增长率问题
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
增长率问题例析山东 杨道叶在实际问题中,常常遇到平均增长率问题.如果原来产值的基础数为H ,平均增长率为P ,则对于时间x 的总产值y ,有公式(1)x y H P =+表示,解决平均增长率问题,要用这个公式.本文列举数例,供参考.例1 某农药厂今年生产农药8000吨,计划5年后把产量提高到14000吨,问平均每年需增长百分之几?解析:设平均每年增长率为x ,由题意可得58000(1)14000x +=,5(1) 1.75x ∴+=. 两边取常用对数,得lg1.75lg(1)0.04865x +=≈. 故1 1.2x +=.12x ∴=%,即平均每年增长12%.例2 1980年我国人均收入255美元,若到2000年人民生活达到小康水平,即人均收达到817美元,则年平均增长率是多少?若按不低于此增长率的速度递增,则到2010年人均收入至少是多少美元?解析:设年平均增长率为x ,则1981年人均收入为255(1)x +;1982年人均收入为2255(1)x +;;2000年人均收入为20255(1)x +,由题意可得20255(1)817x +=,解得0.0606x ≈≈%.又设2010年人均收入为y 美元,则30255 1.061465y =⨯≈.故年平均增长率为6%,到2010年人均收入至少是1465美元.例3 按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y ,存期 为x ,写出本利和y 随存期x 变化的函数式.如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少? 解析:已知本金为a 元. 一期后的本利和为1(1)y a a r a r =+⨯=+; 二期后的本利和为22(1)(1)(1)y a r a r r a r =+++=+; 三期后的本利和为33(1)y a r =+;x 期后的本利和为(1)x y a r =+. 将1000a =, 2.25r =%,5x =代入上式,得51000(1 2.25)1117.68y =+≈%(元). 注:按复利计算利息,也是增长率问题.增长率问题的实质是指数函数模型的应用.。
增长率问题练习题一、填空:1某林场现有木材a 立方米,(1) 预计在今后两年内年平均增长p%,那么两年后该林场有木材________立方米.(2) 预计在今后两年内年平均减少p%,那么两年后该林场有木材________立方米.(3) 若第一年的增长率为p%,第二年比第一年的增长率还 高出10个百分点,则两年后该林场有木材_______________立方米.(4) 若第一年的增长率为p%,第二年减少了q%,则两年后该林场有木材_______________立方米.2某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x ,可列出方程为__________.3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.4、某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。
由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。
若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %。
二、选择题1.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )22.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ 三、解答题:1、某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、•二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.2、某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.3、某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系260050+-=x y ,去年的月销售量p (万台)与月份x 之间成一次函数关系,(1(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了%5.1m 。
5、增长率问题(1)增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数(2)两次增长,且增长率相等的问题的基本等量关系式为:原来的×(1+增长率)增长期数=后来的说明:(1)上述相等关系仅适用增长率相同的情形;(2)如果是下降率,则上述关系式为:原来的×(1-增长率)下降期数=后来的(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)。
4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
5.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?6.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数。
7.王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率。
一元一次方程增长率问题一、引言在数学中,一元一次方程是初等代数中最基本的一种方程形式。
而增长率是描述一个变量随时间变化的速率的概念。
本文将结合一元一次方程和增长率的概念,探讨在实际问题中如何应用和解决一元一次方程的增长率问题。
二、什么是一元一次方程一元一次方程是指只含有一个未知数,并且该未知数的最高次数为一的方程。
一元一次方程通常具有如下形式:a x+b=0其中,a和b是已知数,x是未知数。
求解一元一次方程的目标就是要找到方程中的未知数x。
而常用的解法是移项和化简等操作,具体方法在初等代数中已有详细介绍。
三、什么是增长率增长率是描述一个变量随时间变化之比的概念。
在数学中通常用百分比或小数表示增长率。
增长率可以分为两种情况:1.正增长率:变量随时间增加。
2.负增长率:变量随时间减少。
通过计算增长率,我们可以了解到变量在特定时间内的增长或减少的速度,从而更好地理解问题的本质。
四、应用一元一次方程解决增长率问题在实际问题中,我们经常遇到需要求解增长率的情况。
通过将问题抽象为一元一次方程,我们可以清晰地描述问题,并应用已有的解法进行求解。
以下是一个示例问题:问题:某商品每年的销售量增长率为20%,已知2019年的销售量为1000件,请问到2022年的销售量是多少?解答:设2022年的销售量为x件,则根据已知信息可得到如下一元一次方程:(1+20%)^3*1000=x将百分数转化为小数,并进行化简运算,可得:1.2^3*1000=x计算得到:1.2^3≈1.728因此,2022年的销售量约为1728件。
通过将增长率问题转化为一元一次方程,我们可以方便地解答此类问题,并得到具体的答案。
五、总结本文主要介绍了一元一次方程和增长率的概念,并给出了如何应用一元一次方程解决增长率问题的示例。
通过合理地建立方程和运用数学知识进行求解,我们可以更好地理解和解决实际生活中的问题。
希望本文对您理解一元一次方程增长率问题有所帮助!。
增长率问题
(1)增长率问题的有关公式:
增长数=基数×增长率实际数=基数+增长数
(2)两次增长,且增长率相等的问题的基本等量关系式为:
原来的量×(1+增长率)增长期数=后来的量
说明:(1)上述相等关系仅适用增长率相同的情形;
(2)如果是下降率,则上述关系式为:
原来的量×(1-增长率)下降期数=后来的量
1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450
公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均
每次降价率是。
3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始
涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,
求每次降价的百分率?
5.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的
植树总数达到1324棵,求该校植树平均每年增长的百分数。
商品销售问题
售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)
与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产
品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。
(1)当日产量为多少时每日获得的利润为1750元?
(2)若可获得的最大利润为1950元,问日产量应为多少?
3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500
千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
4.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元。
为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。
经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件。
要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
1.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直
的道路,余分作为耕地为551㎡。
则道路的宽为是。
2.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边
用木栏围成,木栏长35m。
①鸡场的面积能达到150m2吗?②鸡场的面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由。
(3)若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用?。