2017_2018学年高一数学下学期第二次月考习题(含解析)
- 格式:docx
- 大小:365.54 KB
- 文档页数:16
2017-2018学年度上杭一中6月月考高二(文)数学试卷第Ⅰ卷一、选择题(共12题,每题5分,共60分.)1. 已知命题:,,则为()A. ,B. ,C. ,D. ,【答案】B【解析】分析:根据全称命题的否定的原则::换量词,否结论,不变条件,写出否定形式即可.详解:根据全称命题的否定原则得到为,.故答案为:B.点睛:全称命题的否定式特称命题,原则是:换量词,否结论,不变条件,特称命题的否定式全称命题,否定形式如上.2. 若为实数,且,则()A. B. C. D.【答案】B【解析】由已知得,所以,解得,故选B.考点:复数的运算.视频3. 若全集,,则()A. B. C. D.【答案】A【解析】分析:根据集合的补集运算得到结果即可.详解:全集,=,.故答案为:A.点睛:这个题目考查的是集合的补集运算,也考查到了二次不等式的计算,较为简单.4. 下列三句话按“三段论”模式排列顺序正确的是()①是三角函数;②三角函数是周期函数;③是周期函数.A. ①②③B. ②①③C. ②③①D. ③②①【答案】B【解析】试题分析:②是一个一般性的结论,是大前提;①说明是一个三角函数,是一个特殊性的结论,是小前提;③即是结论.故选B.考点:三段论.5. 已知定义在上的奇函数,当时,恒有,且当时,,则()A. B. C. D.【答案】D【解析】分析:求出函数的周期,利用函数的奇偶性以及已知函数的解析式,转化求解即可.详解:当x≥0时,恒有f(x+2)=f(x),可知函数f(x)的周期为2.所以f(2017)=f(1),f(2018)=f(0)又f(x)为奇函数,所以f(﹣2017)=﹣f(2017)而当x∈[0,1]时f(x)=e x﹣1,所以f(﹣2017)+f(2018)=﹣f(2017)+f(2018)=﹣f(1)+f(0)=﹣(e1﹣1)+(e0﹣1)=1﹣e,故选:D.点睛:此题考察了函数的周期性、奇偶性及其运用,对于抽象函数,且要求函数值的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为已知表达式的区间上,将转化后的自变量代入解析式即可.6. ①已知,是实数,若,则且,用反证法证明时,可假设且;②设为实数,,求证与中至少有一个不少于,用反证法证明时,可假设,且.则()A. ①的假设正确,②的假设错误B. ①的假设错误,②的假设正确C. ①与②的假设都错误D. ①与②的假设都正确【答案】B【解析】分析:根据反证法的概念判断正误即可.详解:已知,是实数,若,则且,用反证法证明时,可假设或,故选项不合题意;②设为实数,,求证与中至少有一个不少于,用反证法证明时,可假设,且,是正确的.故答案为:B.点睛:这个题目考查了反证法的原理,反证法即将原命题的结论完全推翻,假设时取原命题结论的补集即可,注意在假设时将或变为且,且变为或,不都变为全都.7. 已知条件::,条件:直线与圆相切,则是的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:由题意求得直线与圆相切时的k值,据此可得是的充分不必要条件详解:圆的标准方程为:,直线与圆相切,则圆心到直线的距离为1,即:,解得:,据此可得:是的充分不必要条件.本题选择A选项.点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8. 下列函数中,既是偶函数又是上的增函数的是()A. B. C. D.【答案】B【解析】分析:根据奇偶性的定义和单调性的定义可判断选项,进行排除得到结果.详解:根据题意,依次分析选项:对于A,y=x3为幂函数,为奇函数,不符合题意,对于B,y=2|x|,有f(﹣x)=2|﹣x|=2|x|=f(x),为偶函数,且当x∈(0,+∞),f(x)=2|x|=2x,在(0,+∞)上为增函数,符合题意;对于C,函数的定义域为[0,+∞),定义域关于原点不对称,故得到函数非奇非偶,不合题意;D,是偶函数,但是是周期函数在上不单调.故答案为:B.点睛:这个题目考查了函数奇偶性和单调性的判断,函数奇偶性的判断,先要看定义域是否关于原点对称,接着再按照定义域验证和的关系,函数的单调性,一般小题直接判断函数在所给区间内是否连续,接着再判断当x变大时y的变化趋势,从而得到单调性.9. 执行如图所示的程序框图,为使输出的值大于,则输入正整数的最小值为()A. B. C. D.【答案】D【解析】分析:由题意结合流程图试运行所给的程序框图,结合S值的变化即可求得最终结果.详解:结合所给的流程图执行程序:首先初始化数据:,第一次循环,应满足,执行,,;第二次循环,应满足,执行,,;第三次循环,,此时之后程序即可跳出循环,据此可得输入正整数的最小值为.本题选择D选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10. 函数的大致图象为()A. B. C. D.【答案】B【解析】分析:根据f(0),f(2)和f(x)在(0,+∞)上是否单调结合选项得出答案.详解:∵f(0)=1,故A错误;当x>0时,f(x)=-e x+2x2,f′(x)=-e x+4x.