人教版初中数学7年级下册第9章 不等式与不等式组 同步试题及答案(22页)最新修正版
- 格式:doc
- 大小:280.07 KB
- 文档页数:22
不等式同步练习一、选择题1、若,且c为有理数,则下列各式正确的是()A、 B、 C、 D、2、已知,则下列不等式成立的是()A. B.C.D.3、若,且,则应满足的条件是()A. B. C. D.4、若b<<0,则下列不等式成立的是( )A.一2b<一2 B.< C.b<2<0 D.b2>b>25、下列命题中,假命题的个数是( )①x=2是不等式x+3≥5的解集②一元一次不等式的解集可以只含一个解③一元一次不等式组的解集可以只含一个解④一元一次不等式组的解集可以不含任何一个解A.0个 B.1个 C.2个 D.3个6、不等式的正整数解有()A、1个B、2个C、3个D、无数多个7、若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.3﹣x>3﹣y D.8、不等式的解集在数轴上表示正确的是()9、关于的方程的解为正整数,则整数的值为( )A.2 B.3 C.1或2 D.2或310、不等式的解集是()A. B. C. D.11、若实数a、b、c在数轴上的位置如图所示,则下列不等式成立的是()A.ac>bc; B.ab>cb; C.a+c>b+c; D.a+b>c+b;12、已知数的大小关系如图所示,则下列各式:①;②;③;④;⑤.其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题13、已知a>b,则﹣a+c﹣b+c(填>、<或=).14、不等号填空:若a<b<0 ,则;;.15、一罐饮料净重500克,罐上标注脂肪含量≤0.5%,则这罐饮料中脂肪含量最多克.16、不等式5x﹣2≤7x+1的负整数解为.17、若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.18、判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..三、简答题19、解下列不等式,并把解集在数轴上表示出来:4+3x>6﹣2x.20、当m为何值时,关于x的方程x﹣1=m的解不小于3?21、下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.22、某校组织“环境与健康”知识竞赛,共20道题,选对一道得5分,不选或选错一道扣3分,若得分不低70分才能获奖,那么至少要选对多少道题才可能获奖?23、定义新运算:对于任意实数a,b,都有a b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:25=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)3的值;(2)若3x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.参考答案一、选择题1、D ;2、C ;3、C ;4、D ;5、D;6、A ;7、C;8、A;9、D;10、A;11、B;;12、B ;二、填空题13、∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c.14、>、>、<;15、2.5.16、x=﹣1 .1117、318、√、×、×、√、√、√.三、简答题19、移项、合并同类项,得5x>2,化系数为1,得x>2.5.表示在数轴上为:20、解方程得,x=2m+2,∵方程的解不小于3,∴2m+2≥3,即2m≥1,解得m≥;21、(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x>12两边都除以﹣3,得到x<﹣4.22、设要选对x道题才能获奖,由题意得:5x﹣3≥70解得:x≥16,故x是整数且应取最小值:x=17.答:至少要答对17道题才能获奖.23、(1)11. (2)x>-1 数轴表示如图所示:。
人教版初中数学7年级下册第9章不等式与不等式组同步试题及答案测试1 不等式及其解集学习要求知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集.课堂学习检测一﹨填空题1.用不等式表示:(1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______; (5)a 的2倍比10大______; (6)y 的一半与6的和是负数______; (7)x 的3倍与5的和大于x 的31______; (8)m 的相反数是非正数______.2.画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4.(3)⋅≤51x(4)⋅-<312x二﹨选择题3.下列不等式中,正确的是( ). (A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 4.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-35.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).三﹨解答题6.利用数轴求出不等式-2<x ≤4的整数解.综合﹨运用﹨诊断一﹨填空题7.用“<”或“>”填空:(1)-2.5______5.2;(2)114-______125-; (3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二﹨选择题9.如果a ﹨b 表示两个负数,且a <b ,则( ). (A)1>ba (B)ba <1 (C)ba 11< (D)ab <110.如图,在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a ﹨b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 三﹨判断题13.不等式5-x >2的解集有无数个. ( ) 14.不等式x >-1的整数解有无数个. ( ) 15.不等式32421<<-x 的整数解有0,1,2,3,4. ( ) 16.若a >b >0>c ,则.0>cab( )四﹨解答题17.若a 是有理数,比较2a 和3a 的大小.拓展﹨探究﹨思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为_________. 测试2 不等式的性质学习要求知道不等式的三条基本性质,并会用它们解简单的一元一次不等式.课堂学习检测一﹨填空题1.已知a <b ,用“<”或“>”填空: (1)a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4)2a______2b ; (5)7a -______7b -; (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a .2.用“<”或“>”填空: (1)若a -2>b -2,则a ______b ; (2)若33ba <,则a ______b ; (3)若-4a >-4b ,则a ______b ;(4)22ba -<-,则a ______b .3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y . 二﹨选择题5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 三﹨解答题9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上. (1)x -10<0.(2).62121+->x x(3)2x ≥5.(4).131-≥-x 10.用不等式表示下列语句并写出解集:(1)8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.综合﹨运用﹨诊断一﹨填空题11.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.12.已知a <b <0.用“>”或“<”填空:(1)2a ______2b ; (2)a 2______b 2; (3)a 3______b 3; (4)a 2______b 3; (5)|a |______|b |; (6)m 2a ______m 2b (m ≠0). 13.不等式4x -3<4的解集中,最大的整数x =______. 14.关于x 的不等式mx >n ,当m ______时,解集是m nx <;当m ______时,解集是mn x >. 二﹨选择题15.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1b a b a b a b a <><>④③②① (A)①③ (B)②③ (C)①④(D)②④16.下列命题结论正确的是( ).①若a >b ,则-a <-b ;②若a >b ,则3-2a >3-2b ;③8|a |>5|a |. (A)①②③ (B)②③ (C)③ (D)以上答案均不对 17.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <1 三﹨解答题18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.拓展﹨探究﹨思考19.若m ﹨n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求会解一元一次不等式.课堂学习检测一﹨填空题1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0;(3)若a -b <0,则a ______b ; (4)当x >x +y ,则y ______0. 2.当a ______时,式子152-a 的值不大于-3. 3.不等式2x -3≤4x +5的负整数解为______. 二﹨选择题4.下列各式中,是一元一次不等式的是( ). (A)x 2+3x >1 (B)03<-y x (C)5511≤-x(D)31312->+x x5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三﹨解下列不等式,并把解集在数轴上表示出来 6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.