导数复习课课件
- 格式:ppt
- 大小:67.00 KB
- 文档页数:7
高一数学复习考点知识讲解课件第3课时导数 考点知识1.理解导数及导函数的概念.2.会利用极限的思想求函数在某点处的导数以及函数的导函数. 导语同学们,大家知道,从数学的角度是如何衡量时代的进步的吗?那就是对函数的精细化研究,人们为了更好的研究函数的性质,400年前法国数学家首次提出了导数的概念,在此基础上,大数学家牛顿,莱布尼茨推动了对导数研究的快速前进,后来才有了柯西等人对导数的精确描述,希望同学们也能站在巨人的肩膀上,刻苦学习,深入研究,将来也一定能取得惊人的成就.一、导数的概念问题1瞬时变化率的几何意义是什么?它的数学意义又是什么?提示瞬时变化率的几何意义是曲线在某点处的切线斜率;它的数学意义是函数在该点的导数. 知识梳理1.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).2.导数的几何意义导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.注意点:f (x )在x =x 0处的导数为f ′(x 0)=k =lim Δx →0f (x 0+Δx )-f (x 0)Δx. 例1设函数y =f (x )在x =x 0处可导,且lim Δx →0f ()x 0+3Δx -f ()x 02Δx=1,则f ′()x 0等于() A.23B .-23C .1D .-1答案A解析由题意知lim Δx →0f ()x 0+3Δx -f ()x 02Δx =lim Δx →032×f ()x 0+3Δx -f ()x 03Δx=32f ′()x 0=1, 所以f ′()x 0=23.反思感悟利用定义求函数在某点处的导数,仍然采用“无限逼近”的思想,由割线的斜率无限逼近函数在某点处的切线的斜率,其格式采用的是两点的斜率,故要注意分子、分母的对应关系.跟踪训练1已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx等于() A .f ′(x ) B .f ′(2) C .f (x ) D .f (2)答案B解析因为函数f (x )可导,所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx, 所以lim Δx →0f (2+2Δx )-f (2)2Δx=f ′(2).二、求函数在某一点处的导数例2求函数y =x -1x 在x =1处的导数.解∵Δy =(1+Δx )-11+Δx -⎝⎛⎭⎪⎫1-11 =Δx +Δx 1+Δx, ∴Δy Δx =Δx +Δx1+Δx Δx =1+11+Δx , ∴lim Δx →0Δy Δx =lim Δx →0⎝⎛⎭⎪⎫1+11+Δx =2. 从而f ′(1)=2.反思感悟用导数定义求函数在某一点处的导数的步骤(1)求函数的改变量Δy =f (x 0+Δx )-f (x 0).(2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx. (3)求极限lim Δx →0Δy Δx.跟踪训练2(1)f (x )=x 2在x =1处的导数为()A .2xB .2C .2+ΔxD .1答案B解析lim Δx →0Δy Δx =lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →01+2Δx +(Δx )2-1Δx=lim Δx →0 (2+Δx )=2. (2)已知f (x )=2x ,且f ′(m )=-12,则m 的值等于()A .-4B .2C .-2D .±2答案D解析因为Δy Δx =f (m +Δx )-f (m )Δx=2m +Δx -2m Δx =-2m (m +Δx ), 所以f ′(m )=lim Δx →0-2m (m +Δx )=-2m 2, 所以-2m 2=-12,m 2=4,解得m =±2.三、导函数问题2以上我们知道,求函数在某一点的导数,可以发现函数在该点附近的变化,能否通过求导研究函数的整体变化?提示这涉及到函数在任意一点的导数问题,通过f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx可知f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,这就是函数在任意一点的导数,即导函数,它不再是一个确定的数,而是一个函数.知识梳理导函数的定义若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点处的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数(简称导数).y =f (x )的导函数记作f ′(x )或y ′,即f ′(x )=y ′=lim Δx →0f (x +Δx )-f (x )Δx. 注意点:(1)f ′(x 0)是具体的值,是数值.(2)f ′(x )是函数f (x )在某区间I 上每一点都存在导数而定义的一个新函数,是函数.例3求函数y =x +1(x >-1)的导函数.