八上《1.3勾股定理的应用》word教案 (2)——【北师大版初中数学 精】
- 格式:docx
- 大小:722.26 KB
- 文档页数:9
北师大版八年级数学上册:1.3《勾股定理的应用》教案一. 教材分析《勾股定理的应用》是北师大版八年级数学上册第一章第三节的内容。
本节课主要让学生掌握勾股定理在实际问题中的应用,培养学生的解决问题的能力。
教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探索直角三角形斜边与两直角边的关系,从而引入勾股定理。
学生通过观察、实验、猜想、验证等过程,体验数学的探索乐趣,提高解决问题的能力。
二. 学情分析学生在七年级已经学习了直角三角形的性质,对直角三角形的边长关系有一定了解。
但勾股定理的应用涉及实际问题,对学生来说是一个新的挑战。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解勾股定理的含义,掌握勾股定理在直角三角形中的应用。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的合作、交流、探究能力,体验数学探索的乐趣。
四. 教学重难点1.重难点:勾股定理的应用。
2.难点:如何将实际问题转化为勾股定理的形式,求解问题。
五. 教学方法1.采用问题驱动法,引导学生探究勾股定理的应用。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.采用启发式教学法,教师提问、学生回答,激发学生的思维。
4.利用多媒体辅助教学,展示勾股定理的应用实例。
六. 教学准备1.准备相关课件、教学素材。
2.设计好教学问题,准备好答案。
3.安排好教学过程中的各个环节。
七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的动画故事,引导学生了解勾股定理的背景。
同时,提问学生:“你们认为直角三角形的斜边与两直角边有什么关系?”2.呈现(10分钟)教师提出一组实际问题,如:“一个直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
”让学生尝试解决。
学生在解决过程中,发现无法直接运用已知的直角三角形性质解决问题,从而引出勾股定理。
3.操练(10分钟)教师提出多个关于勾股定理的应用问题,让学生在小组内讨论、交流,共同解决。
1.3 勾股定理的应用教学目标:1. 经历运用勾股定理及其逆定理解决实际问题的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2. 掌握勾股定理及其逆定理和他的简单应用重点难点:重点: 能熟练运用勾股定理及其逆定理解决实际问题难点:熟练运用勾股定理及其逆定理解决实际问题课前准备:制作一个圆柱,剪刀教法及学法指导:互动式教学教学过程复习1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:c 2=a 2+b 2(c 为斜边)。
2.勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。
注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。
讲授新课如图所示,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,沿圆柱侧面爬行的最短路程是多少?(n 的值取3)(l )自己做一个圆柱,尝试从A 点到B 最短呢?(2)如图所示,将圆柱侧面剪开展成一个长方形,从l 点到B 点的最短路线是什么?你画对了吗?(3)蚂蚁从A 点出发,想吃到B 点上的食物,它沿圆柱侧面爬行的最短路程是多少? 做一做李叔叔想要检测雕塑底座正面的AD 边和BC 边是否分别垂直于底边AB ,但池随身只带了卷尺.(l )你能替他想办法完成任务吗?(2)李叔叔量得 AD 长是 30厘米,AB 长是40厘米,BD 长是50厘米. AD 边垂直于AB 边吗? A BB(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直干AB边吗?BC边与AB边呢?课堂练习1.甲、乙两位探险者到沙漠进行探险.某日里晏8:00甲先出发,他以6千米”时的速度向东行走.1时后乙出发.他以5千米/时的速度向北行进.上午10:00,甲、乙二人相距多远!2.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少?课堂小结1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
1.3 勾股定理的应用一.教学目标:1.知识与技能(1)利用勾股定理及逆定理解决生活中的实际问题。
(2)通过观察图形,探索图形间的关系,发展学生的空间观念.2.过程与方法在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3.情感、态度与价值观在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.二.教学重点:探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决实际问题.三.教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理解决实际问题。
四.学情分析:本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动.学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.五.教学方法:引导——探究——归纳六.教具准备:多媒体,矩形纸片做成的圆柱等模型七.教学过程:(一)情境引入德国天文学家开普勒曾经说过“几何学中有两大宝藏”,一个是黄金分割,另一个就是勾股定理,并被无数人论证,由此可见勾股定理的重要性。