⋅-->+22531x x 9.⋅-≥--+612131y y y四﹨解答题 10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.综合﹨运用﹨诊断一﹨填空题12.若x 是非负数,则5231x-≤-的解集是______. 13.使不等式x -2≤3x +5成立的负整数是______.14.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 二﹨选择题15.下列各对不等式中,解集不相同的一对是(______).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2+x )≥2(2x -1) (D)x x ->+414321与3x >-116.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ). (A)b a 53> (B)a b 53≥ (C)5a =3b (D)5a ≥3b三﹨解下列不等式 17.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4).15)2(22537313-+≤--+x x x(5)).1(32)]1(21[21-<---x x x x(6)⋅->+-+2503.0.02.003.05.09.04.0x x x四﹨解答题18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232xm x x -=--的解是非负数,m 是正整数,求m 的值.20.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.21.已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.拓展﹨探究﹨思考一﹨填空题22.(1)已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______. 二﹨解答题23.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有. 24.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.25.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.测试4 实际问题与一元一次不等式学习要求会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题.课堂学习检测一﹨填空题 1.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______.2.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元﹨2元和3元,这三种环保购物袋每只最多分别能装大米3千克﹨5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元.二﹨选择题3.三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( ).(A)13cm (B)6cm (C)5cm (D)4cm4.商场进了一批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ).(A)900元(B)920元(C)960元(D)980元三﹨解答题5.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?6.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?综合﹨运用﹨诊断一﹨填空题7.若m>5,试用m表示出不等式(5-m)x>1-m的解集______.8.乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,列出的不等式为______.二﹨选择题9.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人(B)3人(C)4人(D)5人10.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km 按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km,那么x的最大值是( ).(A)11 (B)8 (C)7 (D)5三﹨解答题11.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?12.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?拓展﹨探究﹨思考13.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?14.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲﹨乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?测试5 一元一次不等式组(一)学习要求会解一元一次不等式组,并会利用数轴正确表示出解集.课堂学习检测一﹨填空题 1.解不等式组⎩⎨⎧>--<+②①223,423x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-②①21,3212x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.3.用字母x 的范围表示下列数轴上所表示的公共部分:二﹨选择题4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2(C)-4<x <2(D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1 (B)132<<-x(C)32-<x (D)无解三﹨解下列不等式组,并把解集表示在数轴上 6.⎩⎨⎧≥-≥-.04,012x x7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x9.-5<6-2x <3.四﹨解答题10.解不等式组⎪⎩⎪⎨⎧<-+≤+321),2(352x x x x 并写出不等式组的整数解.综合﹨运用﹨诊断一﹨填空题11.当x 满足______时,235x-的值大于-5而小于7. 12.不等式组⎪⎪⎩⎪⎪⎨⎧≤-+<2512,912x x x x 的整数解为______.二﹨选择题13.如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ). (A)x <a (B)x <b(C)b <x <a(D)无解14.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1(D)m ≥1三﹨解答题 15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.拓展﹨探究﹨思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.测试6 一元一次不等式组(二)学习要求进一步掌握一元一次不等式组.课堂学习检测一﹨填空题1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______.2.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是______. 二﹨选择题3.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个 (B)2个(C)3个(D)4个4.若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1(D)1≤k <2三﹨解下列不等式组,并把解集在数轴上表示出来5.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x6.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx7.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x8..234512x x x -≤-≤-综合﹨运用﹨诊断一﹨填空题9.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______. 10.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二﹨解下列不等式组11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x 12.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三﹨解答题13.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.拓展﹨探究﹨思考15.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.课堂学习检测列不等式(组)解应用题1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲﹨乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾? 3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?4.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?综合﹨运用﹨诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.拓展﹨探究﹨思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B板房型号甲种板材乙种板材安置人数A型板房54 m226 m2 5B型板房78 m241 m28问:这参考答案第九章 不等式与不等式组测试11.