柳州市2020年中考数学试卷含答案
- 格式:doc
- 大小:1.19 MB
- 文档页数:18
广西柳州市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的倒数是()A .B .C . 3D . -32. (2分)(2020·资兴模拟) 下列计算中,正确的是()A .B .C .D .3. (2分)温家宝总理在2009年政府工作报告中提出,今后三年内各级政府拟投入医疗卫生领域的资金将达到8500亿元人民币,用科学记数法表示“8500”亿为().A .B .C .D .4. (2分)(2017·青山模拟) 如图是一个直三棱柱的立体图和主视图、俯视图,根据立体图上的尺寸标注,它的左视图的面积为()A . 24B . 30C . 18D . 14.45. (2分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计。
下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本,其中正确的判断有()。
A . 1个B . 2个C . 3个D . 4个6. (2分)抛物线y=x2﹣8x+m的顶点在x轴上,则m等于()A . -16B . -4C . 8D . 167. (2分)(2017·昌乐模拟) 在平面直角坐标系内,把抛物线y=(x﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是()A . y=(x﹣3)2B . y=(x+1)2C . y=(x﹣1)2+5D . y=(x﹣1)2+18. (2分)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A . 2B . 1C . 0D . ﹣19. (2分)矩形具有而菱形不具有的性质是()A . 对角线相等B . 对角线互相垂直C . 对角线互相平分D . 对角线平分一组对角10. (2分)已知函数,则使y=k成立的x值恰好有三个,则k的值为()A . 2B . 3C . 8D . 9二、填空题 (共6题;共7分)11. (1分)(2016·广州) 代数式有意义时,实数x的取值范围是________.12. (1分) (2017七下·江苏期中) 已知一个多边形的每一个内角都是,则这个多边形的边数为________.13. (1分) (2020七下·青岛期中) 在同一平面内,两个角的两边分别垂直,其中一个角的度数是另一个角的倍少,那么这两个度数分别是________(只写数字,不写单位).14. (1分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF =3,则CE的长度为________.15. (1分) (2019九上·泰山期末) 二次函数的图象如图所示,以下结论:① ;②顶点坐标为;③ ;④ ;⑤ .正确有________.(填序号)16. (2分) (2016八上·顺义期末) 一列有规律的数:,2,,2 ,,…,则第6个数是________,第n个数是________(n为正整数).三、解答题 (共4题;共25分)17. (5分)(2019·云南) 计算: .18. (5分)先化简,再求值:+,其中x=2sin30°﹣1.19. (5分)已知,如图,△ABC中,∠BAC=60°,AD平分∠BAC,AC=AB+BD,求∠B的度数.20. (10分) (2017八下·昆山期末) 如图在平面直角坐标系xOy中,函数()的图象与一次函数的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图像直接写出使得的的取值范围;四、实践应用题 (共4题;共35分)21. (10分)(2017·江阴模拟) 为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表:处理方式直接丢弃直接做垃圾袋再次购物使用其它选该项的人数占总人数的百分比5%35%49%11%请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.22. (10分)一个电器超市购进A、B两种型号的电风扇后进行销售,若一台A种型号的电风扇进价比一台B 种型号的电风扇进价多30元,用2000元购进A种型号电风扇的数量是用3400元购进B种型号电风扇的数量的一半.(1)求每台A种型号电风扇和B种型号的电风扇进价分别是多少?(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价190元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?23. (5分)(2017·五华模拟) 小宇想测量位于池塘两端的A,B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A,B两点的距离.24. (10分) (2019八上·杨浦月考) 已知∠ABC=30°,点D在射线BC上,且到A点的距离等于线段a的长.(1)用圆规和直尺在图中作出点D:(不写作法,但须保留作图痕迹,且说明结果(2)如果AB=8,a=5.求△ABD的面积.五、推理论证题 (共1题;共10分)25. (10分)(2019·上海模拟) 如图,在△ABC中,AB=AC,点D在边AB上,以点A为圆心,线段AD的长为半径的⊙A与边AC相交于点E,AF⊥DE,垂足为点F,AF的延长线与边BC相交于点G,联结GE.已知DE=10,cos∠BAG= ,.求:(1)⊙A的半径AD的长;(2)∠EGC的余切值.六、拓展探索题 (共1题;共15分)26. (15分)(2011·金华) 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB 于点E、F,点E为垂足,连接CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共4题;共25分)17-1、18-1、19-1、20-1、20-2、四、实践应用题 (共4题;共35分)21-1、21-2、22-1、22-2、23-1、24-1、24-2、五、推理论证题 (共1题;共10分)25-1、25-2、六、拓展探索题 (共1题;共15分)26-1、。
