.10.(2020上海嘉定第一中学高一月考)已知集合A={a2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为()A.0B.-1C.1D.±1a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a2=1,此时(ab)2 021=(-1)2 021=-1;当b=-1时,a2=a,因为a≠0,所以a=1,此时(ab)2 021=(-1)2 021=-1.故选B.11.(多选)(2020山东潍坊高一检测)下列选项表示的集合P与Q相等的是()A.P={x|x2+1=0,x∈R},Q=⌀B.P={2,5},Q={5,2}C.P={(2,5)},Q={(5,2)}D.P={x|x=2m+1,m∈Z},Q={x|x=2m-1,m∈Z}A,集合P中方程x2+1=0无实数根,故P=Q=⌀;对于B,集合P中有两个元素2,5,集合Q中有两个元素2,5,故P=Q;对于C,集合P中有一个元素是点(2,5),集合Q中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|x=2m+1,m∈Z}表示所有奇数构成的集合,集合Q={x|x=2m-1,m∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.(多选)(2020山东济宁曲阜一中高一月考)下列选项能正确表示方程组的解集的是()A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.(多选)(2020江苏连云港高一期中)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是()A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉BA={y|y≥1},集合B是由抛物线y=x2+1上的点组成的集合,故A正确,B错误,C正确,D正确.故选ACD.14.(2020上海南洋模范中学高一期中)已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.答案,1解析由题意,集合A={x,y},B={2x,2x2},且A=B,则x=2x或x=2x2.若x=2x,可得x=0,此时集合B不满足集合中元素的互异性,舍去;若x=2x2,可得x=或x=0(舍去),当x=时,可得2x=1,2x2=,即A=B=,1.15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A=;用描述法表示“所有被4除余1的整数组成的集合”是.{x|x=4k+1,k∈Z}A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k∈Z}.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值..①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0.当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0, 所以c2-2c+1=0,即c=1,但当c=1时,B中的三个元素相同,不符合题意.②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0.由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0,解得c=-或c=1(舍去),当c=-时,经验证,符合题意.综上所述,c=-.17.(2020天津南开翔宇学校高一月考)已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.当a=0时,-3x+2=0,此时x=,所以A不是空集,不符合题意;当a≠0时,若A是空集,则Δ=9-8a<0,所以a>.综上可知,a的所有取值组成的集合为a a>.(2)当a=0时,-3x+2=0,此时x=,满足条件,此时A中仅有一个元素;当a≠0时,Δ=9-8a=0,所以a=,此时方程为x2-3x+2=0,即(3x-4)2=0,解得x=,此时A 中仅有一个元素.综上可知,当a=0时,A中只有一个元素为;当a=时,A中只有一个元素为.(3)A中至多有一个元素,即方程ax2-3x+2=0只有一个实数根或无实数根.则a=0或Δ=9-8a<0,解得a=0或a>.故a的所有取值组成的集合为a a=0,或a>.1.2子集、全集、补集1.(2020山东青岛高一检测)已知集合M={x|x2-2x=0},U={2,1,0},则∁U M=()A.{0}B.{1,2}C.{1}D.{0,1,2}M={x|x2-2x=0}={0,2},U={2,1,0},则∁U M={1}.故选C.2.集合A={x|-1<x<2},B={x|0<x<1},则()A.B∈AB.A⊆BC.B⊆AD.A=BA={x|-1<x<2},B={x|0<x<1},∴B⊆A.