材料在轴向拉伸和压缩时的力学性能.
- 格式:ppt
- 大小:707.50 KB
- 文档页数:4
实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。
2.测定铸铁在拉伸以及压缩时的强度极限σb。
3.观察拉压过程中的各种现象,并绘制拉伸图。
4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。
二、设备及仪器1.电子万能材料试验机。
2.游标卡尺。
图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。
它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。
由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。
图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。
图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。
(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。
由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。
上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。
当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。
移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。
(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。
(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。
可即时打印出完整的试验报告和试验曲线。
实验一实验一 材料在轴向拉伸、材料在轴向拉伸、材料在轴向拉伸、压缩和扭转时的压缩和扭转时的力学性能预习要求:预习要求:1、预习教材中有关材料在拉伸、压缩、扭转时力学性能的内容;、预习教材中有关材料在拉伸、压缩、扭转时力学性能的内容;2、预习本实验内容及微控电子万能试验机的原理和使用方法;、预习本实验内容及微控电子万能试验机的原理和使用方法;一、实验目的一、实验目的1、观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限s s ,强度极限b s ,延伸率δ和断面收缩率y ;2、观察铸铁在轴向拉伸时的各种现象;、观察铸铁在轴向拉伸时的各种现象;3、观察低碳钢和铸铁在轴向压缩过程中的各种现象;、观察低碳钢和铸铁在轴向压缩过程中的各种现象;4、观察低碳钢和铸铁在扭转时的各种现象;、观察低碳钢和铸铁在扭转时的各种现象;5、掌握微控电子万能试验机的操作方法。
、掌握微控电子万能试验机的操作方法。
二、实验设备与仪器二、实验设备与仪器1、微控电子万能试验机;、微控电子万能试验机;2、扭转试验机;、扭转试验机;3、50T 微控电液伺服万能试验机;微控电液伺服万能试验机;4、游标卡尺。
、游标卡尺。
三、试件三、试件试验表明,试件的尺寸和形状对试验结果有影响。
为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。
根据国家标准(GB6397—86),将金属拉伸比例试件的尺寸列表如下:,将金属拉伸比例试件的尺寸列表如下:试 件标距长度标距长度 L 0横截面积横截面积 A 0圆试件直径圆试件直径 d 0表示延伸表示延伸 率的符号率的符号比例/长短长短03.11A 或10d 0任 意 任 意 δ1065.5A 或5d 0任 意任 意δ5本实验的拉伸试件采用国家标准中规定的长比例试件(图一),试验段直径d 0=10mm ,标距l 0=100mm.。
本实验的压缩试件采用国家标准本实验的压缩试件采用国家标准((GB7314-87)中规定的圆柱形试件h /d 0=2, d 0=15mm, h =30mm (图二)。
直杆轴向拉伸与压缩时的变形与应力分析和拉伸与压缩时材料的力学性能——教案第一章:直杆轴向拉伸与压缩的基本概念1.1 学习目标1. 了解直杆轴向拉伸与压缩的基本概念;2. 掌握直杆轴向拉伸与压缩的变形与应力分析方法。
1.2 教学内容1. 直杆轴向拉伸与压缩的定义;2. 直杆轴向拉伸与压缩的变形与应力分析方法。
1.3 教学活动1. 讲解直杆轴向拉伸与压缩的基本概念;2. 分析直杆轴向拉伸与压缩的变形与应力分析方法。
第二章:直杆轴向拉伸与压缩的变形分析2.1 学习目标1. 了解直杆轴向拉伸与压缩的变形规律;2. 掌握直杆轴向拉伸与压缩的变形分析方法。