广西省中考数学试卷本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。
注意:答案一律填写在答题卷上,在试题卷上作答无效.........。
考试结束,将本试卷和答题卷一并交回。
第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)请用2B 铅笔在答题卷上将选定的答案标号涂黑。
1.-5的相反数是A .-5B .5C .51D . ±52.我国南海海域面积为38000002km ,用科学记数法表示正确的是A .3.8×1052km B .3.8×1062km C .3.8×1072km D .3.8×1082km3.如图,AB∥CD ,E 在AC 的延长线上,若︒=∠34A ,︒=∠90DEC ,则D ∠的度数为A .︒17B .︒34C .︒56D .o 66 4.在函数31x y x +=-中,自变量x 的取值范围是 A .x ≥-3且1x ≠ B .x >-3且1x ≠ C .x ≥3 D .x >3 5.如图是由4个大小相同的正方体搭成的几何体,其俯视图是6.下列说法中正确的是A .篮球队员在罚球线上投篮一次,未投中是必然事件B .想了解某种饮料中含色素的情况,宜采用普查C .数据5,1,-2,2,3的中位数是-2D .一组数据的波动越大,方差越大7.下列运算正确的是A. 235a a a +=B. 22a a -=C. 632a a a ÷=D. 236()a a =第5题图AB CDCD 第3题图8.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解的个数有A.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD 中,E 是CD 的中点,AD 、BE 的延长线交于点F ,3DF =,2DE =,则平行四边形ABCD 的周长为A .5B .12C .14D .1610.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是 A .200米 B. 2003米 C. 2203米 D. 100(31)+米11.如图,在平面直角坐标系中,抛物线y =23ax +与y 轴交于点A ,过点A 与x轴平行的直线交抛物线y =213x 于B 、C 两点,则BC 的长为A .1B .2C .3D .612.如图,AB 是⊙O 的直径,AD 是⊙O 的切线, BC ∥OD 交⊙O 于点C , 若AB =2, OD =3,则BC 的长为A .32B .23C .3D .2第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,满分18分;只要求填写最后结果.) 13.分解因式:24x - = .14.小玲在一次班会中参与知识抢答活动,现有语文题6个,第9题图F ED CBA 第10题图第12题图第11题图B OAC y xO CD45°30°BDC ADA数学题5个,综合题9个,她从中随机抽取1个,抽中 数学题的概率是 .15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为cm 6、cm 8,AE ⊥BC 于点E ,则AE 的长是 cm . 16.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边OBC ∆,将点C 向左平移,使其 对应点C '恰好落在直线AB 上,则点C '的坐标为 .17.如图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π). 18.如图,第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA OB ⊥,cos 3A =,则k 的值为 .三、解答题(本大题共8题,共66分;解答应写出必要的文字说明、演算步骤或推理过程.)19.(本题6分)计算: ()︒-++⎪⎭⎫⎝⎛-+-30tan 35321160120.(本题6分)先化简,再求值:221()111a a a a a -÷+--,其中12+=a .21. (本题8分) 如图,在△ABC 中,AB AC =,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母.①作CAM ∠的平分线AN ;第18题图BO Ayx第17题图BACBAO O O图1图220﹪纪念奖三等奖二等奖一等奖45﹪纪念奖三等奖二等奖600奖项一等奖人数(人)10020030040050063252567②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.22. (本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有 名学生;(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ; (3)将图2补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23. (本题8分)某水果销售点用1000元购进甲、乙两种新出产的水果共140千克,这进价(元/千克) 售价(元/千克)甲种 5 8 乙种9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?A B CM24. (本题8分)某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25.