然后引导大家复习勾股定理及逆定理的内容。
(学生回答,教师板书)我们还知道许多科学家为了探寻其他星球上的生命,向宇宙发射很多信号,我国数学家华罗庚曾提议向宇宙发射勾股定理的图形,并说如果宇宙中有文明人,他们一定会认识这种图形“语言”的,由此可见勾股定理非常重要。
那么,它在我们的实际生活中到底有什么广泛的应用呢?下面,就让我们漫步走进勾股定理的世界,一起来用这种大自然共同的“语言”来解决实际问题吧!(由此引入课题:勾股定理的应用。
教师板书)(二)合作探究下面,我们通过几个例题来探究勾股定理的应用。
例1. 如图所示,有一个圆柱,它的高是12cm,底面上圆的周长等于18cm ,在圆柱下底面的点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B处的食物,沿圆柱侧面爬行到B 点,求其爬行的最短路程是多少?析:学生活动:学生分为2人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。
# 1.3.2 勾股定理的应用(教案)一、教学目标•了解勾股定理的概念和应用•掌握勾股定理的运用方法•能够解决与勾股定理相关的问题二、教学内容•勾股定理的定义•勾股定理的应用实例•针对勾股定理的解题方法三、教学重难点重点: - 勾股定理的运用方法 - 针对勾股定理题目的解题思路难点: - 针对实际问题应用勾股定理的思考四、教学过程1.引入(5分钟)–老师通过导入相关理论知识概念,引起学生的兴趣和思考,例如:勾股定理的故事和历史背景等。
2.理论讲解(15分钟)–老师以PPT或黑板为媒介,讲解勾股定理的定义和相关公式推导过程,注重结论的解释和实例的导入。
3.应用实例分析(20分钟)–老师以实际应用问题为例,引导学生分析如何利用勾股定理解决问题,让学生思考和讨论解题思路。
4.解题方法讲解(15分钟)–老师总结出针对勾股定理题目的解题方法,并通过典型例题向学生展示具体的解题步骤和思路。
5.练习和巩固(20分钟)–学生个人或小组完成一系列勾股定理的练习题,巩固所学的知识和解题方法。
6.提问和讨论(10分钟)–老师针对难点和易错点进行提问和解答,鼓励学生积极参与讨论和答题,增强国际互动。
7.课堂总结(5分钟)–老师让学生回顾和总结本节课所学的重点和难点,帮助学生形成对勾股定理应用的深入理解。
五、课后作业1.完成课堂练习题2.思考如何将勾股定理应用到其他实际问题中,并写出解题思路六、教学反思本节课通过引入激发学生兴趣、理论讲解、应用实例分析、解题方法讲解、练习巩固和提问讨论等多种教学手段,全面提高学生对勾股定理的理解和应用能力。
同时,在课后作业中引导学生思考拓展,进一步加深对勾股定理的理解。
针对学生的不同水平和能力,教师可以适当调整练习题的难度和复杂度,帮助学生达到巩固知识和拓展思维的目的。
1.3 勾股定理的应用教学设计-北师大版八年级数学上册一、教学目标1.理解勾股定理的概念与基本原理;2.掌握通过勾股定理求解直角三角形的边长问题;3.能够应用勾股定理解决实际问题;4.培养学生的逻辑思维与问题解决能力。
二、教学准备1.教师准备:课本、教学演示工具、白板、黑板等;2.学生准备:学习用具,包括笔、纸、数学试题等。
三、教学过程1. 导入与承前启后(5 分钟)在开始本节课的教学内容之前,先通过提问的方式回顾上一节课所学习的直角三角形的概念及性质,引导学生复习已掌握的知识。
2. 新知引入(10 分钟)2.1 引入勾股定理通过简单的例子引入勾股定理的概念,例如:在直角三角形 ABC 中,已知 AC = 3 cm,BC = 4 cm,问 AB 等于多少?教师可在黑板上绘制一个直角三角形 ABC,并标出各边的长度。
然后,告诉学生通过计算可以得出 AB = 5 cm。
引导学生思考如何通过现有的信息进行计算。
2.2 归纳勾股定理在学生们尝试计算的过程中,教师引导学生发现并总结计算 AB 的规律或算法。
然后,引入勾股定理的概念,解释其原理和表达方式。
勾股定理:在直角三角形中,直角边的平方等于其他两边平方的和,即a2+b2=c2。
2.3 讨论勾股定理的逆定理引导学生思考对于一个已知直角三角形,如果已知两个边长,如何求解第三边的长度。
教师引导学生通过举例讨论,结合勾股定理的原理,总结出逆定理。
逆定理:在直角三角形中,如果已知两个边长,通过勾股定理可以求解第三边长。
即c2−b2=a2或c2−a2=b2。
3. 拓展应用(30 分钟)3.1 解决直角三角形的边长问题教师提供一系列的直角三角形问题,要求学生通过勾股定理求解。
通过板书或投影展示问题,可以帮助学生更好地理解问题并进行解答。
例如: - 已知一个直角三角形的斜边和一条直角边的长度,如何求解另一条直角边的长度? - 已知一个直角三角形的两条直角边的长度,如何求解斜边的长度? - …教师可根据学生的掌握情况,适度调整问题的难度,并引导学生运用勾股定理灵活解答。
八年级数学上册1.3勾股定理的应用教学设计(新版北师大版)一. 教材分析勾股定理是数学中的重要定理之一,它揭示了直角三角形三边之间的数量关系。
本节课的教学内容是北师大版八年级数学上册1.3勾股定理的应用,主要包括勾股定理的证明和应用。
教材通过丰富的例题和练习题,帮助学生理解和掌握勾股定理,并能够运用勾股定理解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了直角三角形的性质、勾股定理的初步知识,对数学几何有一定的基础。
但部分学生可能对勾股定理的理解不够深入,难以将理论知识应用于实际问题中。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和辅导。