解令f (x )=x +1,则f ′(x )=lim Δx →0f ()x +Δx -f (x )Δx =lim Δx →0x +Δx +1-x +1Δx=lim Δx →0x +Δx +1-()x +1Δx ⎝⎛⎭⎫x +Δx +1+x +1 =lim Δx →01x +Δx +1+x +1=12x +1.反思感悟求导函数的一般步骤:(1)Δy =f (x +Δx )-f (x ). (2)Δy Δx =f (x +Δx )-f (x )Δx. (3)求极限lim Δx →0Δy Δx. 跟踪训练3已知函数f (x )=x 2-12x .求f ′(x ).解∵Δy =f (x +Δx )-f (x )=(Δx )2+2x ·Δx -12Δx ,∴Δy Δx =2x +Δx -12.∴f ′(x )=lim Δx →0Δy Δx =2x -12.1.知识清单:(1)导数的概念及几何意义.(2)求函数在某点处的导数.(3)导函数的概念.2.方法归纳:定义法.3.常见误区:利用定义求函数在某点处的导数时易忽视分子、分母的对应关系.1.若函数f (x )可导,则lim Δx →0f (1-Δx )-f (1)2Δx等于() A .-2f ′(1) B.12f ′(1)C .-12f ′(1)D .f ′⎝ ⎛⎭⎪⎫12 答案C解析lim Δx →0f (1-Δx )-f (1)2Δx=-12lim Δx →0f [1+(-Δx )]-f (1)-Δx=-12f ′(1). 2.若lim Δx →0f (x +Δx )-f (x )Δx=x 2,则f (x )的导函数f ′(x )等于() A .2x B.13x 3C .x 2D .3x 2答案C解析由导数的定义可知,f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx=x 2. 3.已知曲线y =f (x )在点(1,f (1))处的切线方程为2x -y +2=0,则f ′(1)等于()A .4B .-4C .-2D .2答案D解析由导数的几何意义知f ′(1)=2.4.已知函数f (x )=x ,则f ′(1)=.答案12解析f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →01+Δx -1Δx =lim Δx →011+Δx +1=12.课时对点练1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线()A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交答案B解析因为f ′(x 0)=0,所以曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0.2.已知某质点的运动方程为s =2t 2-t ,其中s 的单位是m ,t 的单位是s ,则s ′()2为()A .3m/sB .5m/sC .7m/sD .9m/s答案C解析s ′()2=lim Δt →0Δs Δt=lim Δt →02(2+Δt )2-(2+Δt )-()2×22-2Δt =lim Δt →0 (7+2Δt )=7.3.若可导函数f (x )的图象过原点,且满足lim Δx →0f (Δx )Δx=-1,则f ′(0)等于() A .-2B .2C .-1D .1答案C解析∵f (x )图象过原点,∴f (0)=0,∴f ′(0)=lim Δx →0f (0+Δx )-f (0)Δx=lim Δx →0f (Δx )Δx =-1. 4.已知曲线f (x )=12x 2+x 的一条切线的斜率是3,则该切点的横坐标为()A .-2B .-1C .1D .2答案D解析∵Δy =f (x +Δx )-f (x )=12(x +Δx )2+(x +Δx )-12x 2-x =x ·Δx +12(Δx )2+Δx ,∴Δy Δx =x +12Δx +1,∴f ′(x )=lim Δx →0Δy Δx =x +1. 设切点坐标为(x 0,y 0),则f ′(x 0)=x 0+1=3,∴x 0=2.5.(多选)下列各点中,在曲线y =x 3-2x 上,且在该点处的切线倾斜角为π4的是()A .(0,0)B .(1,-1)C .(-1,1)D .(1,1)答案BC解析设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →0(x 0+Δx )3-2(x 0+Δx )-(x 30-2x 0)Δx=3x 20-2=tan π4=1,所以x 0=±1,当x 0=1时,y 0=-1.当x 0=-1时,y 0=1.6.(多选)若函数f (x )在x =x 0处存在导数,则lim h →0f (x 0+h )-f (x 0)h的值() A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关答案AD解析由导数的定义可知,函数f (x )在x =x 0处的导数与x 0有关,与h 无关.7.设函数f (x )=ax +3,若f ′(1)=3,则a =.答案3解析因为f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a . 