2.2 教学内容1. 直杆轴向拉伸与压缩的变形规律;2. 直杆轴向拉伸与压缩的变形分析方法。
2.3 教学活动1. 讲解直杆轴向拉伸与压缩的变形规律;2. 分析直杆轴向拉伸与压缩的变形分析方法。
3.1 学习目标1. 了解直杆轴向拉伸与压缩的应力分布;2. 掌握直杆轴向拉伸与压缩的应力分析方法。
3.2 教学内容1. 直杆轴向拉伸与压缩的应力分布;2. 直杆轴向拉伸与压缩的应力分析方法。
3.3 教学活动1. 讲解直杆轴向拉伸与压缩的应力分布;2. 分析直杆轴向拉伸与压缩的应力分析方法。
第四章:拉伸与压缩时材料的力学性能4.1 学习目标1. 了解拉伸与压缩时材料的力学性能指标;2. 掌握拉伸与压缩时材料的力学性能分析方法。
4.2 教学内容1. 拉伸与压缩时材料的力学性能指标;2. 拉伸与压缩时材料的力学性能分析方法。
4.3 教学活动1. 讲解拉伸与压缩时材料的力学性能指标;2. 分析拉伸与压缩时材料的力学性能分析方法。
第五章:实例分析与应用5.1 学习目标2. 能够应用所学知识解决实际问题。
5.2 教学内容1. 直杆轴向拉伸与压缩的实例分析;2. 应用所学知识解决实际问题。
5.3 教学活动1. 分析直杆轴向拉伸与压缩的实例;2. 解决实际问题,巩固所学知识。
第六章:弹性模量的概念与应用6.1 学习目标1. 理解弹性模量的定义及其物理意义;2. 掌握弹性模量在材料力学中的应用。
金属材料的拉伸、压缩实验承受轴向拉伸和压缩是工程构件最常见的受力方式之一,材料在拉伸和压缩时的力学性能也是材料最重要的力学性能之一。
常温、静载下金属材料的单向拉伸和压缩实验也是测定材料力学性能的最基本、应用最广泛、方法最成熟的试验方法。
通过拉伸实验所测定的材料的弹性指标E、μ,强度指标σs、σb,塑性指标δ、ψ,是工程中评价材质和进行强度、刚度计算的重要依据。
下面以典型的塑性材料——低碳钢和典型的脆性材料——铸铁为例介绍实验的详细过程和数据处理方法。
一、预习要求1、电子万能材料试验机在实验前需进行哪些调整?如何操作?2、简述测定低碳钢弹性模量E的方法和步骤。
3、实验时如何观察低碳钢拉伸和压缩时的屈服极限?二、材料拉伸时的力学性能测定拉伸时的力学性能实验所用材料包括塑性材料低碳钢和脆性材料铸铁。
(一)实验目的1、在弹性范围内验证虎克定律,测定低碳钢的弹性模量E。
2、测定低碳钢的屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ;测定铸铁拉伸时的强度极限σb。
3、观察低碳钢和铸铁拉伸时的变形规律和破坏现象。
4、了解万能材料试验机的结构工作原理和操作。
(二)设备及试样1、电子万能材料试验机。
2、杠杆式引伸仪或电子引伸仪。
3、游标卡尺。
4、拉伸试样。
GB6397—86规定,标准拉伸试样如图1所示。
截面有圆形(图1a)和矩形(图1b)两种,标距l0与原始横截面积A0比值为11.3的试样称为长试样,标距l0与原始横截面积A0比值为5.56的试样称为短试样。
对于直径为d0的长试样,l0=10d0;对于直径为d0的短试样,l0=5d0。
实验前要用划线机在试样上画出标距线。
(三)低碳钢拉伸实验1、实验原理与方法常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性模量E、屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ等力学性能指标。
这些指标都是工程设计中常用的力学性能参数。
现以液压式万能材料试验机为例说明其测量原理和方法。
材料拉伸与压缩试验报告一、实验目的1.了解材料在拉伸和压缩状态下的力学性能。
2.通过拉伸试验和压缩试验获取材料的应力-应变曲线。
3.测定材料的屈服点、抗拉强度、断裂强度和弹性模量等力学性能指标。
二、实验仪器和材料1.拉伸试验机。
2.横截面积测量器。
3.试样切割机。
4.金属材料试样。
三、实验步骤1.将待测试样的尺寸测量并记录下来,包括长度、直径等。
2.使用试样切割机将试样切割为适当的长度,并在试样两端做好标记。
3.将试样安装到拉伸试验机上,并设置合适的试验参数,如加载速度、试验时长等。
4.开始拉伸试验,记录试样随时间变化的力和位移数据,并计算出应力和应变值。
5.试验完成后,绘制应力-应变曲线,并通过曲线分析得到屈服点、抗拉强度和断裂强度等力学性能指标。
6.使用横截面积测量器测量试样的横截面积。
7.进行压缩试验,按照相同的步骤测量并记录试样的力和位移数据,计算出应力和应变值。
8.绘制应力-应变曲线,并分析得到压缩材料的力学性能指标。
四、实验结果和分析1.拉伸试验结果:通过该曲线可得到材料的屈服点、抗拉强度和断裂强度等信息,分别对应曲线上的不同点。
屈服点表示材料开始发生塑性变形的特点,抗拉强度表示材料能够承受的最大拉力,而断裂强度表示材料最终断裂的强度。