(1)m -3>0;(2)y +5<0;(3)x ≤2;(4)a ≥0;(5)2a >10; (6)2y +6<0;(7)3x +5>3x ;(8)-m ≤0. 2.3.D . 4.C . 5.A . 6.整数解为-1,0,1,2,3,4.7.(1)>;(2)>;(3)>;(4)>;(5)<;(6)>. 8..4523≥-x 9.A . 10.B . 11.D . 12.D . 13.×. 14.√. 15.√. 16.×.17.当a >0时,2a <3a ;当a =0时,2a =3a ;当a <0时,2a >3a .18.x ≤3a ,且x 为正整数1,2,3. ∴9≤a <12. 19.+3或-3.测试21.(1)<;(2)<;(3)<;(4)<;(5)>;(6)<;(7)>;(8)<.2.(1)>;(2)<;(3)<;(4)>.3.不等式两边加(或减)同一个数(或式子),不等号的方向不变.4.>. 5.C . 6.C . 7.D . 8.D .9.(1)x <10,解集表示为(2)x >6,解集表示为(3)x ≥2.5,解集表示为(4)x ≤3,解集表示为 10.(1)8+2y >0,解集为y >-4. (2)3a -7<0,解集为37<a . 11.(1)>;(2)>;(3)<. 12.(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.13.1. 14.<0;>0. 15.B . 16.D . 17.C .18.(1)x =2;(2)x >2;(3)311<x . 19.∵-m 2-1<0,⋅--<∴12m n x 20.当a >0时,a b x >;当a <0时,ab x <. 测试31.(1)<;(2)>;<;(3)<;(4)<. 2.≤-5.3.-4,-3,-2,-1. 4.D . 5.D . 6.x >-1,解集表示为7.x ≥-3,解集表示为8.x >6,解集表示为9.y ≤3,解集表示为10.413<x 非负整数解为0,1,2,3. 11.x >-8,负整数解为-7,-6,-5,-4,-3,-2,-1.12.0≤x ≤4. 13.-3,-2,-1. 14.a <4. 15.B . 16.D .17.(1)x ≥6. (2)625≤y . (3)y <5. (4)23-≥x . (5)x <-5. (6)x <9.18.57≤x . 19.m ≤2,m =1,2. 20.p >-6. 21.①+②;3(x +y )=2+2m .∵x +y <0.∴2+2m <0.∴m <-1.22.(1)3<a ≤4;(2)-3≤a <-2. 23.(1)2<a ≤3;(2)1.7<a ≤2.24.⋅-<4k k x 25.A -B =7x +7.当x <-1时,A <B ;当x =-1时,A =B ;当x >-1时,A >B .测试41.x >1. 2.8. 3.B . 4.B .5.设原来每天能生产x 辆汽车.15(x +6)>20x .解得x <18,故原来每天最多能生产17辆 汽车.6.设答对x 道题,则6x -2(15-x )>60,解得4111>x ,故至少答对12道题.7.⋅--<mm x 51 8.(10-2)x ≥72-5×2. 9.C . 10.B . 11.设应降价x 元出售商品.225-x ≥(1+10%)×150,x ≤60. 12.设后面的时间每小时加工x 个零件,则250300)32250300(⨯-≥--x ,解得x ≥60. 13.(1)y =-400x +26000, 0≤x ≤20;(2)-400x +26000≥24000, x ≤5, 20-5=15.至少派15人去制造乙种零件.14.(1)1308元;1320元. (2)大于4000份时去乙厂;大于2000份且少于4000份时去甲厂;其余情况两厂均可.测试51..2;21;2-<<-<x x x 2..361;3;61≤≤≤≥x x x 3.(1)x >-1; (2)0<x <2; (3)无解. 4.B . 5.B . 6.421≤≤x ,解集表示为 7.x ≥0,解集表示为8.无解. 9.1.5<x <5.5解集表示为10.-1≤x <3,整数解为-1﹨0﹨1﹨2. 11.-3<x <5. 12.-2,-1,0.13.B . 14.C . 15.-10<x ≤-4,整数解为-9,-8,-7,-6,-5,-4.16.-1<x <4. 17.-721<k <25.(⎩⎨⎧<--=<-=015213,02513k y k x )。
人教版 七年级数学 第9章 不等式与不等式组 同步训练一、选择题1. 一个不等式组的解集在数轴上表示出来如图,则下列符合条件的不等式组为( )A.B. C. D.2. 不等式20x -+≥的解集为A .2x ≥-B .2x ≤-C .2x ≥D .2x ≤3. (2019•宁波)不等式32x x ->的解为 A .1x <B .1x <-C .1x >D .1x >-4. 若关于x 的一元一次不等式组⎩⎨⎧2x -1>3(x -2)x<m的解是x<5,则m 的取值范围是( )A. m ≥5B. m>5C. m ≤5D. m<55. 对于不等式组⎩⎨⎧12x -1≤7-32x 5x +2>3(x -1),下列说法正确的是( ) A. 此不等式组无解B. 此不等式组有7个整数解C. 此不等式组的负整数解是-3,-2,-1D. 此不等式组的解集是-52<x≤26. (2019·广安)若m n >,下列不等式不一定成立的是A .33m n +>+B .33m n -<-C .33m n >D .22m n >2,1x x <⎧⎨>-⎩2,1x x <⎧⎨≥-⎩2,1x x <⎧⎨≤-⎩7. 已知不等式组⎩⎨⎧x>a x≥1的解集是x≥1,则a 的取值范围是( ) A. a<1 B. a ≤1 C. a ≥1 D. a>18. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共几只A .55B .72C .83D .899. (2019·聊城)若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为 A .2m ≤B .2m <C .2m ≥D .2m >10. (2019•呼和浩特)若不等式253x +-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式3(x-1)+5>5x+2(m+x )成立,则m 的取值范围是A .m>-35B .m<-15C .m<-35D .m>-15二、填空题11. 如图,数轴上表示的一个不等式组的解集,这个不等式组的整数解是__________.12. 不等式3x +134>x 3+2的解是________.13. 不等式322x -<-<的正整数解为__________.14. 若关于x ,y 的二元一次方程组的解满足x +y <2,则实数a 的31,33x y a x y +=+⎧⎨+=⎩取值范围为______.15. 不等式组2752312x xxx-<-⎧⎪⎨++>⎪⎩的整数解是.16. (2019•鄂州)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足x+y≤0,则m的取值范围是__________.17. 关于x的一次不等式组x ax b≥⎧⎨≤⎩的解集是a x b≤≤,则a,b的大小关系是.三、解答题18. 某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?19. 某生产小组展开劳动竞赛后,每人每天多做10个零件,这样8个人一天做的零件超过200个;后来改进技术,每人每天又多做27个,这样他们4人一天所做零件就超过劳动竞赛中8人一天所做零件.问他们改进技术后的效率是劳动竞赛前的几倍?20. 已知正数x y z、、满足1126352351124z x y zx y z xy x z y⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩①②③,求x y z、、的大小关系.人教版 七年级数学 第9章 不等式与不等式组 同步训练-答案一、选择题1. 【答案】C2. 【答案】D【解析】移项得:2x -≥-系数化为1得:2x ≤.故选D .3. 【答案】A 【解析】32x x ->,3-x>2x ,3>3x ,x<1,故选A .4. 【答案】A 【解析】解不等式2x -1>3(x -2)得x<5,根据不等式组的解集为x<5可知,利用同小取小可知m ≥5.【易错警示】注意两个不等式的解集有可能相同,即m 可以取5,不要漏掉等号导致错选B.5. 【答案】B 【解析】⎩⎨⎧12x -1≤7-32x ①5x +2>3(x -1) ②,解①得2x≤8,x ≤4,解②得2x >-5,x >-52,所以不等式组的解集是-52<x≤4,所以不等式组的整数解是-2,-1,0,1,2,3,4,共7个,其中负整数解是-2,-1,故选B.6. 【答案】D【解析】A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以-3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n ==-><,,,,故D 正确,故选D .7. 【答案】A 【解析】∵⎩⎨⎧x>a x≥1的解集是x≥1,∴a<1.8. 【答案】C【解析】设该村共有x户,则母羊共有(517)x+只,由题意知,5177(1)0 5177(1)3x xx x+-->⎧⎨+--<⎩,解得:21122x<<,∵x为整数,∴11x=,则这批种羊共有115111783+⨯+=(只),故选C.9. 【答案】A【解析】解不等式1132x x+<--,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选A.10. 【答案】C【解析】解不等式253x+-1≤2-x得:x≤45,∵不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴x<12m-,∴12m->45,解得:m<-35,故选C.二、填空题11. 【答案】-1,0【解析】考查不等式求解和用数轴表示其解集.注意取实心点的条件答案:-1,012. 【答案】x>-3 【解析】3x+134>x3+2,去分母得9x+39>4x+24,移项得5x>-15,系数化为1得x>-3,即不等式的解为x>-3.13. 【答案】1,2,314. 【答案】a<415. 【答案】不等式组的解集为:13x <<,整数解为2;16. 【答案】m≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2. 故答案为:m≤-2.17. 【答案】a b ≤三、解答题18. 【答案】14【解析】设至少还需要B 型车x 辆,依题意得20515300x ⨯+≥解得1133x ≥,∴14x =.19. 【答案】3.3125倍【解析】设劳动竞赛前每人每天做x 个零件, 则有8(10)2004(1027)8(10)x x x +>⎧⎨++>+⎩,解得1517x x >⎧⎨<⎩,因为x 为整数,所以16x = 于是(1637)16 3.3125+÷=,改进技术后的效率是劳动竞赛前的3.3125倍.20. 【答案】y z x <<【解析】对①式同时加一个数z ,对②式同时加一个数x ,对③式同时加一个数y 得1736582371524z x y z zx x y z x y x y z y ⎧<++<⎪⎪⎪<++<⎨⎪⎪<++<⎪⎩,于是17863z x <,即4851z x x <<,所以z x <, 再由732y z <,得67y z z <<,所以y z <,综合得y z x <<.。