故选C.3.下列关系:①0∈{0};②⌀⫋{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1B.2C.3D.4正确,0是集合{0}的元素;②正确,⌀是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.4.已知集合B={-1,1,4},满足条件⌀⫋M⊆B的集合M的个数为()A.3B.6C.7D.8M是集合B的非空子集,集合B中有3个元素,因此非空子集有7个,故选C.5.若集合M=x x=,k∈Z,集合N=x x=,k∈Z,则()A.M=NB.N⊆MC.M⫋ND.以上均不对解析M=x x=,k∈Z=x x=,k∈Z,N=x x=,k∈Z=x x=,k∈Z.又2k+1,k∈Z 为奇数,k+2,k∈Z为整数,所以M⫋N.6.设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围是.a|a≥2},因为A⫋B,所以a≥2,即a的取值范围是{a|a≥2}.7.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是.m|m<1}∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1,即m的取值范围是{m|m<1}.8.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.B=⌀时,2a>a+3,即a>3,显然满足题意.当B≠⌀时,根据题意作出如图所示的数轴,可得解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4,或a>2}.9.(2020山东济宁高一月考)如果集合P={x|x>-1},那么()A.0⊆PB.{0}∈PC.⌀∈PD.{0}⊆PP={x|x>-1},∴0∈P,{0}⊆P,⌀⊆P,故A,B,C错误,D正确.故选D.10.已知M={x|x>1},N={x|x>a},且M⫋N,则()A.a≤1B.a<1C.a≥1D.a>1M={x|x>1},N={x|x>a},且M⫋N,∴a<1.故选B.11.集合M={x|x=4k+2,k∈Z},N={x|x=2k,k∈Z},P={x|x=4k-2,k∈Z},则M,N,P的关系为()A.M=P⊆NB.N=P⊆MC.M=N⊆PD.M=P=NM=P={±2,±6…},N={0,±2,±4,±6…},所以M=P⊆N.12.(2020山东济南高一检测)已知A={x|x2-3x+2=0},B={x|ax=1},若B⊆A,则实数a 取值的集合为()A.0,1,B.1,C.0,2,D.-2,解析因为A={x|x2-3x+2=0}={x|(x-1)(x-2)=0}={1,2},又B={x|ax=1},当B=⌀时,方程ax=1无解,则a=0,此时满足B⊆A;当B≠⌀时,a≠0,此时B={x|ax=1}=,为使B⊆A,只需=1或=2,解得a=1或a=.综上,实数a取值的集合为0,1,.故选A.13.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2,知则a=2.14.(多选)(2020山东五莲教学研究室高一期中)已知集合M={x|-3<x<3,x∈Z},则下列符号语言表述正确的是()A.2∈MB.0⊆MC.{0}∈MD.{0}⊆MM={x|-3<x<3,x∈Z}={-2,-1,0,1,2},∴2∈M,0∈M,{0}⊆M.∴A,D正确,B,C错误.故选AD.15.(多选)(2020福建宁德高一期中)已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆AB.A⊆BC.0∉AD.1∈AA={y|y=x2+1}={y|y≥1},B={x|x>2},所以B⊆A,0∉A,1∈A.故选ACD.16.(多选)(2020北京高一检测)集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的可能取值为()A.-1B.0C.1D.2解析由题意,B⊆A,当a=0时,B=⌀符合题意;当a≠0时,B=-⊆A,则-=1或-=-1,解得a=-1或a=1,所以实数a的取值为-1,0或1.故选ABC.17.(2020山东东营高一月考)设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a=,b=.4U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b}.∵∁U A={x|x<3,或x>4},∴a=3,b=4.18.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为.或-A有两个子集可知,该集合中只有一个元素,当a=1时,满足题意;当a≠1时,由Δ=9+8(a-1)=0,可得a=-.19.