∴f′(1)=-e+4>0,f′(3)=-e3+12<0,∴f(x)在(0,+∞)上不单调,故C,D错误;故选:B.点睛:本题考查函数的图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.11. 我国古代著名的数学著作有《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《孙丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算机》等部算书,被称为“算经十字”.某校数学兴趣小组甲、乙、丙、丁四名同学对古代著名的数学著作产生深厚的兴趣.一天,他们根据最近对这十部书的阅读本数情况说了这些话,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”;丁:“丙比乙多”,有趣的是,他们说的这些话中,只有一个人说的是真实的,而这个人正是他们四个人中读书本数最少的一个(他们四个人对这十部书阅读本数各不相同).甲、乙、丙、丁按各人读书本数由少到多的排列是()A. 乙甲丙丁B. 甲丁乙丙C. 丙甲丁乙D. 甲丙乙丁【答案】D【解析】分析:由四人所说话列出表格,再由四个选项依次分析是否满足只有一人说话为真且此人阅读数最少。
沧州一中2017-2018学年第二学期高一第二次学段检测数学试卷第Ⅰ卷(客观题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合要求的)1. 在数列中,,,则等于()A. 7B. 13C. 25D. 49【答案】C【解析】选C.2. 在中,,,,则最小角为()A. B. C. D.【答案】B【解析】试题分析:由余弦定理得,所以,故选B.考点:余弦定理.3. 圆台侧面的母线长为,母线与轴的夹角为,一个底面的半径是另一个底面半径的2倍.求两底面的面积之和是()A. B. C. D.【答案】C【解析】由题意得 ,因为一个底面的半径是另一个底面半径的2倍,所以因此两底面的面积之和是,选C.4. 设,给出下列结论:①;②;③;④.其中正确的结论有()A. ①④B. ②④C. ②③D. ③④【答案】B【解析】①;②;③;;④.所以选B.5. 设是平面内的两条不同直线,是平面内的两条相交直线,则以下能够推出的是()A. 且B. 且C. 且D. 且【答案】B【解析】且时,可相交(如同时平行交线);且时,又是平面内的两条相交直线,所以;且时,可相交(如同时平行交线);且时,可相交(如同时平行交线);因此选B.6. 已知各顶点都在一个球面上的正四棱柱(侧棱垂直于底面且底面为正方形的四棱柱)的高为2,这个球的表面积为,则这个正四棱柱的体积为()A. 1B. 2C. 3D. 4...【答案】B【解析】,球的直径为正四棱柱的对角线,所以,因此正四棱柱的体积为,选B.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.7. 若关于的不等式组,表示的平面区域为一个三角形及其内部,则实数的取值范围是()A. B. C. D.【答案】C【解析】试题分析:根据已知条件作出不等式组能确定的区域,同时要理解要构成三角形区域,则必须要过点(1,1)的下方时能成立,也就是说,要过直线x=1,和x+y=2的交点(1,1)的右下方,此时无论如何旋转直线,都能构成三角形区域,因此答案为A.考点:本试题考查了线性规划知识点。
双鸭山市第一中学2017-2018学年度下学期高一(理科)数学6月考试试题一、选择题(每个小题5分,共60分)1. ( )B. C.【答案】A【解析】分析:由题意将原问题转化为二次不等式求解即可.求解二次不等式可得原不等式的解集为本题选择A选项.点睛:解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.2. 公比为2的等比数列{a n} ( )A. 4B. 5C. 6D. 7【答案】B【解析】分析:由题意结合等比数列的性质整理计算即可求得最终结果.本题选择B选项.点睛:本题主要考查等比数列的性质,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.3. ,那么( )B. C. D.【答案】Dβ∈[,2∈(0,),的范围π)4. 若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A. 不一定存在与a平行的直线B. 只有两条与a平行的直线C. 存在无数条与a平行的直线D. 存在唯一与a平行的直线【答案】A【解析】当直线a⊂β,B∈a上时满足条件,此时过B不存在与a平行的直线,故选A.5. 用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为cm2,则原平面图形的面积为( )A. 4 cm2B. cm2C. 8 cm2D. cm2【答案】C【解析】分析:由题意结合斜二测画法的法则整理计算即可求得原图形的面积.原平面图形是一个梯形,且上底为长度,下底长度为,高为本题选择C选项.