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
人教版七年级下册数学第九章不等式与不等式组含答案一、单选题(共15题,共计45分)1、现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为( )A. B. C.D.2、如图,用不等式表示数轴上所示的解集,正确的是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23、若,则关于x的不等式的解集A. B. C. D.4、不等式组的整数解共有6个,则a的解集是()A. B. C. D.5、不等式1+x<0的解集在数轴上表示正确的是()A. B. C. D.6、在数轴上表示不等式x﹣2>0的解集,其中正确的是()A. B. C.D.7、下列用数轴表示不等式的解集正确的是()A. B. C. D.8、不等式组的解集为()A. B. C. D.9、解不等式,下列去分母正确的是()A. B. C.D.10、使得关于 x 的不等式组无解,且使分式方程的解小于 4 的所有整数a 的个数是().A.2B.3C.4D.511、如图,天平右边托盘里的每个砝码的质量都是1kg,则图中显示物体质量的范围是()A.大于2kgB.小于3kgC.大于2kg且小于3kgD.大于2kg或小于3kg12、不等式组的解集在数轴上表示为( )A. B. C. D.13、若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B. C.D.14、若关于x的一元一次不等式组恰有个整数解,那么a的取值范围是()A. B. C. D.15、不等式组的解集是()A. B. C. D.二、填空题(共10题,共计30分)16、若a<b<0,则1﹣a、1﹣b之间的大小关系为:________ (用“<”连接).17、如果不等式的解集为x>1,那么a必须满足________.18、写出一个能使不等式成立的x的值________.19、某药品说明书上标明药品保存的温度是(10±4)℃,设该药品合适的保存温度为t,则温度t的范围是________20、若不等式组有三个整数解,则的取值范围是________.21、已知关于x的不等式(1﹣a)x>3的解集为x<,则a的取值范围是________.22、若不等式-2x<2m+4 与不等式 2x+1>5 有相同的解集,则 m 的值________.23、已知关于x的不等式(-a)x>(-a)的解集为x<1,化简|a-2|-|1-a|=________.24、已知关于x的不等式组的整数解共有4个,则a的取值范围是________25、不等式组的所有整数解是________.三、解答题(共6题,共计25分)26、已知,且x-y<0,求k的取值范围27、为了增加同学们对新冠肺炎防控知识的了解,某班级组织了一次测验,共有15道选择题,评分标准为:答对一道题给2分,答错一道题扣2分,不答题不给分也不扣分.小强同学在答题时除了有2道题不会没有给出答案外,对其它题都给出了答案,若他想让自己的总分不低于16分,那么他至少要答对几道题?28、解不等式:4x﹣2≥2(x+2)29、解不等式,并把它的解集表示在数轴上。
人教版七年级下册数学第九章不等式与不等式组含答案一、单选题(共15题,共计45分)1、若关于x的不等式的解集为,则m的取值范围是()A. B. C. D.2、在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A. B. C. D.3、不等式3x﹣1>x+1的解集在数轴上表示为()A. B. C. D.4、某种品牌奶粉合上标明“蛋白质≥20%”,它所表达的意思是()A.蛋白质的含量是20%B.蛋白质的含量不能是20%C.蛋白质的含量高于20%D.蛋白质的含量不低于20%5、已知关于x的方程2x﹣a=x﹣1的解是非负数,则a的取值范围为()A.a≥1B.a>1C.a≤1D.a<16、若关于x,y的方程组的解满足0<x+y<1,则k的取值范围是( )A.-4<k<0B.-1<k<0C.0<k<8D.k>-47、下列4种说法:①x=是不等式4x-5>0的解;②x=不是不等式4x-5>0的一个解;③x>是不等式4x-5>0的解集;④x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也是它的解集,其中正确的有()A.1个B.2个C.3个D.4个8、不等式4-3x≥2x-6的非负整数解有()A.1 个B.2 个C.3个D.4个9、如图,在数轴上所表示的是哪一个不等式的解集()A. x>-1B. ≥-3C. x+1≥-1D. -2x>410、若关于x的方程a+2x=7x-5的解为负数,则a的范围是 ( )A.a>-5B.a<-5C.a≥-5D.a≤-511、在数轴上表示不等式x -1>0的解集,正确的是()A. B. C.D.12、若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥313、若实数 a 是不等式 2x-1>5 的解,但实数 b 不是不等式 2x-1>5 的解,则下列选项中,正确的是()A.a<bB.a>bC.a≤bD.a≥b14、某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A. B. C. D.15、生物兴趣小组要在温箱里培养A、B两种菌苗.A种菌苗的生长温度x℃的范围是35≤x≤38,B种菌苗的生长温度y℃的范围是34≤y≤36.那么温箱里的温度T℃应该设定在()A.35≤T≤38B.35≤T≤36C.34≤T≤36D.36≤T≤38二、填空题(共10题,共计30分)16、不等式3x≤x+4的非负整数解是________.17、不等式组的最大整数解是________.18、若不等式组无解,则 a 的取值范围是________.19、不等式的解为________.20、不等式x﹣2≤0的解集是________.21、若不等式组有解,则的取值范围是________.22、如图,数轴上所表示关于的不等式组的解集是________.23、若不等式3x-m≤0的正整数解恰好是1、2、3,则m的取值范围是________.24、学校举行百科知识竞赛,共有20道题,规定每答对一题记10分,答错或放弃记-4分.九年级一班代表队的得分目标为不低于88分,则这个队至少要答对________道题才能达到目标要求.25、某种品牌自行车的进价为元,出售时标价为元,商店准备打折出售,但要保持利润率不低于,则至多可打________折.三、解答题(共6题,共计25分)26、解不等式组,并将它的解集在数轴上表示出来.27、解不等式组,把解集表示在数轴上,并求出不等式组的整数解.28、阅读下列材料并解答问题:我们知道的几何意义是在数轴上数对应的点与原点的距离:,也就是说,表示在数轴上数与数0对应点之间的距离;这个结论可以推广为表示在数轴上数和数对应的点之间的距离;例1解方程,容易看出,在数轴上与原点距离为2的点对应的数为,即该方程的解为.例2解不等式,如图,在数轴上找出的解,即到1的距离为2的点对应的数为,3,则的解集为或.例3解方程由绝对值的几何意义知,该方程表示求在数轴上与1和的距离之和为5的对应的的值.在数轴上,1和的距离为3,满足方程的对应的点在1的右边或的左边,若对应的点在1的右边,由下图可以看出;同理,若对应的点在的左边,可得,故原方程的解是或.回答问题:(只需直接写出答案)①解方程②解不等式③解方程29、解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.30、已知不等式-1<6的负整数解是关于x的方程2x-3=ax的解,试求出不等式组的解集.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、D5、A6、A7、A8、C9、C10、B11、A13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