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.a=,则B={5},元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B⫋A.(2)当a=0时,由题意B=⌀,又A={3,5},故B⊆A;当a≠0时,B=,又A={3,5},B⊆A,此时=3或=5,则有a=或a=.所以C=0,.20.设集合A={x|-1≤x+1≤6},m为实数,B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若B⊆A,求m的取值范围.A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集个数为28-2=254.(2)当m-1≥2m+1,即m≤-2时,B=⌀⊆A;当m>-2时,B≠⌀,因此,要使B⊆A,则只要解得-1≤m≤2.综上所述,m的取值范围是{m|m≤-2,或-1≤m≤2}.21.(2020山西平遥综合职业技术学校高一月考)已知全集U=R,集合A={x|-2≤x≤3},B={x|2a<x<a+3},且B⊆∁U A,求实数a的取值集合.A={x|-2≤x≤3},所以∁U A={x|x<-2,或x>3}.因为B⊆∁U A,当B=⌀时,2a≥a+3,解得a≥3;当B≠⌀时,由B⊆∁U A,得解得≤a<3或a≤-5.所以实数a的取值集合为a a≤-5,或a≥.1.3交集、并集1.(2020北京八中期末)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4},全集U={1,2,3,4},A={1,2},B={2,3},可得A∪B={1,2,3},所以∁U(A∪B)={4}.故选D.2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4}.∴A∩B中元素的个数为2.故选B.3.(2021全国甲,理1)设集合M={x|0<x<4},N=,则M∩N=()A. B.C.{x|4≤x<5}D.{x|0<x≤5}解析由交集的定义及图知M∩N=x≤x<4.4.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则()A.a=3,b=2B.a=2,b=3C.a=-3,b=-2D.a=-2,b=-3A∩B={(2,5)},∴解得故选B.5.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个A∪B=A,∴B⊆A.∵A={0,1,2,x},B={1,x2},∴x2=0或x2=2或x2=x,解得x=0或x=±或x=1.经检验,当x=或-时满足题意.故选B.6.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=.∩B={1,2,3}∩{y|y=2x-1,x∈A}={1,2,3}∩{1,3,5}={1,3}.7.(2020山东泰兴第三高级中学高一月考)设M={a2,a+1,-3},N={a-3,2a-1,a2+1},若M∩N={-3},则a的值为,此时M∪N=.1{-4,-3,0,1,2}M∩N={-3},∴a-3=-3或2a-1=-3,解得a=0或a=-1.当a=0时,M={0,1,-3},N={-3,-1,1},得M∩N={1,-3},不符合题意,舍去.当a=-1时,M={0,1,-3},N={-4,-3,2},得M∩N={-3},符合题意.此时M∪N={-4,-3,0,1,2}.8.(2020上海浦东华师大二附中高一月考)调查班级40名学生对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1,则对A,B都赞成的学生有人.A的人数为40×=24,赞成B的人数为24+3=27.设对A,B都赞成的学生数为x,则对A,B都不赞成的学生数为x+1,如图可得x+1+27-x+x+24-x=40,解得x=18.9.已知集合A={x|-2<x<4},B={x|x-m<0,m∈R}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.∵A={x|-2<x<4},B={x|x<m,m∈R},又A∩B=⌀,∴m≤-2.故实数m的取值范围为{m|m≤-2}.(2)由A∩B=A,得A⊆B.∵A={x|-2<x<4},B={x|x<m,m∈R},∴m≥4.故实数m的取值范围为{m|m≥4}.10.已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2B.3C.4D.8,可知满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2},共4个.故选C.11.(2020江苏无锡期末)下图中的阴影部分,可用集合符号表示为()A.(∁U A)∩(∁U B)B.(∁U A)∪(∁U B)C.(∁U B)∩AD.