核磁共振成像测井
- 格式:ppt
- 大小:1.17 MB
- 文档页数:3
82023年4月上 第07期 总第403期能源科技| TECHNOLOGY ENERGY3月4日至13日,中国石油集团测井有限公司(简称中油测井)使用该企业自主知识产权的移动式全直径岩心核磁共振设备,在大港油田张巨河某重点评价井完成现场应用和全部解释评价任务,标志着该企业车载快速岩石物理实验室在大港油田首战告捷。
核磁共振技术作为一种重要的现代分析手段已经广泛应用于各个领域。
其中核磁测井(核磁共振测井),是测量地层中的氢核在地磁场中自由旋进的测井方法。
在传统的核磁测井中,现场作业人员需要将核磁仪器使用电缆下入井筒中。
中油测井天津分公司解释评价工程师宋宏业介绍传统核磁测井方法时表示,在地磁场的作用下,地层中那些自旋轴与地磁场不完全重合的氢核绕地磁场旋进。
如果在下井仪器中用极化线圈产生与地磁场垂直的强脉冲磁场(与地磁场比较而言),迫使氢核的自旋轴离开地磁场的方向,当极化磁场去掉后,它们绕地核磁共振测井不止用于井下测量 还可在地面测量岩芯通讯员 常洁芮磁场旋进并逐渐恢复到原有状态。
氢核的旋进在感应线圈中产生逐渐衰减的射频信号,其幅度取决于地层中自由流体的氢核数,称自由流体指数,而束缚水或死油对核磁测井不起明显作用。
井眼产生的信号衰减很快,可以通过延迟测量时间将其影响减至最小。
根据自由流体指数可获得岩石的自由流体孔隙度,配合其他资料可计算渗透率。
如果进而测量热弛豫时间,则可以区别油和水。
较传统的核磁测井方法相比,移动式全直径岩心核磁共振测井是车载岩石物理实验室搭载的移动式全直径岩心核磁共振测井仪器,能够实现在现场对刚出筒的岩心进行快速、连续、无损、高精度的一维T2与二维T1-T2核磁共振测量与资料快速处理解释,并获取可靠的地层孔隙度、孔隙结构、流体性质、含油饱和度等信息。
打个最恰当的比喻,在医院是把患者推进医疗核磁检测仪进行检测,而在井场,是把从地层取得的岩芯有序排入核磁共振测井仪进行检测。
在此次施工中,技术人员对钻井取心所获得的岩芯进行核磁共振测量,细化岩性综合分析,并结合显示情况,优化后续测量模式和井段,对于进一步系统掌握该区域产层岩性特点、分析储层物性主控因素有着重要意义。
核磁共振测井的基本原理
核磁共振测井(NMR)的基本原理是利用原子核在外磁场
中的磁矩为零或自旋为零,即自转的变化率为零,在外加磁场中与外加电场发生作用,使原子核受到磁场力而发生磁化。
当原子核在外加磁场中运动时,其周围就产生一系列感应电流(自转),这些感应电流与磁场力方向相同,就会使原子核发生位移,其位移量与原子核磁矩成正比。
核磁共振测井正是根据原子核在外加磁场中的自转变化率来研究原子核的运动和核外电子运动的。
核磁共振测井仪器有两个重要部件:一个是感应线圈;另一个是接收线圈。
感应线圈的作用是把发射出去的核磁共振信号接收下来。
一般情况下,感应线圈处于待测井段井眼的周围,在井下有很多的铁屑或其他杂质和岩石颗粒存在。
这些铁屑和颗粒对核磁共振信号会产生很大的干扰。
当井眼打开后,由于井壁对核磁共振信号有屏蔽作用,使核磁共振信号在井眼周围产生一个很强的磁场。
在这个强磁场下,原子核就会发生位移,在原子核的自转轴方向上形成一个脉冲磁场(核磁共振脉冲)。
—— 1 —1 —。
核磁共振测井与录井对比班级:勘查技术与工程07-1 姓名:学号:0701********摘要:石油工程中的核磁共振技术是利用油和水中的氢原子在磁场中具有共振并产生信号的特征来探测和评价岩石特性。
核磁共振测井是在井筒中测量井周地层的物性参数.核磁共振录井是在地而(钻井现场)分析岩心、岩屑和井壁取心的物性参数(随钻分析)。
对同深度13 u 井中的核磁共振测井孔隙度、渗透率参数与核磁共振录井分析岩心、岩屑和井壁取心样品得到的孔隙度、渗透率参数进行对比分析表明.两者虽存在定差异.但整体有较好的趋势致性。