点睛:本题主要考查斜二测画法,梯形的面积公式等知识,意在考查学生的转化能力和计算求解能力.6. 中,内角( )A. B. C. D.【答案】C【解析】分析:由题意首先求得a的值,然后结合余弦定理整理计算即可求得最终结果.本题选择C选项.点睛:本题主要考查余弦定理的应用,三角形的面积公式等知识,意在考查学生的转化能力和计算求解能力.7. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )【答案】C【解析】由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是的等腰直角三角形,高为3的三棱锥的组合体,∴该几何体的体积故选A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.8. 等差数列{a n}中,已知a5>0,a4+a7<0,则{a n}的前n项和S n的最大值为( )A. S7B. S6C. S5D. S4【答案】C【解析】分析:由题意结合数列各项的符号确定数列的前n项和取得最大值时的n值即可.。
西宁市第四高级中学2017-2018学年第二学期第二次月考试卷高 一 数 学一、选择题(本大题共12小题,每小题5分,满分60分.)1.已知两个非零实数,a b 满足a b >,下列选项中一定成立的是( )(A )22a b > (B )22a b> (C )11a b < (D ) a b > 2.不等式2230x x --<的解集是( )A.()3,1- B.()1,3- C.()(),13,-∞-+∞ D.()(),31,-∞-+∞3.已知{}n a 是等比数列,21,441==a a ,则公比=( )A 、21-B 、C 、2D 、214.在△ABC 中,=2,b=6,C=60°,则三角形的面积S=( ) A .3 B.23 C.36 D.6 5.不等式02>-yx 表示的平面区域(阴影部分)为( )6.设等差数列{}n a 的前项和为,若7662a a +=,则的值是( )A .18B .36C .54D .727.若变量,x y 满足条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最小值为( )A.52-B.0C.53D.528.如图,塔AB 底部为点,若,C D 两点相距为100m 并且与点在同一水平线上,现从,C D 两点测得塔顶的仰角分别为和,则塔AB 的高约为(精确到0.1m1.73≈1.41≈)m.( )A. 36.5B.115.6C.120.5D. 136.59.在ABC ∆中,内角、、所对的边分别是、、,若222222c a b ab =++,则ABC ∆是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形10.函数()x x y 383-=(380≤≤x )的最大值是( )A 、 0B 、34C 、4D 、1611.当5n =时,执行如图所示的程序框图,输出的值为 A.2 B.4 C.7 D.1112.已知数列{}n a 中,()243,111≥∈+==*-n N n a a a n n 且,则数列{}n a 通项公式为 ( ) A .13n - B .138n +- C .32n - D .二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.)13.不等式212≥++x x 的解集是__________. .14.设等差数列{}n a 满足115=a ,312-=a ,{}n a 的前项和的最大值为,则lg M =__________.15.若(1,)x ∈+∞,则21y x x =+-的最小值是__________. .16.已知数列{}n a 的首项11a =,且满足11(2)n nn n a a a a n---=≥,则__________.三、解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.)17. (本小题满分10分)已知关于的不等式).(042R k kx x ∈>+-(1)当5=k 时,解该不等式;(2)若不等式对一切实数恒成立,求的取值范围.18.(本小题满分12分)在C ∆AB 中,角,,所对的边分别为,,,且满足cosC sin 0c -A =.(1)求角的大小;(2)已知4b =,C ∆AB 的面积为19.(本小题满分12分)已知等比数列{}n a 的公比1q >,,是方程2320x x -+=的两根.(1)求数列{}n a 的通项公式;(2)求数列{}2n n a ⋅的前项和n S .。
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
四川省广安第二中学校高2016级2018年春第二次月考理科数学试题及答案一、选择题(共12小题,每小题5分, 共60分。