(∁U A)∩BA与集合B的补集的交集,所以图中阴影部分可以用(∁U B)∩A表示.12.(2020江苏镇江月考)集合论是德国数学家康托尔于19世纪末创立的.在他的集合理论中,用card(A)表示有限集合中元素的个数,例如:A={a,b,c},则card(A)=3.若对于任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B).某校举办运动会,高一某班参加田赛的学生有14人,参加径赛的学生有9人,两项都参加的有5人,那么该班参加本次运动会的人数为()A.28B.23C.18D.16A,则card(A)=14,参加径赛的学生组成集合B,则card(B)=9,由题意得card(A∩B)=5,所以card(A∪B)=card(A)+card(B)-card(A∩B)=14+9-5=18,所以该班参加本次运动会的人数为18.故选C.13.(2020天津南开中学高一开学考试)已知集合A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则实数a的取值范围是()A.{a|a≥1}B.a a≥C.{a|a≥0}D.a0≤a≤解析因为A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则B≠⌀且B与A有公共元素,则需解得a≥.故选B.14.(多选)(2020江苏江浦高级中学期中)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B 中的元素有()A.-2B.-1C.0D.1A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.故选AB.15.(多选)(2020河北曲阳第一高级中学月考)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=x x<B.A∩B≠⌀C.A∪B=x x<D.A∪(∁R B)=R解析∵A={x|x<2},B={x|3-2x>0}=x x<,∁R B=x x≥,∴A∩B=x x<,A∩B≠⌀,A∪B={x|x<2},A∪(∁R B)=R.故选ABD.16.(多选)(2020山东菏泽高一月考)已知集合M={2,-5},N={x|mx=1},且M∪N=M,则实数m的值可以为()A. B.-5C.-D.0解析因为M∪N=M,所以N⊆M,当m=0时,N=⌀,满足N⊆M.当m≠0时,N=,若N⊆M,则=2或=-5,解得m=或m=-.综上所述,m=0或m=或m=-,故选ACD.17.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N=.y|y≥-1}{x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.18.(2020山西太原第五十三中学月考)已知A={x|x2+px+1=0},M={x|x>0},若A∩M=⌀,则实数p的取值范围为.p|p>-2}A=⌀时,Δ=p2-4<0,解得-2<p<2;当A≠⌀,即p≤-2或p≥2时,此时方程x2+px+1=0的两个根需满足小于等于0,则x1x2=1>0,x1+x2=-p<0,得p>0,则p≥2.综上,实数p的取值范围为{p|p>-2}.19.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.{1,2},因为A∪B=A,所以B⊆A.若B=⌀,则方程x2-4x+a=0无实数根,所以Δ=16-4a<0,所以a>4.若B≠⌀,则a≤4,当a=4时,B={2}⊆A满足条件;当a<4时,1,2是方程x2-4x+a=0的根,此时a无解.所以a=4.综上可得,a的取值范围是{a|a≥4}.20.(2020天津宝坻大钟庄高中月考)已知集合A={x|-3≤x≤6},B={x|x<4},C={x|m-5<x<2m+3,m∈R}.(1)求(∁R A)∩B;(2)若A⊆C,求实数m的取值范围.因为A={x|-3≤x≤6},所以∁R A={x|x<-3,或x>6},故(∁R A)∩B={x|x<-3,或x>6}∩{x|x<4}={x|x<-3}.(2)因为C={x|m-5<x<2m+3},且A⊆C,所以<m<2,所以m的取值范围为m<m<2.21.(2020山东滕州第一中学新校高一月考)已知全集U=R,集合A={x|x>2},B={x|-4<x<4}.(1)求∁U(A∪B);(2)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).因为A={x|x>2},B={x|-4<x<4},所以A∪B={x|x>-4},则∁U(A∪B)={x|x≤-4}.(2)因为A-B={x|x∈A,且x∉B},所以A-B={x|x≥4},因此A-(A-B)={x|2<x<4}.第1章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给对象能构成集合的是()A.2020年全国Ⅰ卷数学试题中的所有难题B.