又因为f ′(1)=3,所以a =3.8.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则f ′(2)=. 答案3解析因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知f ′(2)=3.9.求函数y =f (x )=2x 2+4x 在x =3处的导数.解Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3)=12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=lim Δx →0Δy Δx =lim Δx →0(2Δx +16)=16. 10.一条水管中流过的水量y (单位:m 3)与时间t (单位:s)之间的函数关系为y =f (t )=3t .求函数y =f (t )在t =2处的导数f ′(2),并解释它的实际意义.解因为Δy Δt =f (2+Δt )-f (2)Δt =3(2+Δt )-3×2Δt=3, 所以f ′(2)=lim Δt →0Δy Δt=3. f ′(2)的实际意义:水流在t =2时的瞬时流速为3m 3/s.11.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为()A .4x -y -4=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0答案A解析设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x 2Δx=lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0.12.若曲线y =f (x )=x +1x 上任意一点P 处的切线斜率为k ,则k 的取值范围是() A .(-∞,-1) B .(-1,1)C .(-∞,1)D .(1,+∞)答案C解析y =x +1x 上任意一点P (x 0,y 0)处的切线斜率为k =f ′(x 0)=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx =lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1. 即k <1.13.函数f (x )的图象如图所示,f ′(x )为函数f (x )的导函数,下列数值排序正确的是()A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(2)<f (3)-f (2)<f ′(3)D .0<f (3)-f (2)<f ′(2)<f ′(3)答案B解析由f (x )的图象可知,f (x )在x =2处的切线斜率大于在x =3处的切线斜率,且斜率为正,∴0<f ′(3)<f ′(2),∴f (3)-f (2)=f (3)-f (2)3-2,∴f (3)-f (2)可看作过(2,f (2))和(3,f (3))的割线的斜率,由图象可知f ′(3)<f (3)-f (2)<f ′(2),∴0<f ′(3)<f (3)-f (2)<f ′(2).14.若点P 是抛物线y =x 2上任意一点,则点P 到直线y =x -2的最小距离为. 答案728解析由题意可得,当点P 到直线y =x -2的距离最小时,点P 为抛物线y =x 2的一条切线的切点,且该切线平行于直线y =x -2,设y =f (x )=x 2,由导数的几何意义知y ′=f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =2x =1,解得x =12,所以P ⎝ ⎛⎭⎪⎫12,14,故点P 到直线y =x -2的最小距离为d =⎪⎪⎪⎪⎪⎪12-14-22=728.15.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),已知f ′(0)>0,且对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为. 答案2解析由导数的定义,得f ′(0)=lim Δx →0f (Δx )-f (0)Δx=lim Δx →0a (Δx )2+b (Δx )+c -c Δx=lim Δx →0[a ·(Δx )+b ]=b >0. 又⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0,a >0,∴ac ≥b 24,∴c >0. ∴f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2b b =2. 当且仅当a =c =b 2时等号成立.16.点P 在曲线f (x )=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.解设P (x 0,y 0),则y 0=x 20+1,f ′(x 0)=lim Δx →0(x 0+Δx )2+1-(x 20+1)Δx=2x 0,所以在点P 的切线方程为y -y 0=2x 0(x -x 0), 即y =2x 0x +1-x 20, 而此直线与曲线y =-2x 2-1相切, 所以切线与曲线y =-2x 2-1只有一个公共点,由⎩⎪⎨⎪⎧y =2x 0x +1-x 20,y =-2x 2-1, 得2x 2+2x 0x +2-x 20=0,则Δ=4x 20-8(2-x 20)=0,解得x 0=±233,则y 0=73,所以点P 的坐标为⎝ ⎛⎭⎪⎫233,73或⎝ ⎛⎭⎪⎫-233,73.。