2.压缩试验结果:通过该曲线同样可以得到材料的力学性能指标。
五、实验结论1.在拉伸状态下,材料发生屈服后,会逐渐进入塑性变形阶段,直至最终断裂。
2.材料的屈服点和抗拉强度等性能指标可以通过应力-应变曲线得到。
3.在压缩状态下,材料同样具有一定的塑性变形能力,并且呈现出与拉伸试验相似的力学行为。
六、实验注意事项1.在进行试验之前,需检查试验设备的工作状态,确保正常运行。
2.选择合适的试样尺寸和试验参数,以获得准确的实验结果。
3.进行试验时需要小心操作,避免试验过程中出现安全事故。
4.在测量数据时,尽量减少误差,确保数据的准确性。
七、实验心得通过本次实验,我深刻认识到材料的拉伸和压缩试验对于研究和了解材料的力学性能非常重要。
第3讲教学方案——材料在拉伸与压缩时的力学性能许用应力与强度条件§2-4 材料在拉伸时的力学性能材料的力学性能:也称机械性能。
通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。
如变形特性,破坏特性等。
研究材料的力学性能的目的是确定在变形和破坏情况下的一些重要性能指标,以作为选用材料,计算材料强度、刚度的依据。
因此材料力学试验是材料力学课程重要的组成部分。
此处介绍用常温静载试验来测定材料的力学性能。
1. 试件和设备标准试件:圆截面试件,如图2-14:标距l 与直径d 的比例分为,d l 10=,d l 5=; 板试件(矩形截面):标距l 与横截面面积A 的比例分为,A l 3.11=,A l 65.5=; 试验设备主要是拉力机或全能机及相关的测量、记录仪器。
详细介绍见材料力学试验部分。
国家标准《金属拉伸试验方法》(如GB228-87)详细规定了实验方法和各项要求。
2. 低碳钢拉伸时的力学性能低碳钢是指含碳量在0.3%以下的碳素钢,如A 3钢、16Mn 钢。
1)拉伸图(P —ΔL ),如图2-15所示。
弹性阶段(oa )屈服(流动)阶段(bc )强化阶段(ce )由于P —ΔL 曲线与试样的尺寸有关,为了消除试件尺寸的影响,可采用应力应变曲线,即εσ-曲线来代替P —ΔL 曲线。
进而试件内部出现裂纹,名义应力σ下跌,至f 点试件断裂。
对低碳钢来说,s σ,b σ是衡量材料强度的重要指标。
2)εσ-曲线图,如图2-16所示,其各特征点的含义为:oa 段:在拉伸(或压缩)的初始阶段应力σ与应变ε为直线关系直至a 点,此时a 点所对应的应力值称为比例极限,用P σ表示。
它是应力与应变成正比例的最大极限。
当P σσ≤ 则有εσE = (2-5)即胡克定律,它表示应力与应变成正比,即有E 为弹性模量,单位与σ相同。
当应力超过比例极限增加到b 点时,ε-σ关系偏离直线,此时若将应力卸至零,则应变随之消失(一旦应力超过b点,卸载后,有一部分应变不能消除),此b 点的应力定义为弹性极限e σ。
测定材料在拉伸与压缩时的力学性能各位领导、老师:大家好!我今天说课的课题是《测定材料在拉伸与压缩时的力学性能》,下面我将从教学分析、设计思路、教学方法、实施过程、效果反思五方面进行说明。
1 教学分析1.1 教学内容本单元选自材料工程技术专业《工程力学》课程,依据人才培养方案,结合专业特点及学院现有优势,将教学内容确定为“绘制物体的受力图”、“平面力系的合成与平衡”、“轴向拉伸与压缩变形”、“扭转变形”、“弯曲变形”、“压杆稳定计算”八个模块,本次课位于第三模块第三次课,所需学时4学时。
今天所讲的《测定材料在拉伸与压缩时的力学性能》内容,是对杆件进行力学分析的最基础、最重要的内容,并且是后续课程内容的基础,因此本节知识将起到承上启下的作用。
通过本章节内容教学后,使学生能理论联系实际,产生一次认识上的飞跃。
1.2 教学对象课程教学对象:材料工程技术专业一年级学生前置课程:《高等数学》、《普通物理》、《机械制图》后续课程:《材料工程基础》、《金属材料检测技术》1.3 教学目标1、知识目标:(1)通过本节课的学习使学生掌握强度极限、弹性极限、屈服极限及冷作硬化处理方法;(2)掌握拉伸和压缩的试验方法。
2、能力目标:(1)能够利用低碳钢应力-应变图形说明塑性材料的力学性能;利用铸铁的应力-应变图形分析脆性材料的力学性能。
(2)通过课堂实验,加强动手能力,并加以拓展,培养学生的主观能动性,思维的积极性;在实际操作中能够独立分析和解决问题。
3、素质目标:(1)培养学生利用网络资源查询资料的能力及自主学习能力;(2)在操作上培养学生严谨的工作作风及较强的协调组织能力;(3)培养学生良好的安全意识和环保意识。
2 设计思路依据职业教育教学改革要求,采用传统课堂教学与网络课堂教学相结合的教学方法,以比较不同材料的强度和变形为载体进行教学设计,完成材料在拉伸与压缩时力学性能的测试。
3 教学方法3.1 学情分析我授课的对象是普通高中参加高考的高职生,学生文化课基础相对较弱,还没有力学方面的感性认识,生产实践更是一张白纸,学起来有一定难度,要学好确非易事。