(本题10分)如图,︒=∠90C ,⊙O 是Rt △ABC 的内切圆,分别切AB AC BC ,,于点G F E ,,,连接OF OE ,.AO 的延长线交BC 于点D ,2,6==CD AC . (1)求证:四边形OECF 为正方形; (2)求⊙O 的半径; (3)求AB 的长.OGFE DC BA乙甲72015963O y (米)x (天)26.(本题12分) 如图,已知直线121+=x y 与y 轴交于点A ,与x 轴交于点D ,抛物线c bx x y ++=221与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,直接写出点P 的坐标; (3)在抛物线的对称轴上找一点M ,使|MC AM -|的值最大,求出点M 的坐标.21OMN DC BA数学答案评分标准一.选择题BBCA DDDC CDDB 二.填空题13. (2)(2)x x +- 14.1415. 16. (﹣1,2) 17. 3π 18. -4三.解答题19.解:原式=4﹣2+1﹣333⨯4分(对一个知识点给1分) =4﹣2+1﹣1 5分 =2 6分20.解:原式=2(1)(1)(1)(1)(1)(1)(1)(1)a a a a a a a a a a ⎡⎤-+-⋅+-⎢⎥+-+-⎣⎦2分(还有其他做法) =2222(1)(1)(1)(1)a a a aa a a a ---⋅+-+- 3分 =23a a - ……4分 当a =21+时,原式=3223232+--=- ……6分 21.解:(1)作图正确 . ……3分(2)四边形ABCD 是平形四边形,理由如下: ∵AB AC =∴1ABC ∠=∠ 4分 ∵121CAM ABC ∠=∠+∠=∠∴112CAM ∠=∠∵AN 平分CAM ∠∴122CAM ∠=∠ 5分∴12∠=∠∴BC ∥AD ……6分 ∵AC 的中点是O ∴AO CO =又∵AOD COB ∠=∠ ∴AOD COB ∆≅∆∴BC =AD ……7分 ∴四边形ABCD 是平形四边形 ……8分22. 解:(1)1260.……(2分) (2)108°. ……4分(3)三等奖的人数为:1260×(1﹣20%﹣5%﹣45%)=378人,图略……6分 (4)抽到获得一等奖的学生的概率为:63÷1260=5%. ……8分23. 解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:1分5x +9(140﹣x )=1000, ……3分 解得:x =65,∴140﹣x =75(千克), ……5分 答:购进甲种水果65千克,乙种水果75千克; ……6分 (2)3×65+4×75=495,答:利润为495元. ……8分24解:(1)∵720÷(9-3)=120∴乙工程队每天修公路120米. ……1分(2)设y 乙=kx+b ,则309720k b k b +⎧⎨+⎩== ∴120360k b ⎧⎨-⎩== 2分∴y 乙=120x -360 ……3分当x =6时,y 乙=360设y 甲=kx ,则360=6k ,k =60,∴y 甲=60x ……6分 (3)当x =15时,y 甲=900,∴该公路总长为:720+900=1620(米)设需x 天完成,由题意得,(120+60)x =1620 7分 解得x =9 答:需9天完成 ……8分25. (本题满分10分)解:(1)如图,因为⊙O 是Rt △ABC 的内接圆,分别切BC ,AC ,AB 于点E ,F ,G ∴∠CFO=∠OEC=90°∵∠C=90°...........1分 (三个直角少一个,这一分就不得) ∴则四边形OECF 为 矩形,……………………….2分 又∵OE=OF=r ……………………………3分 ∴四边形OECF 为 正方形 (2) 由四边形OECF 为 正方形∴OE//AC ,CE=CF=r∴△OED ∽△ACD ……………………………4分 ∴AC OE DC DE = ∴622r r =- ………………………5分解得:r=23 ……………………………6分(3) ⊙O 是Rt △ABC 的内切圆,由(2)得DE=21,设BD=x,则BE=BG=x+21 ∵AG=AF=29,∴AB=5+x ,由222AB AC BC =+ 得222)5(6)2(+=++x x ………………8分O GFE DCBA(第21解得:x=25 ……………………………9分 ∴AB =215…………………………………10分 (若设BG=x,则方程为222)29(6)23(+=++x x 得x=3) 26. (1)直线121+=x y 与y 轴交于点A 得A (0,1),将A (0,1)、B (1,0)坐标代入y=x 2+bx+c 得,解得,∴抛物线的解折式为y=x 2﹣x+1;……………………3分(2)满足条件的点P 的坐标为(,0)或(1,0)或(3,0)或(,0); (7)分(3)抛物线的对称轴为,……………………8分∵ B 、C 关于x=对称, ∴ MC=MB ,要使|AM ﹣MC|最大,即是使|AM ﹣MB|最大,由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时|AM ﹣MB|的值最大. (9)分易知直线AB 的解折式为y=﹣x+1………………10分∴ 由,得⎪⎪⎩⎪⎪⎨⎧-==2123y x∴M(1.5,-0.5) ………………12分。