人教版七年级数学下册第九章《不等式与不等式组》章节综合练习一、单选题1.如图,天平左盘中物体A 的质量为mg ,,天平右盘中每个砝码的质量都是1g,则m 的取值范围在数轴上可表示为A .B .C .D .2.a 与-x 2的和的一半是非负数,用不等式表示为()A .212a x -<0B .2102a x -£C .21()2a x ->0D .21()02a x -³3.若ab <,则下列不等式一定成立的是()A .66a b ->-B .33a b >C .22a b -<-D .0a b -<4.关于x 的不等式组1020x x +>⎧⎨-≤⎩,其解集在数轴上表示正确的是().A .B .C .D .5.某次数学竞赛共有20道题,答对一道题得10分,答错或不答均扣5分,小强得分超过95分,他至少要答对()A .12道B .13道C .14道D .15道6.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为()A .1k >B .1k <C .1k ³D .1k ≤7.不等式组13x x ≤⎧⎨>-⎩的解集在数轴上表示正确的是()A .B .C.D.8.对于不等式组156333(1)51x x x x ⎧--⎪⎨⎪-<-⎩,下列说法正确的是()A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<C .此不等式组有3个整数解D .此不等式组无解9.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式为()A .8(x ﹣1)<5x+12<8B .0<5x+12<8xC .0<5x+12﹣8(x ﹣1)<8D .8x <5x+12<810.阅读理解:我们把 a b c d 称作二阶行列式,规定它的运算法则为 a b c d=ad ﹣bc ,例如13 24=1×4﹣2×3=﹣2,如果23 1x x->0,则x 的解集是()A .x >1B .x <﹣1C .x >3D .x <﹣3二、填空题11.如果a >b ,则-ac 2________-bc 2(c ≠0).12.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.13.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.14.若关于x 的不等式组01321x m x ->⎧⎨-≥⎩的所有整数解得和是18,则m 的取值范围是__________.三、解答题15.下列数值:76,73,79,80,74.9,75.1,90,哪些是不等式2150x >的解?你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?16.阅读下面解题过程,再解题.已知a >b ,试比较-2009a +1与-2009b +1的大小.解:因为a >b ,①所以-2009a >-2009b ,②故-2009a +1>-2009b +1.③问:(1)上述解题过程中,从第______步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.17.解下列不等式(组):(1)()3151x x ->+(2)()105232x x x +≥⎧⎨-<+⎩18.列方程组或不等式(组)解应用题某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元.本周已售出2辆A 型车和1辆B 型车,销售额为62万元.(1)求每辆A 型车和B 型车的售价各为多少万元?(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,且A 型号车不少于2辆,购车费不少于130万元,通过计算说明有哪几种购车方案?19.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.将一个“迥异数”个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a .例如:12a =,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为211233+=,和与11的商为33113÷=,所以()123f =.根据以上定义,回答下列问题:(1)填空:①下列两位数:20,21,22中,“迥异数”为________.②计算:()35f =_________,()10f m n +=________.(2)如果一个“迥异数”b 的十位数字是k ,个位数字是()21m +,且()9f b =;另一个“迥异数”c 的十位数字是4m +,个位数字是21k -,且()11f c =,请求出“迥异数”b 和c .(3)如果一个“迥异数”m 的十位数字是x ,个位数字是3x -,另一个“迥异数”n 的十位数字是4x -,个位数字是2,且满足()()7f m f n -<,请直接写出满足条件的所有x 的值________答案1.D 2.D 3.D 4.D 5.C 6.C7.A8.A9.C10.A11.<12.23-113.714.23m ≤<15.76,79,80,75.1,90是不等式2150x >;还有其它的解;该不等式的解有无数个;所有大于75的数均是该不等式的解.16.(1)②(2)错误地运用了不等式的基本性质3(3)-2009a +1<-2009b +1.17.(1)x <-2;(2)-1≤x <4.18.(1)每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(2)共有两种方案:方案一:购买2辆A 型车和4辆B 型车;方案二:购买3辆A 型车和3辆B 型车19.(1)①21;②8;m n +;(2)3665b c ==,;(3)5或7。
人教版初中数学七年级下第九章同步练习__________一、单选题1.若关于x 的不等式组 有四个整数解,则a 的取值范围是( ){2x <3(x -3)+1,3x +24>x +a A. - < a≤ - B. - ≤a < - C. - ≤a≤ - D. - < a < - 114521145211452114522.数轴上点A ,B ,C 分别对应数2021,-1,x ,且C 与A 的距离大于C 与B 的距离,则( )A. B. C. D. x <-1x >2021x <1010x <10113. 解不等式 时,下列去分母正确的是( )1-x -26<2x -13A. B. 6-x -2<2(2x -1)1-x +2<2(2x -1)C. D. 6-x +2<2(2x -1)6-x +2<2x -14.“新冠肺炎”知识竞赛共20道题,每答对一题得10分,答错或不答都扣5分,小颖得分不低于 90 分.设她答对了 x 道题,根据题意可列出的不等式为( )A. 10x﹣5(20﹣x )≥90B. 10x﹣5(20﹣x )>90C. 10x﹣(20﹣x )≥90D. 10x﹣(20﹣x )>905.下列各式中,是一元一次不等式的是( )A. B. C. D. 5+4>82x -12x =5-3x ≥06.在平面直角坐标系中,若点 在第二象限,则 的取值范围为( )B(m -3,m +1)m A. B. C. D. -1<m <3m >3m <-1m >-17.若 ,则下列结论中错误的是( )m <n <0A. B. C. D. m -9<n -9-m >-n 1n >1m m n >18.在满足不等式 的x 取值中,x 可取的最大整数为( )7-2(x +1)>0A. 4 B. 3 C. 2 D. 无法确定9.已知锐角α,钝角β,赵,钱,孙,李四位同学分别计算 的结果,分别为68.5°,22°,14(α+β)51.5°,72°,其中只有一个答案是正确的,那么这个正确的答案是( ) A. 68.5° B. 22° C. 51.5° D. 72°10.若a >b ,则下列各式中一定成立的是( )A. a +2<b +2B. a -2<b -2C. >D. -2a >-2ba 2b 2二、填空题11.若不等式-2x <2m +4 与不等式 2x +1>5 有相同的解集,则 m 的值________.12.不等式组的解集是________. {6-3x ⩾02x <x +413.对于整数a ,b ,c ,d ,符号 表示运算ad﹣bc ,已知1< <3,则bd 的值是________.|a b c d ||1b d 4|14.若不等式组的解集是 ,则m 的取值范围是________. {x +4>2x +1-x >-m x <315.绝对值不大于4的所有整数的积等于________.16.不等式组 的整数解是________.{3x ≤2x -4x -12-1<x +1三、计算题17.解不等式组:{3-x ≥03(1-x)>(1-x)四、解答题18.解不等式: ,并把它的解集在数轴上表示出来.3(x +1)≤5x +7五、综合题19.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[x] .例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a ,其中0≤a <1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]= ________,[-6.5]= ________;(2)如果[x]=3,那么x 的取值范围是________;(3)如果[5x -2]=3x+1,那么x 的值是________;(4)如果x=[x]+a ,其中0≤a <1,且4a= [x]+1,求x 的值.20.列方程解应用题:七年级1班计划购买一批书包和词典作为“迎新知识竞赛”活动奖品,了解到每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)求每个书包和每本词典的价格;(2)若该班计划用900元购买40份(即书包、词典的总数量)奖品,设其中购买了 个书包,请写出m 余下的钱的代数式,当余下的钱为最小值时,问该班购买书包和词典的数量各是多少?21.例:解不等式(x﹣2)(x+3)>0解:由实数的运算法则:“两数相乘,同号得正”得① ,或② ,{x -2>0x +3>0{x -2<0x +3<0解不等式组①得,x >2,解不等式组②得,x <﹣3,所以原不等式的解集为x >2或x <﹣3.阅读例题,尝试解决下列问题:(1)平行运用:解不等式x 2﹣9>0;(2)类比运用:若分式 的值为负数,求x 的取值范围.x +1x -222.沅陵一中有360张旧课桌需维修,经过甲、乙两个维修小组的竞标得知,甲组工作效率是乙组的1.5倍,且甲组单独维修完这批旧课桌比乙组单独维修完这批旧课桌少用5天;已知甲组每天需要付工资800元,乙组每天需要付工资400元;(1)求甲、乙两个小组每天各维修多少张旧课桌?(2)学校维修这批旧课桌预算资金不超过7000元,时间不超过12天,请你帮学校算一算有几种维修方案(天数不足1天的按1天算);每种方案需要多少钱?23.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元.(1)求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(2)若小区一次性购买A 型,B 型垃圾桶共60个,要使总费用不超过4000元,最少要购买多少个A 型垃圾桶?24.(1)解不等式: ,并把它的解表示在数轴上. 2x -12>1(2)解不等式组: {3-x 2≤1,3x +2≥ 4.答案解析部分一、单选题1. B解:解不等式2x<3(x-3)+1可得x>8,解不等式可得x<2-4a.3x +24>x +a ∵不等式组有解集,∴8<x<2-4a.