比较接近2的全体正数C.未来世界的高科技产品D.所有整数A,B,C的标准不明确,所以不能构成集合;而选项D的元素具有确定性,能构成集合.故选D.2.(2021新高考Ⅰ,1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}A={x|-2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选B.3.(2020山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}数形结合)由数轴可知所以A∪B={x|1≤x<4},故选C.4.(2020江苏梅村高级中学月考)已知A={x,x+1,1},B={x,x2+x,x2},且A=B,则()A.x=1或x=-1B.x=1C.x=0或x=1或x=-1D.x=-1x=1时,集合A={1,2,1},B={1,2,1}不满足集合中元素的互异性,排除A,B,C;当x=-1时,A={-1,0,1},B={-1,0,1},A=B,满足题意.故选D.5.(2020江苏吴江中学月考)满足{2}⫋A⊆{1,2,3,4,5},且A中元素之和为偶数的集合A 的个数是()A.5B.6C.7D.8{2}⫋A⊆{1,2,3,4,5},所以2∈A.又A中元素之和为偶数,所以满足条件的集合A有{2,4},{1,2,3},{1,2,5},{2,3,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共7个,故选C.6.(2020安徽安庆白泽湖中学月考)已知集合A={x|x<1,或x>3},B={x|x-a<0},若B⊆A,则实数a的取值范围为()A.{a|a>3}B.{a|a≥3}C.{a|a<1}D.{a|a≤1}B={x|x<a},因为B⊆A,所以a≤1.故选D.7.(2020山东潍坊月考)设全集U=R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2,或x>3}D.{x|-2≤x≤2}∁R(M∪N).又M={x|x<-2,或x>2},N={x|1≤x≤3},所以M∪N={x|x<-2,或x≥1},则图中阴影部分表示的集合为∁R(M∪N)={x|-2≤x<1}.故选A.8.(2020山西高一月考)某学校组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,则两科均未取得优秀的人数是()A.8B.6C.5D.4,两科都取得优秀的有6人,数学取得优秀物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,这样共有22人至少取得一科优秀.某班共有30名同学,则两科均未取得优秀的人数是30-22=8.故选A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知集合M={1,m+2,m2+4},且5∈M,则m的可能取值有()A.1B.-1C.3D.25∈M,所以m+2=5或m2+4=5,解得m=3,或m=±1.当m=3时,M={1,5,13},符合题意,当m=1时,M={1,3,5},符合题意,当m=-1时,M={1,1,5},不满足元素的互异性,不成立.所以m=3或m=1.故选AC.10.(2020山东邹城第一中学高一月考)已知全集U=R,A={x|x<2,或x>4},B={x|x≥a},且∁U A⊆B,则实数a的取值可以是()A.1B.3C.2D.4A={x|x<2,或x>4},得∁U A={x|2≤x≤4}.因为∁U A⊆B,B={x|x≥a},所以a≤2,所以实数a的取值可以是1,2.故选AC.11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8A={0,1,4},B={0,1,3},所以A∩B={0,1},A∪B={0,1,3,4},选项A,C都正确;又全集U={0,1,2,3,4},所以∁U B={2,4},选项B错误;集合A={0,1,4}的真子集有7个,所以选项D错误.12.(2020重庆万州第二高级中学月考)给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法错误的是()A.集合M={-4,-2,0,2,4}为闭集合B.正整数集是闭集合C.集合M={n|n=5k,k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合A,4∈M,2∈M,但4+2=6∉M,故A错误;对于B,1∈N*,2∈N*,但1-2=-1∉N*,故B错误;对于C,对于任意a,b∈M,设a=5k1,b=5k2,k1∈Z,k2∈Z,a+b=5(k1+k2),a-b=5(k1-k2),k1+k2∈Z,k1-k2∈Z,所以a+b∈M,a-b∈M,故C正确;对于D,A1={n|n=5k,k∈Z},A2={n|n=3k,k∈Z}都是闭集合,但A1∪A2不是闭集合,如5∈(A1∪A2),3∈(A1∪A2),但5+3=8∉(A1∪A2),故D错误.