2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.1 导数的概念及其意义、导数的运算考试要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数 (形如f(ax+b))的导数.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.导数的概念f′(x0)y′| (1)函数y=f(x)在x=x0处的导数记作或 .0x x=(2)函数y=f(x)的导函数(简称导数)2.导数的几何意义函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))斜率y-f(x0)=f′(x0)(x-x0)处的切线的,相应的切线方程为 .3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=__f (x )=x α(α∈R ,且α≠0)f ′(x )=______f (x )=sin xf ′(x )=_____f (x )=cos xf ′(x )=______f (x )=a x (a >0,且a ≠1)f ′(x )=______f (x )=e x f ′(x )=___0αx α-1cos x -sin x a x ln a e x知识梳理f(x)=log a x(a>0,且a≠1)f′(x)=_____ f(x)=ln x f′(x)=___4.导数的运算法则若f ′(x ),g ′(x )存在,则有[f (x )±g (x )]′= ;[f (x )g (x )]′= ;[cf (x )]′= .f ′(x )±g ′(x )f ′(x )g (x )+f (x )g ′(x )cf ′(x )5.复合函数的定义及其导数复合函数y=f(g(x))的导数与函数y=f(u),u=g(x)的导数间的关系为y u′·u x′y x′=,即y对x的导数等于y对u的导数与u对x的导数的乘积.常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点处的切线,该点不一定是切点,切线至少有一条.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( )(3)f ′(x 0)=[f (x 0)]′.( )(4)(cos 2x ) ′=-2sin 2x .( )×××√1.若函数f(x)=3x+sin 2x,则√因为函数f(x)=3x+sin 2x,所以f′(x)=3x ln 3+2cos 2x.y=(e-1)x+2又∵f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a= .由题意得f′(x)=1+ln x+2ax,第二部分√√√对于A,[(3x+5)3]′=3(3x+5)2(3x+5)′=9(3x+5)2,故A正确;对于B,(x3ln x)′=(x3)′ln x+x3(ln x)′=3x2ln x+x2,故B正确;对于D,(2x+cos x)′=(2x)′+(cos x)′=2x ln 2-sin x,故D正确.(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则f′(2)等于√A.1B.-9C.-6D.4因为f(x)=x3+x2f′(1)+2x-1,所以f′(x)=3x2+2xf′(1)+2,把x=1代入f′(x),得f′(1)=3×12+2f′(1)+2,解得f′(1)=-5,所以f′(x)=3x2-10x+2,所以f′(2)=-6.思维升华(1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.(3)复合函数求导,应由外到内逐层求导,必要时要进行换元.√√√f(x)=sin(2x+3),f′(x)=cos(2x+3)·(2x+3)′=2cos(2x+3),故A 正确;f(x)=e-2x+1,则f′(x)=-2e-2x+1,故B错误;f(x)=x ln x,f′(x)=(x)′ln x+x(ln x)′=ln x+1,故D正确.命题点1 求切线方程例2 (1)(2023·大同模拟)已知函数f(x)=2e2ln x+x2,则曲线y=f(x)在点(e,f(e))处的切线方程为√A.4e x-y+e2=0B.4e x-y-e2=0C.4e x+y+e2=0D.4e x+y-e2=0所以f(e)=2e2ln e+e2=3e2,f′(e)=4e,所以曲线y=f(x)在点(e,f(e))处的切线方程为y-3e2=4e(x-e),即4e x-y-e2=0.