广西柳州市2020年中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中只有一项是正确的,每小题选对得3分,选错、不选或多选均得0分)1.(3分)某几何体的三视图如图所示,则该几何体是()A.正方体B.长方体C.三棱柱D.三棱锥2.(3分)计算﹣10﹣8所得的结果是()A.﹣2 B.2C.18 D.﹣183.(3分)在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0C.4D.4.(3分)如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.(3分)下列计算正确的是()A.3a•2a=5a B.3a•2a=5a2C.3a•2a=6a D.3a•2a=6a26.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)7.(3分)学校舞蹈队买了8双舞蹈鞋,鞋的尺码分别为:36,35,36,37,38,35,36,36,这组数据的众数是()A.35 B.36 C.37 D.388.(3分)下列四个图中,∠x是圆周角的是()A.B.C.D.9.(3分)下列式子是因式分解的是()A.x(x﹣1)=x2﹣1 B.x2﹣x=x(x+1)C.x2+x=x(x+1)D.x2﹣x=x(x+1)(x﹣1)10.(3分)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米11.(3分)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.12.(3分)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD 的长为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分,请将答案直接填写在答题卡中相应的横线上,在草稿纸上、试题上答题无效)13.(3分)不等式4x>8的解集是x>2.14.(3分)若分式有意义,则x≠2.15.(3分)一个袋中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是,则袋中有7个白球.16.(3分)学校组织“我的中国梦”演讲比赛,每位选手的最后得分为去掉一个最低分、一个最高分后的平均数.7位评委给小红同学的打分是:9.3,9.6,9.4,9.8,9.5,9.1,9.7,则小红同学的最后得分是9.4.17.(3分)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.18.(3分)有下列4个命题:①方程x2﹣(+)x+=0的根是和.②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在y=的图象上,则k=﹣1.④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.上述4个命题中,真命题的序号是①②③④.三、解答题(本大题共8小题,满分66分.解答时应写出必要的文字说明、验算步骤或推理过程.请将解答写在答题卡中相应的区域内,画图或作辅助线时使用铅笔画出,确定后必需使用黑色字迹的签字笔秒黑.在草稿纸、试题上答题无效)19.(6分)计算:(﹣2)2﹣()0.20.(6分)解方程:3(x+4)=x.21.(6分)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果;(2)求韦玲胜出的概率.22.(8分)如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.23.(8分)某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:时间x(分钟)…10 20 30 40 …水量y(m3)…3750 3500 3250 3000 …(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.24.(10分)如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC 沿BC翻折得到△EBC.(1)四边形ABEC一定是什么四边形?(2)证明你在(1)中所得出的结论.25.(10分)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=.(1)求OD、OC的长;(2)求证:△DOC∽△OBC;(3)求证:CD是⊙O切线.26.(12分)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).(1)求该二次函数的解析式;(2)当y>﹣3,写出x的取值范围;(3)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.一、选择题1-6 CDCAD B 7-12 BCCADA二、填空题13、x>214、215、716、9.417、2018、①②③④三、解答题19、解答:解:原式=4﹣1=3.20、解答:解:去括号得:3x+12=x,移项合并得:2x=﹣12,解得:x=﹣6.21、解答:解:(1)画树状图得:则有9种等可能的结果;(2)∵韦玲胜出的可能性有3种,故韦玲胜出的概率为:.22、解答:解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.23、解答:解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得,所以,y=﹣250+4000.24、解答:(1)解:四边形ABEC一定是平行四边形;(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,∴AB=DC,AC=BD,由折叠的性质可得:EC=DC,DB=BE,∴EC=AB,BE=AC,∴四边形ABEC是平行四边形.25、解答:(1)解:∵AD、BC是⊙O的两条切线,∴∠OAD=∠OBC=90°,在Rt△AOD与Rt△BOC中,OA=OB=3,AD=2,BC=,根据勾股定理得:OD==,OC==;(2)证明:过D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°,∴四边形ABED为矩形,∴BE=AD=2,DE=AB=6,EC=BC﹣BE=,在Rt△EDC中,根据勾股定理得:DC==,∵===,∴△DOC∽△OBC;(3)证明:过O作OF⊥DC,交DC于点F,∵△DOC∽△OBC,∴∠BCO=∠FCO,∵在△BCO和△FCO中,,∴△BCO≌△FCO(AAS),∴OB=OF,则CD是⊙O切线.26、解答:解:(1)∵点(1,0),(5,0),(3,﹣4)在抛物线上,∴,解得.