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.A={0,1},B={1,2},∴C={x|x=a+b,a∈A,b∈B}={1,2,3}有3个元素,∴集合C的真子集个数为23-1=7.14.(2020湖南雨花雅礼中学高一月考)设A={x|-1<x≤3},B={x|x>a},若A⊆B,则实数a的取值范围是.a|a≤-1},如图所示,∵A⊆B,∴a≤-1.15.(2020江苏玄武南京田家炳高级中学月考)集合A={x|x<1,或x≥2},B={x|a<x<2a+1},若A∪B=R,则实数a的取值范围是.答案a≤a<1集合A={x|x<1,或x≥2},B={x|a<x<2a+1},A∪B=R,∴解得≤a<1,∴实数a的取值范围是a≤a<1.16.(2020山西高一月考)设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串.如:(2,5)表示的是从左往右第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.若M={1,3,4},则∁U M表示6位字符串为;若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为.4U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},则∁U M表示6位字符串为010011.因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6}.又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020江苏镇江月考)已知全集U={0,1,2,3,4,5,6,7},集合A={1,2,3},B={1,3,4}.(2)集合C满足(A∩B)⊆C⊆(A∪B),请写出所有满足条件的集合C.由A={1,2,3},B={1,3,4},得A∩B={1,3},A∪B={1,2,3,4}.由U={0,1,2,3,4,5,6,7},得(∁U A)∩(∁U B)={0,5,6,7}.(2)由(A∩B)⊆C⊆(A∪B),A∩B={1,3},A∪B={1,2,3,4},得C可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}.18.(12分)已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x(a∈R,x ∈R).(1)若x2∈B,求实数x的值.(2)是否存在实数a,x,使A=B?若存在,求出a,x;若不存在,请说明理由.集合B中有三个元素:0,1,x.x2∈B,当x取0,1,-1时,都有x2∈B,∵集合中的元素都有互异性,∴x≠0,x≠1,∴x=-1.∴实数x的值为-1.(2)不存在.理由如下:a2+1≠0,若a-3=0,则a=3,A={0,5,10}≠B;若2a-1=0,则a=,A=0,-≠B,∴不存在实数a,x,使A=B.19.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由.(2)若A⊆B成立,求出相应的实数对(a,b).不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时,A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).20.(12分)(2020山东枣庄第三中学高一月考)已知集合A={x|a-1<x<2a+1,a∈R},B={x|0<x<1},U=R.(2)若A∩B=⌀,求实数a的取值范围.解(1)当a=时,A=x-<x<2.因为B={x|0<x<1},所以∁U B={x|x≤0,或x≥1}.因此A∩B={x|0<x<1},A∩(∁U B)=x-<x≤0,或1≤x<2.(2)当A=⌀时,显然符合题意,因此有a-1≥2a+1,解得a≤-2;当A≠⌀时,因此有a-1<2a+1,解得a>-2,要想A∩B=⌀,则有2a+1≤0或a-1≥1,解得a≤-或a≥2,而a>-2,所以-2<a≤-或a≥2.综上所述,实数a的取值范围为a a≤-,或a≥2.21.(12分)(2020安徽芜湖一中月考)已知集合A={x|-1≤x≤3},B={x|x<0,或x>2},C={x|m-2≤x≤m+2},m为实数.(1)求A∩B,∁R(A∩B);(2)若A⊆∁R C,求实数m的取值范围.因为A={x|-1≤x≤3},B={x|x<0,或x>2},所以A∩B={x|-1≤x<0,或2<x≤3},∁R(A∩B)={x|x<-1,或0≤x≤2,或x>3}.(2)因为C={x|m-2≤x≤m+2},所以∁R C={x|x<m-2,或x>m+2}.因为A⊆∁R C,所以m-2>3或m+2<-1,解得m>5或m<-3,所以m的取值范围为{m|m<-3,或m>5}.22.(12分)(2020北京八中月考)设a为实数,集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.,B={2,3},C={-4,2}.(1)因为A∩B=A∪B,所以A=B.又B={2,3},则解得a=5.(2)由于A∩B≠⌀,而A∩C=⌀,则3∈A,即9-3a+a2-19=0,解得a=5或a=-2.由(1)知,当a=5时,A=B={2,3}.此时A∩C≠⌀,矛盾,舍去.当a=-2时,经检验,满足题意.因此a=-2.。