∵不等式组有4个整数解,∴整数解为9、10、11、12.∵x<2-4a ,∴12<2-4a≤13,∴.-114≤a <-52 故B.【分析】首先根据一元一次不等式的解法求出不等式组中两个不等式的解集,然后确定出不等式组的解集为8<x<2-4a ,根据不等式组有4个整数解可推出12<2-4a≤13,最后求解关于a 的不等式组即可.2. C数轴上点A ,B ,C 分别对应数2021, ,x ,-1由题意AC>BC ,分三种情况考虑,当点C 在点A 右侧,即x>2021时,由2021>-1则x-2021<x+1即AC<BC 不符合题意,当点C 在点A ,B 之间,则-1≤x≤2021,2021-x>x+1,解得x<1010,当点C 在点B 左侧时,则x<-1,2021>-1,2021-x>-1-x ,综合得出:x<1010.故选择:C .【分析】,分三种情况讨论:当点C 在点A 右侧x>2021 ,当点C 在点A, B 之间-1≤x≤2021 ,当点C 在点B 左侧时, x<-1,利用AC> BC 即可求出结果.3. C解:在不等式中,去分母为1-x -26<2x -136-x +2<2(2x +1).故C .【分析】根据不等式的性质2,在不等式两边乘以6去分母得到结果.4. A设她答对了x 道题,根据题意,得10x−5(20−x )≥90.故A .【分析】小颖答对题的得分: 10x ;小颖答错或不答题的-5( 20-x) ,根据不等关系:小颖得分不低于90分,故可得到不等式.5. D、 中不含有未知数,不是一元一次不等式,故此选项不符合题意;A 5+4>8 、 是代数式,不是一元一次不等式,故此选项不符合题意;B 2x -1 、 是一元一次方程,不是一元一次不等式,故此选项不符合题意;C 2x =5 、 是一元一次不等式,故此选项符合题意.D -3x ≥0故 .D【分析】末知数的次数是1的不等式,叫做一元-次不等式,根据其定义分别判断即可.6. A解:∵点 在第二象限,B(m -3,m +1)∴可得到 ,{m-3<0m +1>0解得 的取值范围为 .m -1<m <3故 .-1<m <3 【分析】由于第二象限内点的坐标符号为负、正,据此列出不等式组,解之即可.7. C解:A 、由m <n ,根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立,故两边减去9,得到:m-9<n-9正确,故此选项不符合题意;B 、不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立,故两边同时乘以-1得到-m >-n 正确,故此选项不符合题意;C 、在m <n <0,若设m=-2, n=-1则 , 故该选项错误,符合题意;1n <1m D 、由m <n <0,根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所以不等式的两边同时除以负数n 得到,故该选项正确,不符合题意.m n >1 故C.【分析】不等式的基本性质:①在不等式两边同加(或减)同一个数(或式子),不等号的方向不变;②在不等式两边同乘(或除以)同一个正数,不等号的方向不变;③在不等式两边同乘(或除以)同一个负数,不等号的方向改变,从而即可一一判断得出答案.8. C解:7-2(x +1)>0∴7-2x -2>0∴-2x >-5< ∴x 52为整数,∵x 可取的最大整数为 ∴x 2.故 C.【分析】解不等式可得x 的范围,并在范围内找出x 的最大整数解即可.9. C解:∵锐角是大于0°小于90°的角,大于直角(90°)小于平角(180°)的角叫做钝角,∴0<α<90°,90°<β<180°,∴22.5°< <67.5°,14(α+β)∴满足题意的角只有51.5°,故C .【分析】根据锐角和钝角的概念进行解答,求出范围,然后做出正确判断。
第九章 不等式与不等式组测试1 不等式及其解集学习要求知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集.课堂学习检测一、填空题1.用不等式表示:(1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______; (5)a 的2倍比10大______; (6)y 的一半与6的和是负数______; (7)x 的3倍与5的和大于x 的31______; (8)m 的相反数是非正数______.2.画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4.(3)⋅≤51x(4)⋅-<312x二、选择题3.下列不等式中,正确的是( ). (A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 4.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-35.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).三、解答题6.利用数轴求出不等式-2<x ≤4的整数解.综合、运用、诊断一、填空题7.用“<”或“>”填空: (1)-2.5______5.2;(2)114-______125-; (3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题9.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>ba (B)ba <1 (C)ba 11< (D)ab <110.如图,在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 三、判断题13.不等式5-x >2的解集有无数个. ( ) 14.不等式x >-1的整数解有无数个. ( ) 15.不等式32421<<-x 的整数解有0,1,2,3,4. ( ) 16.若a >b >0>c ,则.0>cab( )四、解答题17.若a 是有理数,比较2a 和3a 的大小.拓展、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为_________. 测试2 不等式的性质学习要求知道不等式的三条基本性质,并会用它们解简单的一元一次不等式.课堂学习检测一、填空题1.已知a <b ,用“<”或“>”填空: (1)a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4)2a______2b ; (5)7a -______7b -; (6)5a +2______5b +2;(7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.用“<”或“>”填空:(1)若a -2>b -2,则a ______b ; (2)若33ba <,则a ______b ; (3)若-4a >-4b ,则a ______b ;(4)22ba -<-,则a ______b .3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y . 二、选择题5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 三、解答题9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上. (1)x -10<0.(2).62121+->x x(3)2x ≥5.(4).131-≥-x 10.用不等式表示下列语句并写出解集:(1)8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.综合、运用、诊断一、填空题11.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.12.已知a <b <0.用“>”或“<”填空:(1)2a ______2b ; (2)a 2______b 2; (3)a 3______b 3; (4)a 2______b 3; (5)|a |______|b |; (6)m 2a ______m 2b (m ≠0). 13.不等式4x -3<4的解集中,最大的整数x =______. 14.关于x 的不等式mx >n ,当m ______时,解集是m nx <;当m ______时,解集是mn x >. 二、选择题15.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1b a b a b a b a <><>④③②① (A)①③ (B)②③ (C)①④ (D)②④ 16.下列命题结论正确的是( ).①若a >b ,则-a <-b ;②若a >b ,则3-2a >3-2b ;③8|a |>5|a |. (A)①②③ (B)②③ (C)③ (D)以上答案均不对 17.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <1 三、解答题18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.拓展、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求会解一元一次不等式.课堂学习检测一、填空题1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ; (4)当x >x +y ,则y ______0. 2.当a ______时,式子152-a 的值不大于-3. 3.不等式2x -3≤4x +5的负整数解为______. 二、选择题4.下列各式中,是一元一次不等式的是( ). (A)x 2+3x >1 (B)03<-y x (C)5511≤-x(D)31312->+x x5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表示出来 6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1. 8.⋅-->+22531x x 9.⋅-≥--+612131y y y四、解答题 10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.综合、运用、诊断一、填空题12.若x 是非负数,则5231x-≤-的解集是______. 13.使不等式x -2≤3x +5成立的负整数是______.14.