每个小题给出的四个选项中只有一项是符合题目要求的)1.已知函数,则()A. B. C. D.【答案】A【解析】【分析】求导,将代入即可求出..【详解】已知函数则故选A.【点睛】本题考查函数在一点处的导数的求法,属基础题.2.已知复数(是虚数单位)是纯虚数,则实数()A. B. C. D.【答案】A【解析】【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求解.【详解】为纯虚数,,即.故选A..【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A. 1B.C.D.【答案】B【解析】本题考查古典概型..把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,基本事件的数是第二次抛出的也是偶数点包含的基本事件个数为则所求概率为故选B4.已知随机变量服从正态分布,且,则的值等于()A. 0.5B. 0.2C. 0.3D. 0.4【答案】D【解析】试题分析:因为随机变量服从正态分布,所以其正态曲线关于直线对称,如图,又因为,由对称性得,从而有:,故选D.考点:正态分布.5.设随机变量X服从二项分布,则函数存在零点的概率是( )A. B. C. D.【答案】C【解析】【分析】函数存在零点,可得,随机变量服从二项分布,可求.【详解】∵函数存存在零点,∵随机变量服从二项分布,.故选:C.【点睛】本题考查函数的零点,考查随机变量X服从二项分布,属于中档题.6.经过对K2的统计量的研究,得到了若干个观测值,当K2≈6.706时,我们认为两分类变量A、B( )A. 有67.06%的把握认为A与B有关系B. 有99%的把握认为A与B有关系C. 有0.010的把握认为A与B有关系D. 没有充分理由说明A与B有关系【答案】B【解析】【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P(K2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A与B有关系.【详解】依据下表:,∴我们在错误的概率不超过0.01的前提下有99%的把握认为A与B有关系,故选:B.【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.7.如果命题对于成立,同时,如果成立,那么对于也成立。
2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。
人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
高一下学期第二次月考数学(理)试题一、选择题1.1920︒转化为弧度数为( )A. 163B. 323C.163π D. 323π 2.已知角α的终边在射线3y x =-(0x ≥)上,则sin cos αα等于( )A. 310-B. 10-C. 310D. 103.下列说法中正确的是( )A. 数据4、6、6、7、9、4的众数是4B. 一组数据的标准差是这组数据的方差的平方C. 数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半D. 频率分布直方图中各小长方形的面积等于相应各组的频数 4.()641对应的二进制数是( )A. ()211001B. ()210011C. ()210101D. ()2100015.抛掷一枚骰子,记事件A 为“落地时向上的数是奇数”,事件B 为“落地时向上的数是偶数”,事件C 为“落地时向上的数是2的倍数”,事件D 为“落地时向上的数是4的倍数”,则下列每对事件是互斥事件但不是对立事件的是( )A. A 与BB. B 与CC. A 与DD. B 与D6.有两个质地均匀、大小相同的正四面体玩具,每个玩具的各面上分别写有数字1,2,3,4.把两个玩具各抛掷一次,向下的面的数字之和能被5整除的概率为( )A. 116B. 14C. 38D. 127.在函数①cos 2y x =,②cos y x =,③cos 26y x π⎛⎫=+ ⎪⎝⎭,④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为( )A. ①②③B. ①③④C. ②④D. ①③8.已知向量()()1,,3,2a m b ==-,且()a b b +⊥ ,则m =A. 8-B. 6-C. 6D. 89.已知点()1,1A -, ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD方向上的投影为( )A.B. C. - D.10.为了得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需把函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象( )A. 向左平移4π个长度单位 B. 向右平移4π个长度单位 C. 向左平移2π个长度单位 D. 向右平移2π个长度单位11.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A. 7B. 9C. 10D. 1512.下图是某算法的程序框图,则程序运行后输出的结果是( )A. 2B. 3C. 5D. 6二、填空题13.