最新(新课标)北师大版高中数学必修一第一章章末检测(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.设集合M={1,2,4,8},N={x|x是2的倍数},则M∩N等于( )A.{2,4} B.{1,2,4}C.{2,4,8} D.{1,2,8}2.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B等于( )A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅3.下列说法正确的是( )A.很小的实数可以构成集合B.集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合C.自然数集N中最小的数是1D.空集是任何集合的子集4.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A.M∪N B.M∩NC.(∁I M)∪(∁I N) D.(∁I M)∩(∁I N)5.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B 为( )A.{(0,1),(-1,2)} B.{(0,1),(1,1)}C.{(1,1),(-1,2)} D.{(-1,2)}6.设集合A={x|2≤x<2a-1},B={x|1≤x≤6-a},若3∈A∩B,则实数a的取值范围是( )A.a>2 B.2≤a<3C.2≤a≤3 D.2<a≤37.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)等于( ) A.{1,3} B.{1,5}C.{3,5} D.{4,5}8.已知全集U=N+,集合M={x|x=2n,n∈N+},N={x|x=4n,n∈N+},则( ) A.U=M∪N B.U=(∁U M)∪NC.U=M∪(∁U N) D.U=∁U(M∩N)9.已知U为全集,A,B,C是U的子集,(A∪C)⊆(A∪B),则下列正确命题的个数是( )①∁U(A∩C)⊆∁U(A∩B);②(∁U A∩∁U C)⊇(∁U A∩∁U B);③C⊆B.A.0个B.1个C.2个D.3个10.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系的Venn 图如图所示,则阴影部分所示的集合的元素共有( )A.3个B.2个C.1个D.无穷多个11.已知U=R,A={x|x>0},B={x|x≤-1},则(A∩∁U B)∪(B∩∁U A)等于( ) A.∅B.{x|x≤0}C.{x|x>-1} D.{x|x>0或x≤-1}12.设全集U是实数集R,M={x|x2>4},N={x|2x-1≥1},则右图中阴影部分所表示的集合是( )A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤二、填空题(13.已知集合A={-2,-1,1,2,3,4},B={x|x=t2,t∈A},用列举法表示集合B=_____________.14.下列各组集合中,满足P =Q 的有________.(填序号) ①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y)|y =x -1,x ∈R},Q ={y|y =x -1,x ∈R}. 15.用集合的交和并表示图中阴影部分为________.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为______________. 三、解答题(本大题共6小题,共70分)17.(10分)已知集合A ={a +2,2a 2+a},若3∈A ,求a 的值.18.(12分)若a ,b ∈R ,集合{1,a +b ,a}={0,ba ,b},求b -a 的值.19.(12分)已知A ={x|x 2+(2+p)x +1=0,x ∈Z},若A ∩(0,+∞)=∅,求p 的取值范围.20.(12分)设集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A=B,求a的值;(2)若∅A∩B,且A∩C=∅,求a的值;(3)若A∩B=A∩C≠∅,求a的值.21.(12分)已知集合A={x|0<ax+1≤5},集合B={x|-12<x≤2}.若B⊆A,求实数a的取值范围.22.