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 二、选择题15.下列各对不等式中,解集不相同的一对是(______).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2+x )≥2(2x -1) (D)x x ->+414321与3x >-116.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ). (A)b a 53> (B)a b 53≥ (C)5a =3b (D)5a ≥3b三、解下列不等式 17.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4).15)2(22537313-+≤--+x x x(5)).1(32)]1(21[21-<---x x x x(6)⋅->+-+2503.0.02.003.05.09.04.0x x x四、解答题18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232x m x x -=--的解是非负数,m 是正整数,求m 的值.20.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.21.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.拓展、探究、思考一、填空题22.(1)已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______. 二、解答题23.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有. 24.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.25.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.测试4 实际问题与一元一次不等式学习要求会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题.课堂学习检测一、填空题 1.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______. 2.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 二、选择题3.三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( ).(A)13cm (B)6cm (C)5cm (D)4cm4.商场进了一批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ).(A)900元(B)920元(C)960元(D)980元三、解答题5.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?6.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?综合、运用、诊断一、填空题7.若m>5,试用m表示出不等式(5-m)x>1-m的解集______.8.乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,列出的不等式为______.二、选择题9.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人(B)3人(C)4人(D)5人10.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km 按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km,那么x的最大值是( ).(A)11 (B)8 (C)7 (D)5三、解答题11.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?12.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?拓展、探究、思考13.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件. (1)若此车间每天所获利润为y (元),用x 的代数式表示y .(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?14.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?测试5 一元一次不等式组(一)学习要求会解一元一次不等式组,并会利用数轴正确表示出解集.课堂学习检测一、填空题1.解不等式组⎩⎨⎧>--<+②①223,423x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-②①21,3212x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.3.用字母x 的范围表示下列数轴上所表示的公共部分:二、选择题 4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2(C)-4<x <2(D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x (C)32-<x (D)无解三、解下列不等式组,并把解集表示在数轴上 6.⎩⎨⎧≥-≥-.04,012x x7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x9.-5<6-2x <3.四、解答题10.解不等式组⎪⎩⎪⎨⎧<-+≤+321),2(352x x x x 并写出不等式组的整数解.综合、运用、诊断一、填空题11.当x 满足______时,235x-的值大于-5而小于7. 12.不等式组⎪⎪⎩⎪⎪⎨⎧≤-+<2512,912x x x x 的整数解为______.二、选择题13.如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ).(A)x <a (B)x <b(C)b <x <a(D)无解14.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2(C)m ≤1(D)m ≥1三、解答题 15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.拓展、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.测试6 一元一次不等式组(二)学习要求进一步掌握一元一次不等式组.课堂学习检测一、填空题1.直接写出解集: (1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______.2.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是______.二、选择题 3.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个 (B)2个(C)3个(D)4个4.若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1 (D)1≤k <2三、解下列不等式组,并把解集在数轴上表示出来5.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x6.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx7.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x8..234512x x x -≤-≤-综合、运用、诊断一、填空题9.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______.10.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x12.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题13.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.拓展、探究、思考15.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.课堂学习检测列不等式(组)解应用题1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?4.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?综合、运用、诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.拓展、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B问:这400间板房最多能安置多少灾民?参考答案第九章 不等式与不等式组测试11.(1)m -3>0;(2)y +5<0;(3)x ≤2;(4)a ≥0;(5)2a >10; (6)2y +6<0;(7)3x +5>3x;(8)-m ≤0. 2.3.D . 4.C . 5.A . 6.整数解为-1,0,1,2,3,4. 7.(1)>;(2)>;(3)>;(4)>;(5)<;(6)>. 8..4523≥-x 9.A . 10.B . 11.D . 12.D . 13.×. 14.√. 15.√. 16.×. 17.当a >0时,2a <3a ;当a =0时,2a =3a ;当a <0时,2a >3a . 18.x ≤3a,且x 为正整数1,2,3. ∴9≤a <12. 19.+3或-3.测试21.(1)<;(2)<;(3)<;(4)<;(5)>;(6)<;(7)>;(8)<. 2.(1)>;(2)<;(3)<;(4)>.3.不等式两边加(或减)同一个数(或式子),不等号的方向不变. 4.>. 5.C . 6.C . 7.D . 