某公司生产三种型号的轿车,产量分别是1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车中抽取48辆进行检验,这三种型号的轿车依次应抽取__________.14.已知tan 2θ=,则22sin sin cos 2cos θθθθ+-的值为__________.15.已知()1,3A , ()4,1B -,则与向量AB共线的单位向量为__________.16.用秦九韶算法计算多项式()234561235879653f x x x x x x x =+-++++在4x =-时的值时, 3V 的值为__________.三、解答题17.已知2x ≤,2y ≤,点(,)P x y .(1)求当,x y R ∈时,点P 满足22(2)(2)4x y -+-≤的概率; (2)求当,x y Z ∈时,点P 满足22(2)(2)4x y -+-≤的概率18.(1)()()()()()()cos 180sin 90tan 360sin 180cos 180cos 270αααααα︒+︒++︒--︒-︒-︒-.(2)(其中α为第二象限角)19.设向量a , b 满足1a b ==及32a b -=(1)求a, b 夹角的大小;(2)求3a b +的值.20.根据科学研究人的身高是具有遗传性的,唐三的身高为1.90m ,他的爷爷的身高1.70m ,他的父亲的身高为1.80m ,他的儿子唐东的身高为1.90m , (1)请根据以上数据画出父(x )子(y )身高的散点图;(2)根据父(x )子(y )身高的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)试根据(2)求出的线性回归方程,预测唐三的孙子唐雨浩将来的身高.(用最小二乘法求线性回归方程系数公式221ˆni i i n nii x y nxy b x nx==-=-∑∑, ˆˆay bx =-)21.某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)40,50, [)50,60…[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.22.已知()()sin f x A x ωϕ=+(0A >, 0ω>, 2πϕ<)的图象的一个对称中心及其相邻的最高点的坐标为()0,0x 和0,22x π⎛⎫+ ⎪⎝⎭.若将函数()f x 的图象向左平移3π个单位后所得的图象关于原点对称. (1)求函数()f x 的解析式;(2)若函数()()1g x f kx =+(0k >)的最小正周期为23π,且当0,3x π⎡⎤∈⎢⎥⎣⎦时方程()g x m =恰有两个不同的解,求实数m 的取值范围.高一下学期第二次月考数学(理)试题【解析】一、选择题1.1920︒转化为弧度数为( )A. 163B. 323C.163π D. 323π 【答案】D【解析】已知180°对应π弧度,则1920︒转化为弧度数为1920321803ππ=. 本题选择D 选项.2.已知角α的终边在射线3y x =-(0x ≥)上,则sin cos αα等于( ) A. 310-B. C. 310D.【答案】A【解析】由题意可得,角终边上的一点为()1,3-,则:3sin cos 10αααα-=====.本题选择A 选项.3.下列说法中正确的是( )A. 数据4、6、6、7、9、4的众数是4B. 一组数据的标准差是这组数据的方差的平方C. 数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半D. 频率分布直方图中各小长方形的面积等于相应各组的频数 【答案】C【解析】由题意可得:数据4、6、6、7、9、4的众数是6,A 说法错误;一组数据的标准差是这组数据的方差的算术平方根,B 说法错误;数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半,C 说法正确; 频率分布直方图中各小长方形的面积等于相应各组的频率,D 说法错误; 本题选择D 选项.4.()641对应的二进制数是( )A. ()211001B. ()210011C. ()210101D. ()210001 【答案】A【解析】()641对应的十进制数是10461625⨯+⨯=,则()641对应的二进制数是()211001。
安徽省天一大联考2017-2018学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2. 下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3. 某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4. 将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()。
江苏省启东中学2017-2018学年度第二学期第二次月考高一数学试题一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1. 若三个数成等差数列,则直线必定经过点____。