∴二次函数的解析式为:y=x2﹣6x+5.(2)在y=x2﹣6x+5中,令y=﹣3,即x2﹣6x+5=﹣3,整理得:x2﹣6x+8=0,解得x1=2,x2=4.结合函数图象,可知当y>﹣3时,x的取值范围是:x<2或x>4.(3)设直线y=﹣2x﹣6与x轴,y轴分别交于点M,点N,令x=0,得y=﹣6;令y=0,得x=﹣2.∴M(﹣3,0),N(0,﹣6),∴OM=3,ON=6,由勾股定理得:MN=3,∴tan∠MNO==,sin∠MNO==.设点C坐标为(x,y),则y=x2﹣6x+5.过点C作CD⊥y轴于点D,则CD=x,OD=﹣y,DN=6+y.过点C作直线y=﹣2x﹣6的垂线,垂足为E,交y轴于点F,在Rt△CDF中,DF=CD•tan∠MNO=x,CF====x.∴FN=DN﹣DF=6+y﹣x.在Rt△EFN中,EF=FN•sin∠MNO=(6+y﹣x).∴CE=CF+EF=x+(6+y﹣x),∵C(x,y)在抛物线上,∴y=x2﹣6x+5,代入上式整理得:CE=(x2﹣4x+11)=(x﹣2)2+,∴当x=2时,CE有最小值,最小值为.当x=2时,y=x2﹣6x+5=﹣3,∴C(2,﹣3).△ABC的最小面积为:AB•CE=×2×=.∴当C点坐标为(2,﹣3)时,△ABC的面积最小,面积的最小值为.。
2020年广西柳州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是符合要求的。
)1.−15的绝对值是()A.5B.﹣5C.−15D.152.如图,这是一个由5个完全相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.下列四个图案中,是中心对称图形的是()A.B.C.D.4.2020年是我国全面建成小康社会收官之年,我市将全面完成剩余19700贫困人口脱贫的任务.用科学记数法将数据19700表示为()A.0.197×105B.1.97×104C.19.7×103D.197×1025.为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14%B.16%C.20%D.50%6.如图,点A 、B 、C 在⊙O 上,若∠BOC =70°,则∠A 的度数为( )A .35°B .40°C .55°D .70°7.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .8.如图,在Rt △ABC 中,∠C =90°,AB =4,AC =3,则cos B =BCAB=( )A .35B .45C .√74D .349.2ab •a 2的计算结果是( ) A .2abB .4abC .2a 3bD .4a 3b10.如图是甲、乙两名射击运动员10次射击成绩的折线统计图,根据折线图判断下列说法正确的是( )A .甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定11.下列多项式中,能用平方差公式进行因式分解的是()A.a2﹣b2B.﹣a2﹣b2C.a2+b2D.a2+2ab+b2 12.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.90x−6=60xB.90x=60x+6C.90x+6=60xD.90x=60x−6二、填空题(共6小题,每小题3分,满分18分)13.如图,直线l1,l2被直线l3所截,l1∥l2,已知∠1=80°,则∠2=.14.一元一次方程2x﹣8=0的解是x=.15.分式1x−2中,x的取值范围是.16.点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为.17.如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有个菱形.18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰好落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的H处,有下列结论:①∠EBG=45°;②2S△BFG=5S△FGH;③△DEF∽△ABG;④4CE=5ED.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共60分,解答时应写出必要的文字说明,演算步骤或推理过程)19.(6分)计算:16×12−8+2√4.20.(6分)如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB . 求证:△AOC ≌△BOC .21.(8分)解不等式组{x +2>1,①1−2x ≥−3,②请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(Ⅳ)原不等式组的解集为 .22.(8分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A 、B 、C 、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是 ;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)23.(8分)如图,已知▱ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.(1)求△ADO的周长;(2)求证:△ADO是直角三角形.24.(10分)如图,平行于y轴的直尺(部分)与反比例函数y=mx(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.(1)请结合图象,直接写出:①点A的坐标是;②不等式kx+b>m x的解集是;(2)求直线AC的解析式.25.(10分)如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.(1)求证:△ACD∽△CFD;(2)若∠CDA=∠GCA,求证:CG为⊙O的切线;(3)若sin∠CAD=13,求tan∠CDA的值.2020年广西柳州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