关键词:核磁共振;测井;录井;孔隙度;渗透率Abstract:The hydrogen atoms in oil and water are able to resonate and generate signalsin the magnetic field,which is used by the NMR (nuclear magnetic resonance) technolo-gy in petroleum engineering to research and uate rock characteristics. NMR welllogging was used to measure the physical property parameters of the strata in well bore,whereas NMR mud logging was used to analyze(while drilling) the physical propertyparameters of cores,cuttings and sidewall coring samples on surface(drilling site).Based on the comparative analysis of the porosity and permeability parameters obtainedby NMR well logging and those from analysis of the cores,cuttings and sidewall coringsamples by NMR mud logging in the same depth of 13 wells,these two methods are ofcertain difference,but their integral tendency is relatively good.Key words:nuclear magnetic resonance;well logging;mud logging;porosity;permea-Bility1基本原理自然界元素的同位素中将近一半能够产生核磁共振r2,。
2010 年第24 卷第1 期PETROLEUM INSTRUMENTS 47 方法研究核磁共振成像测井技术的影响因素研究王建国( 胜利石油管理局测井公司山东东营)摘要:文章主要介绍了核磁共振成像测井技术在应用过程中的影响因素,研究了核磁共振成像测井技术的影响因素如泥浆电阻率、噪声干扰、顺磁物质、增益、磁体探头、温度、测井速度等。
该项研究可以为测井技术人员分析孔隙度、渗透率、饱和度和储层流体性质等参数提供帮助,从而更好地推进该项技术的应用。
关键词:核磁共振测井;影响因素; T 2分布;驰豫中图法分类号: P 631. 8 + 17 文献标识码: B 文章编号: 1004 9134( 2010) 01 0047 030 引言传输系数会减小, 射频线圈中射频脉冲的电压会下降。
井眼泥浆电阻率越小, 对天线发射的射频脉冲的核磁共振测井( 以下简称NMR 测井) 是通过调节衰减越严重, 负载效应会变得很严重, 测量模式将受到仪器工作频率, 来探测地层流体中的氢核在外加磁场限制。
井眼泥浆电阻率的下限为0. 02 m, 但当小于中所表现出来的核磁共振特性。
主要是探测氢核的横0. 1 m 时, 应使用泥浆排除器, 增加品质因素, 提高向驰豫过程, 由T 2分布揭示岩石空隙流体性质及其流动特性, 提供地层的孔、渗、饱等参数。
目前, NMR 测井的应用仍处于迅速发展阶段, 国际上的三大测井公司均把它列为新世纪最有潜力的测井方法, 它必将对未来测井技术的走向占主导地位。
但是, 该技术还存在着一些理论和实用上的问题和困难, 仪器本身也存在一些设计上的缺陷, 对NMR 测井还缺乏纵深研究, 还没有对其影响因素全面认识和解决。
这就要求我们加大对NMR 技术的研究力度, 使其真正能够解决我国油田勘探开发中的地质和油藏工程难题[ 1]。
在测井施工时, 外界环境因素的影响会使回波数量、总回波数量、回波间隔等发生变化, 因此, 应充分考虑外界环境因素的影响, 才能确保核磁共振测量数据的准确性。
引言核磁共振测井是一种适用于裸眼井的测井新技术,是目前唯一可以直接测量任意岩性储集层自由流体(油、气、水)渗流体积特性的测井方法,有明显的优越性。
本文主要讲解了核磁共振测井的发展历史、基本原理、基本应用、若干问题及展望。
发展历史核磁共振作为一种物理现象,最初是由Bloch和Purcell于1946年发现的,从而揭开了核磁共振研究和应用的序幕。
1952 年,Varian 发明了测量地磁场强度的核磁共振磁力计,随后他利用磁力计技术进行油井测量。
1956 年,Brown 和Fatt研究发现,当流体处于岩石孔隙中时,其核磁共振弛豫时间比自由状态相比显著减小。
1960年,Brown 和Gamson研制出利用地磁场的核磁共振测井仪器样机并开始油田服务。