【答案】【解析】试题分析:先根据k,﹣1,b三个数成等差数列可得到k,b的关系,然后领x=1可判断y=k+b=﹣2,从而即可得到答案.详解:∵k,﹣1,b成等差数列,∴k+b=﹣2.∴当x=1时,y=k+b=﹣2.即直线过定点(1,﹣2).故答案为:.点睛:本题主要考查等差中项的运用、恒过定点的直线.考查基础知识的综合运用.2. 在△ABC中,角均为锐角,且则△ABC的形状是___.【答案】钝角三角形【解析】试题分析:利用cos(﹣α)=sinα及正弦函数的单调性解之.详解:因为cosA>sinB,所以sin(﹣A)>sinB,又角A,B均为锐角,则0<B<﹣A<,所以0<A+B<,且△ABC中,A+B+C=π,所以<C<π.故答案为:钝角三角形.点睛:本题考查诱导公式及正弦函数的单调性,解决三角函数形状问题常用的方法有:化同名,再由函数的单调性得到两角的关系,或者根据边的关系,由余弦定理得到角的大小,即可得到三角形的形状.3. 与,两数的等比中项是 _______。
【答案】【解析】试题分析:根据等比数列的中项的性质得到详解:与,两数的等比中项是t,则故答案为:.4. 设都是正数,且,则的最小值为________.【答案】16【解析】试题分析:使用基本不等式时,要注意“一正,二定,三相等”,否则就不成立.另外注意使用含绝对值不等式性质的应用.详解:x+y=(x+y)×1=(x+y)×()=1+9+≥10+2=10+2×3=16,当且仅当时取等号,故(x+y)min=16,点睛:本题考查了基本不等式及含绝对值不等式性质的应用,熟练掌握以上知识(特别是等号成立的条件)是解决问题的关键.本题还考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.5. 已知实数满足则的最大值是____.【答案】7【解析】试题分析:根据约束条件画出可行域,得到△ABC及其内部,其中A(5,3),B(﹣1,3),C(2,0).然后利用直线平移法,可得当x=5,y=3时,z=2x﹣y有最大值,并且可以得到这个最大值.详解:根据约束条件画出可行域如图,得到△ABC及其内部,其中A(5,3),B(﹣1,3),C(2,0)平移直线l:z=2x﹣y,得当l经过点A(5,3)时,∴Z最大为2×5﹣3=7.故答案为:7.点睛:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.6. 在△ABC中,若则____。
【答案】【解析】试题分析:(a+b+c)(b+c﹣a)=3bc,展开化为:b2+c2﹣a2=bc.再利用余弦定理即可得出.详解:∵(a+b+c)(b+c﹣a)=3bc,∴(b+c)2﹣a2=3bc,化为:b2+c2﹣a2=bc.∴cosA=,∵A∈(0,π),∴A=60°.故答案为:.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.7. 点到直线的距离等于4,且在不等式表示的平面区域内,则点的坐标是____.【答案】【解析】试题分析:根据点到直线的距离公式表示出P点到直线4x﹣3y+1=0的距离,让其等于4列出关于a的方程,求出a的值,然后又因为P在不等式2x+y﹣3<0所表示的平面区域内,如图阴影部分表示不等式2x+y﹣3<0所表示的平面区域,可判断出满足题意的a的值,即得点P的坐标.详解:点P到直线4x﹣3y+1=0的距离d=,则4a﹣8=20或4a﹣8=﹣20,解得a=7或﹣3,因为P点在不等式2x+y﹣3<0所表示的平面区域内,如图.根据图象可知a=7不满足题意,舍去.所以a的值为﹣3,则点P的坐标是(﹣3,3),故答案为:(﹣3,3).点睛:考查学生灵活运用点到直线的距离公式化简求值,理解二元一次不等式表示的平面区域,会利用数形结合的数学思想解决实际问题.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值;注意解答本题时不要忽视斜率不存在的情形.8. 若不等式有唯一解,则的取值为___。
【答案】2【解析】试题分析:结合二次函数的性质知,不等式0≤x2﹣ax+a≤1有唯一解可化为x2﹣ax+a=1有唯一解,从而解得.详解:∵不等式0≤x2﹣ax+a≤1有唯一解,∴x2﹣ax+a=1有唯一解,即△=a2﹣4(a﹣1)=0;即a2﹣4a+4=0,解得,a=2,故答案为:2.点睛:本题考查了二次函数与二次不等式的关系应用,属于基础题,解一元二次不等式,经常会和二次函数的图像结合,需要考虑的有:二次函数的二次项系数,两根关系等.9. 在锐角△ABC中,若,则边长的取值范围是_________。
【答案】【解析】试题分析:要使的三角形是一个锐角三角形,只要使得可以作为最大边的边长的平方小于另外两边的平方和,解出不等式组,根据边长是一个正值求出结果.详解:∵a=2,b=3要使△ABC是一个锐角三角形∴要满足32+22>c2,22+c2>32,∴5<c2<13∴c的范围是故答案为:.点睛:本题主要考查了余弦定理的运用.余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题.10. 已知三角形的三边构成等比数列,它们的公比为,则的取值范围是 ___。