8.D . 9.(1)x <10,解集表示为(2)x >6,解集表示为(3)x ≥2.5,解集表示为(4)x ≤3,解集表示为10.(1)8+2y >0,解集为y >-4. (2)3a -7<0,解集为37<a . 11.(1)>;(2)>;(3)<. 12.(1)<;(2)>;(3)<;(4)>;(5)>;(6)<. 13.1. 14.<0;>0. 15.B . 16.D . 17.C .18.(1)x =2;(2)x >2;(3)311<x . 19.∵-m 2-1<0,⋅--<∴12m nx20.当a >0时,a b x >;当a <0时,ab x <. 测试31.(1)<;(2)>;<;(3)<;(4)<. 2.≤-5. 3.-4,-3,-2,-1. 4.D . 5.D . 6.x >-1,解集表示为7.x ≥-3,解集表示为8.x >6,解集表示为9.y ≤3,解集表示为10.413<x 非负整数解为0,1,2,3. 11.x >-8,负整数解为-7,-6,-5,-4,-3,-2,-1.12.0≤x ≤4. 13.-3,-2,-1. 14.a <4. 15.B . 16.D . 17.(1)x ≥6. (2)625≤y . (3)y <5. (4)23-≥x . (5)x <-5. (6)x <9. 18.57≤x . 19.m ≤2,m =1,2. 20.p >-6. 21.①+②;3(x +y )=2+2m .∵x +y <0.∴2+2m <0.∴m <-1. 22.(1)3<a ≤4;(2)-3≤a <-2. 23.(1)2<a ≤3;(2)1.7<a ≤2. 24.⋅-<4k k x 25.A -B =7x +7.当x <-1时,A <B ;当x =-1时,A =B ;当x >-1时,A >B .测试41.x >1. 2.8. 3.B . 4.B .5.设原来每天能生产x 辆汽车.15(x +6)>20x .解得x <18,故原来每天最多能生产17辆 汽车. 6.设答对x 道题,则6x -2(15-x )>60,解得4111>x ,故至少答对12道题. 7.⋅--<mmx 51 8.(10-2)x ≥72-5×2. 9.C . 10.B . 11.设应降价x 元出售商品.225-x ≥(1+10%)×150,x ≤60. 12.设后面的时间每小时加工x 个零件,则250300)32250300(⨯-≥--x ,解得x ≥60. 13.(1)y =-400x +26000, 0≤x ≤20;(2)-400x +26000≥24000, x ≤5, 20-5=15. 至少派15人去制造乙种零件.14.(1)1308元;1320元. (2)大于4000份时去乙厂;大于2000份且少于4000份时去甲厂;其余情况两厂均可.测试51..2;21;2-<<-<x x x 2..361;3;61≤≤≤≥x x x3.(1)x >-1; (2)0<x <2; (3)无解. 4.B . 5.B . 6.421≤≤x ,解集表示为7.x ≥0,解集表示为8.无解. 9.1.5<x <5.5解集表示为10.-1≤x <3,整数解为-1、0、1、2. 11.-3<x <5. 12.-2,-1,0. 13.B . 14.C . 15.-10<x ≤-4,整数解为-9,-8,-7,-6,-5,-4.16.-1<x <4. 17.-721<k <25.(⎩⎨⎧<--=<-=015213,02513k y k x )18.①-②得:y -x =2k -1,∵0<y -x <1 ∴0<2k -1<1 ∴.121<<k 19.解得⎪⎩⎪⎨⎧>+≥.2,34x a x 于是234≤+a ,故a ≤2;因为a 是自然数,所以a =0,1或2. 20.不等式组的解集为a ≤x <2,-4<a ≤-3.测试6 1.(1)x >2;(2)x <-3;(3)-3<x <2;(4)无解. 2.31<x <76. 3.B . 4.A . 5.(1)x >6,解集表示为6.-6<x <6,解集表示为7.x <-12,解集表示为8.x ≤-4,解集表示为9.7;0. 10.-1<k <3. 11.无解. 12.x >8. 13.由2<x =328-k <10,得1<k <4,故整数k =2或3. 14..532.5,23<<-⎩⎨⎧-=+=m m y m x 15.不等式组的解集为2-3a <x <21,有四个整数解,所以x =17,18,19,20,所以16≤2-3a <17,解得⋅-≤<-3145a 测试71.设以后几天平均每天挖掘x m 3的土方,则(10-2-2)x ≥600-120,解得x ≥80. 2.设该市由甲厂处理x 吨垃圾,则7150)700(4549555550≤-+x x ,解得x ≥550. 3.解:设宿舍共有x 间.⎩⎨⎧+<-+>.204)1(8,2048x x x x 解得5<x <7. ∵x 为整数,∴x =6,4x +20=44(人).4.(1)二班3000元,三班2700元; (2)设一班学生有x 人,则⎩⎨⎧><200051200048x x 解得3241511139<<x ∵x 为整数.∴x =40或41. 5.(1)61942385=÷ 单独租用42座客车需10辆.租金为320×10=3200; 125660385=÷ 单独租用60座客车需7辆.租金为460×7=3220.(2)设租用42座客车x 辆,则60座客车需(8-x )辆.⎩⎨⎧<-+≥-+.3200)8(460320,385)8(6042x x x x 解得⋅≤<1855733x x 取整数,x =4,5.当x =4时,租金为3120元;x =5时,租金为2980元. 所以租5辆42座,3辆60座最省钱. 6.设生产A 型板房m 间,B 型板房(400-m )间. 所以⎩⎨⎧≤-+≤-+.12000)400(4126,24000)400(7854m m m m解得m ≥300.所以最多安置2300人.七年级数学第九章不等式与不等式组测试一、填空题1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3)13-y ______3y-2;(4)a <b <0,则a 2______b 2; (5)若23yx -<-,则2x ______3y . 2.满足5(x -1)≤4x +8<5x 的整数x 为______.3.若11|1|=--xx ,则x 的取值范围是______. 4.若点M (3a -9,1-a )是第三象限的整数点,则M 点的坐标为______.5.一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为_______. 二、选择题6.若a ≠0,则下列不等式成立的是( ). (A)-2a <2a (B)-2a <2(-a ) (C)-2-a <2-a(D)aa 22<-7.下列不等式中,对任何有理数都成立的是( ). (A)x -3>0 (B)|x +1|>0 (C)(x +5)2>0 (D)-(x -5)2≤0 8.若a <0,则关于x 的不等式|a |x <a 的解集是( ). (A)x <1 (B)x >1 (C)x <-1 (D)x >-19.如下图,对a ,b ,c 三种物体的重量判断正确的是( ).(A)a <c (B)a <b (C)a >c (D)b <c10.某商贩去菜摊卖黄瓜,他上午卖了30斤,价格为每斤x 元;下午他又卖了20斤,价格为每斤y 元.后来他以每斤2yx +元的价格卖完后,结果发现自己赔了钱,其原因是( ). (A)x <y (B)x >y (C)x ≤y (D)x ≥y三、解不等式(组),并把解集在数轴上表示出来11.11252476312-+≥---x x x . 12.⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x四、解答题13.x 取何整数时,式子729+x 与2143-x 的差大于6但不大于8.14.如果关于x 的方程3(x +4)-4=2a +1的解大于方程3)43(414-=+x a x a 的解.求a 的取值范围.15.不等式m m x ->-2)(31的解集为x >2.求m 的值.16.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?17.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?18.为了保护环境,某造纸厂决定购买20台污水处理设备,现有A ,B 两种型号的设备,经预算,该纸厂购买设备的资金不能高于410万元. (1)该企业有几种购买方案;(2)若纸厂每日排出的污水量大于8060吨而小于8172吨,为了节约资金,该厂应选择哪种购买方案?19.某班级为准备元旦联欢会,欲购买价格分别为2元,4元和10元的三种奖品,每种奖品至少购买1件,共买16件,恰好用去50元.若2元的奖品购买a 件.(1)用含a的代数式表示另外两种奖品的件数;(2)请你设计购买方案,并说明理由.参考答案第九章 不等式与不等式组测试1.(1)>;(2)<;(3)>;(4)>;(5)>. 2.9,10,11,12,13.3.x <1. 4.(-3,-1) 5.24或35. 6.C . 7.D . 8.C 9.C 10.B .11.x ≤2,解集表示为12.-1<x ≤1,解集表示为13.6310<≤-x ,整数解为-3,-2,-1,0,1,2,3,4,5. 14.a a 316372->-,解得187>a . 15.x >6-2m ,m =2. 16.设原来每天生产配件x 个.200<8(x +10)<4(x +10+27). 15<x <17. x =16.17.设饼干x 元,牛奶y 元.⎪⎩⎪⎨⎧-=+>+<.8.0109.0,10,10y x y x x 8<x <10,x 为整数,⎩⎨⎧==∴.1.1,9y x 18.(1)设购买A 型设备x 台,B 型设备(20-x )台.24x +20(20-x )≤410. x ≤2.5, ∴x =0,1,2.三种方案:方案一:A :0台;B :20台; 方案二:A :1台;B :19台;方案三:A :2台;B :18台.(2)依题意8060<480x +400(20-x )<8172.0.75<x <2.15,x =1,2.当x =1时,购买资金为404万元;x =2时,购买资金为408万元.为节约资金,应购买A 型1台,B 型19台.19.(1)4元的件数;3455a -;10元的件数:⋅-37a (2)有两种方案:方案一:2元10件,4元5件,10元1件;方案二:2元13件,4元1件,10元2件.。