三. 教学目标1.知识与技能:让学生理解和掌握勾股定理,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、分析、推理等方法,培养学生解决几何问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:理解和掌握勾股定理,能够运用勾股定理解决实际问题。
2.难点:将勾股定理应用于实际问题中,灵活运用定理解决复杂问题。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察、分析和推理,让学生在实际问题中体验勾股定理的应用。
2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习兴趣。
3.合作学习法:分组讨论和解答问题,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教学课件:制作勾股定理的应用实例和练习题课件。
2.教学素材:准备一些实际的勾股定理应用问题,用于课堂练习和拓展。
3.教学工具:直尺、三角板等几何画图工具。
七. 教学过程1.导入(5分钟)利用一个生活中的实例,如测量房间的面积,引出勾股定理的应用。
让学生思考如何利用勾股定理解决这个问题。
2.呈现(15分钟)介绍勾股定理的定义和证明方法。
通过多媒体课件展示勾股定理的证明过程,让学生直观地理解定理的意义。
1.3 勾股定理的应用
一、依据新课标制定教学重点:本节将利用勾股定理及其逆定理解决一些具体的实际问题.
依据新课标制定教学难点:其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动.
二、教学任务分析
1. 教学目标:
(1).通过观察图形,探索图形间的关系,发展学生的空间观念.
(2).在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
(3).在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.
2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。
3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。
四、教法学法
1.教学方法
引导—探究—归纳
本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:
1
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,顺势教学过程;
(3)利用探索研究手段,通过思维深入,领悟教学过程.
2.课前准备
教具:教材、电脑、多媒体课件.
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.
五、教学过程分析
本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.
第一环节:情境引入
内容:
情景1:多媒体展示:
提出问题:从二教楼到综合楼怎样走最近?
情景2:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,
恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你
们想一想,蚂蚁怎么走最近?
意图:
通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.
效果:
从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基
1
1
础.
第二环节:合作探究
内容:
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
意图:
通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念.
效果:
学生汇总了四种方案:
(1) (2) (3) (4)
学生很容易算出:情形(1)中A →B 的路线长为:,
情形(2)中A →B 的路线长为:
所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA ’剪开圆柱得到矩形,情形(3)A →B 是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.
'AA d +'2
d
AA π+
A
’
A
’
A
’
1
如图:
(1)中A →B 的路线长为:. (2)中A →B 的路线长为:>AB . (3)中A →B 的路线长为:AO +OB >AB . (4)中A →B 的路线长为:AB .
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB ?
在Rt △AA′B 中,利用勾股定理可得,若已知圆柱体高为12cm ,
底面半径为3cm ,π取3,则.
注意事项:本环节的探究把圆柱侧面寻最短路径拓展到了圆柱表面,目的仅仅是让学生感知最短路径的不同存在可能.但这一拓展使学生无法去论证最短路径究竟是哪条.因此教学时因该在学生在圆柱表面感知后,把探究集中到对圆柱侧面最短路径的探究上.
方法提炼:解决实际问题的关键是根据实际问题建立相应的数学模型,解决这一类几何型问题的具体步骤大致可以归纳如下: 1.审题——分析实际问题; 2.建模——建立相应的数学模型; 3.求解——运用勾股定理计算; 4.检验——是否符合实际问题的真实性.
第三环节:做一做
'AA d +''AA A B +2
2
2
'B A A A AB +'=2
2
2
12(33),15AB AB =+⨯∴=。