但是,地磁场核磁测井方案受到三个限制,即:井眼中钻井液信号无法消除,致使地层信号被淹没;“死时间”太长,使小孔隙信号无法观测;无法使用脉冲核磁共振技术。
因此,这种类型的核磁共振测井仪器难以推广。
1978 年,Jasper Jackson 突破地磁场,提出一种新的方案,即“Inside-out”设计,把一个永久磁体放到井眼中(Inside),在井眼之外的地层中(Outside)建立一个远高于地磁场、且在一定区域内均匀的静磁场,从而实现对地层信号的观测。
这个方案后来成为核磁共振测井大规模商业化应用的基础。
但是由于均匀静磁场确定的观测区域太小,观测信号信噪比很低,该方案很难作为商业测井仪而被接受。
1985 年,ZviTaicher和Schmuel提出一种新的磁体天线结构,使核磁共振测井的信噪比问题得到根本性突破。
1988 年,一种综合了“Inside-out”概念和MRI 技术,以人工梯度磁场和自旋回波方法为基础的全新的核磁共振成像测井(MRIL)问世,使核磁共振测井达到实用化要求。
此后,核磁共振测井仪器不断改进,目前,投入商业应用的核磁共振测井仪器的世界知名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯。
核磁共振成像测井仪(MRIL-P)超声波-微电阻率成像组合测井仪(STAR-Ⅱ)正交偶极子阵列声波测井仪(XMACII)1680DAL数字声波高分辨率感应测井数字能谱测井仪(DSL)能谱式岩性密度测井(ZDL)补偿中子测井仪(CN)1236薄层电阻率测井仪俄罗斯阵列感应测井技术双感应―八侧向微球形聚焦测井仪井眼补偿声波自然伽马三臂井径地层倾角长源距声波重复式地层测试器微电极连续测斜仪双频介电井温流体套管接箍磁定位器水泥胶结/变密度测井水平井测井系统(PCL)MSC-36多臂井径测井仪中子寿命测井技术1-7/16″生产测井组合仪1″生产测井组合仪40臂井径仪X-Y 井径仪脉冲回声仪噪声井温仪射孔作业核磁共振成像测井仪(MRIL-P)核磁共振成像测井仪可以给用户提供与岩性无关的孔隙度数据。
而常规的孔隙度仪(中子、密度、声波时差)都对岩石的岩性非常敏感。
虽然如此,MRIL-P的回波幅度衰减仍与岩石的构造有关(如孔隙系统的面积/体积比等)。
这样一来,如果通过与常规孔隙度测井仪进行组合测井,那麽我们就可以在得到岩性指示的同时得到与束缚水饱和度、可动流体饱和度以及与渗透率息息相关的孔隙度孔径和颗粒尺寸分布数据。
此外,MRIL-P孔隙度数据还可以直接用于粘土束缚水的体积、有效孔隙度和总孔隙度的计算。
MRIL的梯度磁场可以允许同时进行不同模式的核磁共振测量。
例如烃有着比水更长的T2,这样,我们可以用两种不同的恢复时间测量数据对油、气和水进行有效的区分。
另外,在梯度磁场中,T2衰减时间取决于回波串间隔时间TE,所以,用不同的TE时间同时进行核磁共振测量,我们就可以区分出重油、轻油、气和水。
MRIL-P已经在世界范围内得到了广泛的应用,它在砂泥岩地层中可以提供与矿物成分无关的有效孔隙度。
这些数据与电阻率数据一起使用就可以极大的提高饱和度的计算精度。
即使砂岩厚度小于仪器的磁体长度,其数据也可以得到完全的测量。
这样一来,由MRIL数据提供的储量估算值也比常规仪器所提供的估算值更加准确。
核磁共振成像测井作业技术规范1 引言核磁共振成像测井是在自然界物质间中引入一个强磁场,利用磁场和静态磁场引起核磁共振现象,来对几何异常结构进行成像,探测出围绕不同类型油气藏的空间结构信息,以指导油田勘探开发工作。
本文意在就核磁共振成像测井作业技术规范,提出相关详细资料,供大家参考。
2 技术规范要求(1)核磁共振成像测井规划阶段应付地球物理勘探的任务、具体的实施方法、地质问题的解决、技术风险分析等,并做好项目技术报告和施工组织方案;(2)测井仪器设备应符合国家质量标准及其安全法规的要求,设备安装和测试应符合国家相关规定;(3)对水泥环封承受力应符合国家规定,水泥环筒材质和尺寸应符合国家质量标准;(4)布井方式应符合国家标准,埋设区域采用专人负责,应按测井仪器的要求进行布井,质量应符合国家标准的要求;(5)测井作业应按照相关国家标准及行业规范要求进行,保证测井仪器测数据准确;同时,应配备安全装置,保证作业安全;(6)作业完成后,应对测井结果进行专业审查和重判,确保数据的准确性和质量;3 安全措施(1)作业前,应明确工作人员和项目负责人的职责,并制订好安全卫生操作规程。