(12分)向50名学生调查对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人.问对A,B都赞成的学生和都不赞成的学生各有多少人?第一章章末检测(A)1.C [因为N={x|x是2的倍数}={…,0,2,4,6,8,…},故M∩N={2,4,8},所以C正确.] 2.C [A={x|-1≤x≤1},B={y|y≥0},解得A∩B={x|0≤x≤1}.]3.D4.D [∵(∁I M)∩(∁I N)=∁I(M∪N),而{2,7,8}=∁I(M∪N)].5.A [A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.但本题要注意列举法的规范书写.]6.D [∵3∈A,∴2a-1>3.∴a>2.又3∈B,∴6-a≥3,∴a≤3.]7.C [∁U M={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.]8.C [由于N M,由Venn图可知选C.] 9.C [①∵(A∩C)⊇(A∩B),∴∁U(A∩C)⊆∁U(A∩B),∴①为真命题.②∵(A∪C)⊆(A∪B),∴∁U(A∪C)⊇∁U(A∪B),即(∁U A∩∁U C)⊇(∁U A∩∁U B),∴②为真命题.由Venn图可知,③为假命题.故选C.]10.B [M={x|-1≤x≤3},M∩N={1,3},共2个.]11.D [∵∁U B={x|x>-1},∴A∩∁U B={x|x>0}.又∵∁U A={x|x≤0},∴B∩∁U A={x|x≤-1}.∴(A∩∁U B)∪(B∩∁U A)={x|x>0或x≤-1}.]12.C [题图中阴影部分可表示为(∁U M)∩N,集合M为{x|x>2或x<-2},集合N为{x|1<x ≤3},由集合的运算,知(∁U M)∩N={x|1<x≤2}.]13.{1,4,9,16}解析B={x|x=t2,t∈A}={1,4,9,16}.14.②解析①中P、Q表示的是不同的两点坐标;②中P=Q;③中P表示的是点集,Q表示的是数集.15.A∩B∪C16.12解析 设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如右图.设所求人数为x ,则只喜爱乒乓球运动的人数为10-(15-x)=x -5, 故15+x -5=30-8⇒x =12.17.解 ∵3∈A ,∴a +2=3或2a 2+a =3. 当a +2=3时,解得a =1.当a =1时,2a 2+a =3.∴a =1(舍去).当2a 2+a =3时,解得a =-32或a =1(舍去).当a =-32时,a +2=12≠3,∴a =-32符合题意.∴a =-32.18.解 由{1,a +b ,a}={0,ba ,b}可知a ≠0,则只能a +b =0,则有以下对应关系: ⎩⎪⎨⎪⎧ a +b =0,ba =a ,b =1①或⎩⎪⎨⎪⎧a +b =0,b =a ,b a =1.②由①得⎩⎨⎧a =-1b =1,符合题意;②无解.所以b -a =2.19.解 ①若A =∅,则Δ=(p +2)2-4<0,得-4<p<0. ②若方程的两个根为非正实数,则⎩⎨⎧Δ≥0,x 1+x 2=-(p +2)≤0,x 1x 2=1>0.解得p ≥0.综上所述,p 的取值范围是{p|p>-4}.20.解 B ={x|x 2-5x +6=0}={2,3},C ={x|x 2+2x -8=0}={-4,2}.(1)若A =B ,由根与系数的关系可得a =5和a 2-19=6同时成立,即a =5.(2)由于∅A ∩B ,且A ∩C =∅,故只可能3∈A.此时a 2-3a -10=0,也即a =5或a =-2. 当a =5时,A =B ={2,3},A ∩C ≠∅,舍去; 当a =-2时,A ={-5,3},满足题意,故a =-2. (3)当A ∩B =A ∩C ≠∅时,只可能2∈A ,有a 2-2a -15=0,也即a =5或a =-3,经检验知a =-3. 21.解 当a =0时,显然B ⊆A ; 当a<0时,若B ⊆A ,如图, 则⎩⎪⎨⎪⎧4a ≤-12,-1a >2,∴⎩⎨⎧a ≥-8,a>-12.∴-12<a<0;当a>0时,如图,若B ⊆A ,则⎩⎪⎨⎪⎧-1a ≤-12,4a ≥2,∴⎩⎨⎧a ≤2,a ≤2.∴0<a ≤2. 综上知,当B ⊆A 时,a 的取值范围为-12<a ≤2.22.解 赞成A 的人数为50×35=30(人),赞成B 的人数为30+3=33(人), 记50名学生组成的集合为U , 赞成事件A 的学生全体为集合M ; 赞成事件B 的学生全体为集合N.设对事件A ,B 都赞成的学生人数为x ,则对A ,B 都不赞成的学生人数为x3+1,赞成A而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x.则Venn 图如图所示:依题意(30-x)+(33-x)+x +(x3+1)=50,解得x =21.所以对A ,B 都赞成的同学有21人,都不赞成的有8人.。