【答案】【解析】试题分析:依题意,设三角形的三边分别为a,aq,aq2,利用任意两边之和大于第三边即可求得q的取值范围.详解:依题意,设三角形的三边分别为a,aq,aq2,则解①得:④,解②得:q∈R;⑤解③得:q>或q<-;⑥由④⑤⑥得:<q<.故答案为:.点睛:本题考查等比数列的性质,考查解不等式组的能力,属于中档题.解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律.11. 设实数满足,则的取值范围是___________。
【答案】【解析】试题分析:先对x2+2xy﹣1=0进行化简变形得(x+y)2=1+y2≥1,然后解不等式即可求出所求.详解:∵x2+2xy﹣1=0∴(x+y)2=1+y2≥1则x+y≥1或x+y≤﹣1故x+y的取值范围是(﹣∞,﹣1]∪[1,+∞)故答案为:(﹣∞,﹣1]∪[1,+∞)点睛:本题考查了配方法的运用,以及不等式的求解,同时考查了转化与划归的思想,属于基础题.解决二元问题常用的方法有:二元化一元,均值不等式,线性规划等方法.12. 已知数列满足,且,其前n项之和为S n,则满足不等式的最小自然数n是 ___.【答案】7【解析】试题分析:首先根据题意,将3a n+1+a n=4变形为3(a n+1﹣1)=﹣(a n﹣1),可得{a n﹣1}是等比数列,结合题意,可得其前n项和公式,进而可得|S n﹣n﹣6|=6×(﹣)n;依题意,有|S n﹣n﹣6|<,解可得答案.详解:根据题意,3a n+1+a n=4,化简可得3(a n+1﹣1)=﹣(a n﹣1);则{a n﹣1}是首项为a n﹣1=8,公比为﹣的等比数列,进而可得S n﹣n=(a1﹣1)+(a2﹣1)+…+(a n﹣1)==6[1﹣(﹣)n],即|S n﹣n﹣6|=6×(﹣)n;依题意,|S n﹣n﹣6|<,即(﹣)n<,且n∈N*,分析可得满足不等式|S n﹣n﹣6|<的最小正整数n是7.故答案为:7.点睛:本题考查数列的应用,解题时注意将3a n+1+a n=4转化为3(a n+1﹣1)=﹣(a n﹣1),进而利用等比数列的相关性质进行解题,数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.13. 以下四个命题中, 正确命题的个数是_________.①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A, B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.【答案】1【解析】试题分析:对于①可利用反证法进行说明,而②从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确了,根据共面不具有传递性可判定③的正确性,对于④,空间四边形的四个定点就不共面即可判定是假命题.详解:正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;③不正确,共面不具有传递性,若直线a、b共面,直线a、c共面,则直线b、c可能异面;④不正确,因为此时所得的四边形四条边可以不在一个平面上,空间四边形的四个定点就不共面.故答案为:1.点睛:本题主要考查了平面的基本性质及推论,是高考中常见的题型,往往学生忽视书本上的基本概念,值得大家注意.对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断;还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.14. 已知等差数列首项为,公差为,等比数列首项为,公比为,其中都是大于1的正整数,且,对于任意的,总存在,使得成立,则_______.【答案】【解析】试题分析:∵,,∴,又∵,且,∴,∵对于任意的,总存在,使得成立,∴令,得,又∵,∴,∴.考点:数列与不等式的综合运用.【思路点睛】解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解.二、解答题:本大题共6小题,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平面直角坐标系中,已知平行四边形的三个顶点坐标:.⑴.求边所在直线的方程;⑵.证明平行四边形为矩形,并求其面积.【答案】(1);(2).【解析】试题分析:(1)由于平行四边形ABCD的对边平行,故求边CD所在直线的方程即为求过C与AB平行的直线;(2)由于AB的斜率,与BC的斜率之积为﹣1,故平行四边形ABCD 为为矩形,再由两点间的距离公式即可求其面积.详解:⑴. 两点的斜率,,∴,又因直线过点,∴所在直线的方程为:,即.⑵. 两点的斜率,,∴,平行四边形为矩形,可求,故矩形的面积点睛:本题考查了直线的方程形式,以及两点间的距离公式,属于基础题.一般这类题目考查点有:已知两直线的位置关系,可求两直线的方程,再通过两直线的距离公式和点线距离公式得到相应的结果.16. 设锐角三角形的内角、、的对边分别为、、,.(Ⅰ)求的大小;(Ⅱ)若,,求.【答案】(1);(2).