广西柳州市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2015七上·海棠期中) 下列正确的是()A . ﹣2的相反数是B . |﹣2|=2C . ﹣2的倒数是D . ﹣2>02. (2分)(2011·徐州) 下列事件中属于随机事件的是()A . 抛出的篮球会落下B . 从装有黑球,白球的袋里摸出红球C . 367人中有2人是同月同日出生D . 买1张彩票,中500万大奖3. (2分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A .B .C .D .4. (2分) (2017八上·乌拉特前旗期末) 下列美丽的图案中,是轴对称图形的是()A .B .C .D .5. (2分)若3 + =5 ,则m的值为()A . 56B . 34C . 28D . 146. (2分)(2016·福田模拟) 景新中学为了了解学生体育中考备考情况,随机抽查了10名学生的引体向上,结果如下表:引体向上(次)181920学生数262则关于这10名学生的引体向上数据,下列说法错误的是()A . 极差是2B . 众数是19C . 平均数是19D . 方差是47. (2分) (2018八上·江干期末) 如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A .B .C .D .8. (2分)对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A . a=3,b=3B . a=﹣3,b=﹣3C . a=3,b=﹣3D . a=﹣3,b=﹣29. (2分)二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是()A . -1<x<3;B . x<-1;C . x>3;D . x<-1或x>3.10. (2分) (2019七下·长春月考) 如图,把一张长方形纸片ABCD沿EF折叠后,点C , D分别落在C , D 的位置上,EC交AD于点G ,已知∠EFG=58°,则∠BEG等于()A . 58°B . 116°C . 64°D . 74°二、填空题 (共6题;共6分)11. (1分) 2013年我市财政收入继续领跑嘉兴县(市)区,达到94.3亿元,这个数可用科学记数法表示为________元.12. (1分) (2018九上·山东期中) 如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;①②GP=GD;③点P是△ACQ的外心,其中结论正确的是________ (只需填写序号).13. (1分) (2016九上·仙游期中) 关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是________.14. (1分)某班45名同学哎学习举行的“爱心涌动校园”募捐活动中捐款情况如下表所示捐款数(元)1020304050捐款人数(人)8171622则该班捐款的平均数为________ 元.15. (1分)(2019·嘉善模拟) 在矩形ABCD中,∠ABC的平分线交边AD于点E,∠BED的平分线交直线CD 于点F.若AB=3,CF=1,则BC=________.16. (1分)若关于x的方程的解为正数,则m的取值范围是________ .三、解答题: (共9题;共90分)17. (5分)先化简代数式÷ ,再选择方程x2+2x﹣3=0的一个根计算该代数式的值.18. (10分) (2015九上·罗湖期末) 如图,把带有指针的圆形转盘A、B分别分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).小明、小乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为3的倍数,则小明胜;否则,小乐胜.(若有指针落在分割线上,则无效,需重新转动转盘)(1)试用列表或画树状图的方法,求小明获胜的概率;(2)请问这个游戏规则对小明、小乐双方公平吗?做出判断并说明理由.19. (15分)(2016·河池) 如图,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于A(﹣3,2),B(2,n).(1)求反比例函数y= 的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<的解集.20. (5分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.求△ABC的内切圆☉O的半径r.21. (15分) (2019九上·孝南月考) 如图,AB是⊙O的直径,点D在AB的延长线上,点C、E是⊙O上的两点,CE=CB,,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF(3)若BD=1, ,求直径AB的长.22. (10分)为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.(1)求篮球、足球的单价分别为多少元?(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?23. (10分) (2017八上·云南期中) 如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)求证:BC是⊙O的切线;(2)设阴影部分的面积为a,b,⊙O的面积为S,请写出S与a,b的关系式.24. (10分)(2017·黄冈模拟) 如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.25. (10分)(2017·道外模拟) 图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题: (共9题;共90分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