(2)应根据区域的地质情况,把握安全防范的措施;(3)应严格按照国家的法律法规,把握安全防范的措施;(4)干涉测井应采用安全健康的手段,配备充足的安全防护服以及完善的管理措施,保障工作人员的安全;(5)应对作业周边地区进行密切监察,及时发现和纠正安全隐患;(6)在作业完成后,应保证现场整洁,应及时进行清理,也应当按要求拆除测井用的管道、仪器及环境处理,关闭口径大小,恢复原有状态。
4 总结核磁共振成像测井是一项重要的油气勘探技术,能够更加准确地对油气藏进行探测,对油气勘探行业有着重要的意义,必须要遵守相关技术规范要求,并落实安全措施,才能取得预期的效果。
核磁共振测井原理与应用一、核磁共振基本原理核磁共振(NMR)是物理学中的一种现象,其基本原理是原子核在磁场中的磁矩与射频脉冲之间的相互作用。
核磁共振在测井中的应用得益于其独特的物理性质,可以对地层岩石和流体进行无损检测。
二、核磁共振测井技术核磁共振测井技术利用了在地磁场中自由氢核(如H)的磁矩进动与射频脉冲的相互作用。
当射频脉冲停止后,氢核将恢复到原来的状态,这一过程中产生的信号可以被检测并用于分析地层性质。
核磁共振测井技术可以分为静态测量和动态测量两种。
三、岩石孔隙结构分析核磁共振测井可以提供关于岩石孔隙结构的详细信息。
通过测量地层中氢核的弛豫时间,可以推断出孔隙的大小、分布以及连通性,从而评估储层的渗透率和油气储量。
四、地层流体识别与分类核磁共振测井可以区分油、水、气等不同的流体,这是由于不同流体中氢核的弛豫时间不同。
此外,通过测量束缚流体和自由流体的比率,可以评估油藏的驱替效率和水淹程度。
五、地层参数反演通过核磁共振测井数据,可以反演地层的多种参数,如孔隙度、渗透率、含水饱和度等。
这一过程涉及到复杂的数学模型和算法,是核磁共振测井数据处理的关键环节。
六、测井数据处理与解释核磁共振测井数据处理包括原始数据的预处理、参数反演、解释和后处理等多个环节。
解释人员需要具备丰富的地质和测井知识,以便正确地解释测井数据,提供准确的储层评价结果。
七、核磁共振测井应用实例核磁共振测井在油气勘探和开发中得到了广泛应用。
例如,在评估油田的储层质量、监测注水作业效果、确定剩余油分布等方面发挥了重要作用。
具体实例包括评估某油田的储层孔隙结构和含油性、监测某气田的产气能力等。
这些实例证明了核磁共振测井在油气勘探和开发中的实用价值。
八、未来发展趋势与挑战随着技术的不断进步和应用需求的增加,核磁共振测井在未来将面临一些发展趋势和挑战。
例如,发展更高分辨率和灵敏度的核磁共振测井仪器、提高数据处理和解释的自动化程度、解决复杂地层和油藏条件下的应用问题等。
核磁共振成像测井作业技术规范核磁共振成像测井(NMRWellLogging)是一种非常先进的测井技术,可以用于采集准确的测井信息,以更好地评估油田矿床和流体。
本文旨在介绍核磁共振成像测井作业技术规范。
一、定义核磁共振成像测井(NMR Well Logging)是一种以核磁共振技术(NMR)为基础的、从地层探测电磁属性的新技术,该技术可以提供准确的、可靠的、全方位的小孔压力测井数据。
二、作业准备1.定测井方位:作业前需要确定测井方位,确定具体要施工的岩层,并进行深度的估计,以便为作业安排做好准备。
2.磁共振仪器的准备:核磁共振成像测井作业前需要准备核磁共振仪器,包括原子核磁共振仪器(NMR)、回旋共振仪器(CPM)和磁共振仪器(MRI)等。
3. 仪器调试:在仪器准备完成后需要对仪器进行调试,确保仪器正常工作,以及可以正常测量。
三、作业步骤1.动仪器:在仪器调试完成后,需要把仪器下到指定深度,启动仪器,开始测量准备。
2.量:对指定深度层位进行测量,并将测量结果进行数据处理,以获得更加准确的地层参数信息。
3.止仪器:在测量完毕后,需要停止仪器,并拔出仪器,以停止测量作业。
四、作业质量检查1.查仪器:在拔出仪器后,需要对仪器进行检查,以确保仪器在使用过程中没有出现故障。
2.据处理:数据处理和检查也是作业质量管理的重要部分,由于计算机科学家们近几十年来不断研发新的算法,在数据处理和数据检查方面也有了很大的进步,可以很好地帮助我们确保测井作业的质量。
3.量评价:在数据处理完成后,还需要对测井作业的质量进行评价,可以通过深度分布和电磁参数分析来评价测井数据的精度。
五、安全措施1. 仪器安全:在测井作业前,需要对仪器进行安全检查,确保其在降深过程中没有损坏,以防止出现意外。
2. 个人安全:为确保测井队员的人身安全,还需要严格遵守当地政府关于涉及安全的规定,并建立相应的安全管理制度。
3.境安全:作业期间应该保持清洁的环境,并减少环境污染,以防止出现意外。