【解析】试题分析:(1)由于锐角△ABC中,a=2bsinA,利用正弦定理将等式两边的边化成相应角的正弦即可;(2)由(1)得B=30°,又,c=5,利用余弦定理可求得b,试题解析:(1)由a=2bsinA,得sinA=2sinBsinA,所以sinB=.由△ABC为锐角三角形,得B=.(2)根据余弦定理,得b2=a2+c2-2acosB=27+25-45=7,所以b=.---6分考点:正余弦定理解三角形17. 设是等差数列{的前n项的和,已知=7,=75,为数列{}的前n项的和,求【答案】【解析】试题分析:根据等差数列的前n项和公式,再结合条件S7=7,S15=75进而可求出首项a1和公差d,可求s n,进而可求||,讨论当n≤5,n>6,两种情况,结合等差数列的求和公式即可求解.详解:(1)设等差数列{a n}的公差为d,则,,解得:a1=﹣2,d=1,∴,||=||,n≤5,||=﹣+,数列{||}是2为首项,﹣为公差的等差数列,T n==n﹣n,T5=5,当n≥6,T n=++…﹣﹣…﹣,T n=2T5﹣T n=n2﹣n+10,∴T n=.点睛:本题主要考查了等差数列的前n 项和的求解,属常考题,较难.解题的关键是求出首项a1和公差d以及熟记差数列的前n项和公式,讨论<0,n的取值,属于中档题,数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.18. 如图,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)在平面A1BD内找到和B1D1平行的直线BD即可.利用线线平行来推线面平行;(2)先利用条件BB1⊥AC和BD⊥AC证得AC⊥面BB1D,再证明MD⊥AC即可;(3)因为棱BB1上最特殊的点是中点,所以先看中点.取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,⇒BN⊥DC⇒面ABCD⊥面DCC1D1,⇒BN⊥面DCC1D1.而又可证得BN∥OM,所以可得OM⊥平面CC1D1D⇒平面DMC1⊥平面CC1D1D.详解:(1)证明:由直四棱柱,得BB1∥DD1且BB1=DD1,所以BB1D1D是平行四边形,所以B1D1∥BD.而BD⊂平面A1BD,B1D1⊄平面A1BD,所以B1D1∥平面A1BD.(2)证明:因为BB1⊥面ABCD,AC⊂面ABCD,所以BB1⊥AC,又因为BD⊥AC,且BD∩BB1=B,所以AC⊥面BB1D,而MD⊂面BB1D,所以MD⊥AC.(3)当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM.因为N是DC中点,BD=BC,所以BN⊥DC;又因为DC是面ABCD与面DCC1D1的交线,而面ABCD⊥面DCC1D1,所以BN⊥面DCC1D1.又可证得,O是NN1的中点,所以BM∥ON且BM=ON,即BMON是平行四边形,所以BN∥OM,所以OM⊥平面CC1D1D,因为OM⊂面DMC1,所以平面DMC1⊥平面CC1D1D.点睛:本题考查平面和平面垂直的判定和性质.在证明面面垂直时,其常用方法是在其中一个平面内找两条相交直线和另一平面内的某一条直线垂直,或者可以通过建系的方法求两个面的法向量使得两个面的法向量互相垂直即可.19. 已知数列满足,它的前项和为,且,.(Ⅰ)求;(Ⅱ)已知等比数列满足,,设数列的前项和为,求.【答案】(1) ;(2) ;当时,.【解析】试题分析:(1)由2a n+1=a n+a n+2判断出数列{a n}是等差数列,将a3=5,S6=36用基本量表示得到关于首项、公差的方程组,求出首项、公差,利用等差数列的通项公式求出a n;(2)将b1+b2=1+a,b4+b5=a3+a4两个式子作商求出公比,利用等比数列的通项公式求出通项,由于a nb n=(2n﹣1)a n﹣1.所以利用错位相减的方法求出数列{a n•b n}的前n项和为T n.详解:(1)由2a n+1=a n+a n+2得a n+2﹣a n+1=a n+1﹣a n,则数列{a n}是等差数列.∴⇒因此,a n=2n﹣1.(2)设等比数列{b n}的公比为q,∵=,∴q=a.由b1+b2=1+a,得b1(1+a)=1+a.∵a≠﹣1,∴b1=1.则b n=b1q n﹣1=a n﹣1,a n b n=(2n﹣1)a n﹣1.T n=1+3a+5a2+7a3+…+(2n﹣1)a n﹣1…①当a≠1时,aT n=a+3a2+5a3+7a4+…+(2n﹣1)a n…②由①﹣②得(1﹣a)T n=1+2a+2a2+2a3+…+2a n﹣1﹣(2n﹣1)a n=,.当a=1时,T n=n2.点睛:求数列前n项和问题,应该先求出数列的通项,然后选择合适的求和方法进行计算.注意若等比数列的公比是字母,要分类讨论;数列求和常用法有:错位相减,裂项求和,分组求和等.20. 设数列满足:,且当时,(Ⅰ)比较与的大小,并证明你的结论;(Ⅱ)若,其中,证明:(注:)【答案】(1)见解析;(2)见解析.详解:(Ⅰ)由于,则,∴,∴(Ⅱ)由于,由(Ⅰ)>0,则,,而,则,∴又∴,∴,而,且,故∴,因此,从而点睛:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.。