(2)(2022·新高考全国Ⅱ)曲线y=ln|x|过坐标原点的两条切线的方程为_______,_________.先求当x>0时,曲线y=ln x过原点的切线方程,设切点为(x0,y0),解得y0=1,代入y=ln x,得x0=e,命题点2 求参数的值(范围)例3 (1)(2022·重庆模拟)已知a为非零实数,直线y=x+1与曲线y=ea ln(x+1)相切,则a=_____.(2)(2022·新高考全国Ⅰ)若曲线y=(x+a)e x有两条过坐标原点的切线,(-∞,-4)∪(0,+∞)则a的取值范围是 .因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a ) ),O 为坐标原点,0e x 0e x 0x x =000()ex x a x 因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).思维升华(1)处理与切线有关的问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.(2)注意区分“在点P处的切线”与“过点P的切线”.跟踪训练2 (1)曲线f(x)=在(0,f(0))处的切线方程为√A.y=3x-2B.y=3x+2C.y=-3x-2D.y=-3x+2所以f′(0)=3,f(0)=-2,所以曲线f(x)在(0,f(0))处的切线方程为y-(-2)=3(x-0),即y=3x-2.√例4 (1)若直线l:y=kx+b(k>1)为曲线f(x)=e x-1与曲线g(x)=eln x的公切线,则l的纵截距b等于A.0B.1√C.eD.-e设l 与f (x )的切点为(x 1,y 1),则由f ′(x )=e x -1,得l :y = +(1-x 1) .同理,设l 与g (x )的切点为(x 2,y 2),11e x x -11e x -11e x -11e x -因为k >1,所以l :y =x 不成立,故b =-e.(2)(2023·晋中模拟)若两曲线y=ln x-1与y=ax2存在公切线,则正实数a 的取值范围是√设公切线与曲线y=ln x-1和y=ax2的切点分别为(x1,ln x1-1),(x2,ax),其中x1>0,令g (x )=2x 2-x 2ln x ,则g ′(x )=3x -2x ln x =x (3-2ln x ),令g ′(x )=0,得x = ,32e 当x ∈(0, )时,g ′(x )>0,g (x )单调递增;32e当x ∈(,+∞)时,g ′(x )<0,g (x )单调递减,32e 32e思维升华公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)已知定义在(0,+∞)上的函数f(x)=x2-m,h(x)=6ln x -4x,设两曲线y=f(x)与y=h(x)在公共点处的切线相同,则m等于A.-3 B.1√C.3D.5依题意,设曲线y=f(x)与y=h(x)在公共点(x0,y0)处的切线相同.∵f(x)=x2-m,h(x)=6ln x-4x,∵x0>0,∴x0=1,m=5.(2)已知f(x)=e x-1,g(x)=ln x+1,则f(x)与g(x)的公切线有A.0条B.1条√C.2条D.3条根据题意,设直线l与f(x)=e x-1相切于点(m,e m-1) ,与g(x)相切于点(n,ln n+1)(n>0),对于f(x)=e x-1,f′(x)=e x,则k1=e m,则直线l的方程为y+1-e m=e m(x-m) ,即y=e m x+e m(1-m)-1,可得(1-m)(e m-1)=0,即m=0或m=1,则切线方程为y=e x-1 或y=x,故f(x)与g(x)的公切线有两条.第三部分1.(2023·广州模拟)曲线y=x3+1在点(-1,a)处的切线方程为√A.y=3x+3B.y=3x+1C.y=-3x-1D.y=-3x-3因为f′(x)=3x2,所以f′(-1)=3,又当x=-1时,a=(-1)3+1=0,所以y=x3+1在点(-1,a)处的切线方程为y=3(x+1),即y=3x+3.2.记函数f(x)的导函数为f′(x).若f(x)=e x sin 2x,则f′(0)等于√A.2B.1C.0D.-1因为f(x)=e x sin 2x,则f′(x)=e x(sin 2x+2cos 2x),所以f′(0)=e0(sin 0+2cos 0)=2.3.(2022·广西三市联考)设函数f(x)在R上存在导函数f′(x),f(x)的图象在点M(1,f(1))处的切线方程为y=+2,那么f(1)+f′(1)等于√A.1B.2C.3D.44.已知函数f(x)=x ln x,若直线l过点(0,-e),且与曲线y=f(x)相切,则直线l的斜率为√A.-2B.2C.-eD.e设切点坐标为(t,t ln t),∵f(x)=x ln x,∴f′(x)=ln x+1,直线l的斜率为f′(t)=ln t+1,∴直线l的方程为y-t ln t=(ln t+1)(x-t),将点(0,-e)的坐标代入直线l的方程得-e-t ln t=-t(ln t+1),解得t=e,∴直线l的斜率为f′(e)=2.。