2020年广西柳州市初中毕业升学考试初中数学数学试卷〔考试时刻共120分钟,全卷总分值120分〕第一卷〔选择题,共18分〕本卷须知:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第一卷为第1页至第二页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦洁净后,再填涂其它答案.在第Ι卷上答题无效.一、选择题〔本大题共6小题,每题3分,总分值18分.在每个小题给出的四个选项中,只有一项为哪一项正确的,每题选对得3分,选错、不选或多项选择均得零分〕1.在3,0,2-,2四个数中,最小的数是〔 〕A .3B .0C .2-D .22.如以下图所示,图中三角形的个数共有〔 〕A .1个B .2个C .3 个D .4个3.假设b a <,那么以下各式中一定成立的是〔 〕A .11-<-b aB .33b a >C .b a -<-D .bc ac <4.某学习小组7个男同学的身高〔单位:米〕为:1.66、1.65、1.72、1.58、1.64、1.66、1.70,那么这组数据的众数为〔 〕A .1.65B .1.66C .1.67D .1.70 5.分式方程3221+=x x 的解是〔 〕 A .0=xB .1=xC .2=xD .3=x 6.一根笔直的小木棒〔记为线段AB 〕,它的正投影为线段CD ,那么以下各式中一定成立的是〔 〕A .AB=CDB .AB ≤CDC .CD AB > D .AB ≥CD第二卷〔非选择题,总分值102分〕二、填空题〔本大题共10小题,每题3分,总分值30分. 请将答案直截了当填写在题中横线上的空白处〕7.运算:2)5(0+-= . 8.请写出一个是轴对称图形的图形名称。
答: .9.运算:312-= .10.在如以下图中,直线AB ∥CD ,直线EF 与AB 、CD 分不相交于点E 、F ,假如∠1=46°,那么∠2= °.11.一个物表达在的速度是5米/秒,其速度每秒增加2米/秒,那么再过 秒它的速度为15米/秒.12.因式分解:22x x -= .13.反比例函数 xm y 1+=的图象通过点〔2,1〕,那么m 的值是 . 14.在一个不透亮的口袋中装有假设干个只有颜色不同的球,假如袋中只有4个红球,且摸出红球的概率为31,那么袋中的球共有 个. 15.如以下图,︒=∠30MAB ,P 为AB 上的点,且6=AP ,圆P 与AM 相切,那么圆P 的半径为 .16.矩形内有一点P 到各边的距离分不为1、3、5、7,那么该矩形的最大面积为 平方单位.三、解答题〔本大题10小题,总分值72分.解承诺写出必要的文字讲明、演算步骤或推理过程〕17.〔此题总分值6分〕先化简,再求值:)5()1(3---x x ,其中2=x .18.〔此题总分值6分〕解不等式组⎩⎨⎧>+<+② 392① 31x x ,并把它的解集表示在数轴上.19.〔此题总分值6分〕某学习小组对所在城区初中学生的视力情形进行抽样调查,图1是这些同学依照调查结果画出的条形统计图.请依照图中信息解决以下咨询题:〔1〕本次抽查活动中共抽查了多少名学生?〔2〕请估算该城区视力不低于4.8的学生所占的比例,用扇形统计图在图2中表示出来. 〔3〕假设该城区八年级共有4000名学生,请估量这些学生中视力低于4.8的学生约有多少人?20.〔此题总分值6分〕如以下图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,3 ,6==AB BC ,求四边形ABCD 的周长.21.〔此题总分值6分〕如图,正方形网格中,△ABC 为格点三角形〔顶点差不多上格点〕,将△ABC 绕点A 按逆时针方向旋转90°得到11AB C △.〔1〕在正方形网格中,作出11AB C △;〔不要求写作法〕〔2〕设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.〔结果保留π〕22.〔此题总分值6分〕如以下图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?〔结果精确到0.1 m ,参考数据:73.13≈〕23.〔此题总分值8分〕如以下图,直线l 与x 轴、y 轴分不交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 动身,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 动身,以每秒2个单位长度的速度沿O →M 的方向运动.点QP 、同时动身,当点Q到达点M 时,QP 、两点同时停止运动,设运动时刻为t 秒.〔1〕设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范畴. 〔2〕当t 为何值时,QP 与l 平行?24.〔此题总分值8分〕某校积极推进〝阳光体育〞工程,本学期在九年级11个班中开展篮球单循环竞赛〔每个班与其它班分不进行一场竞赛,每班需进行10场竞赛〕.竞赛规那么规定:每场竞赛都要分出胜负,胜一场得3分,负一场得1-分。
广西柳州市2019-2020学年中考数学试卷(含答案)一、单选题1.计算:()A. B. 2 C. 0 D.【答案】A【考点】有理数的加法2.下列图形中,是中心对称图形的是()A. B. C. D.【答案】B【考点】中心对称及中心对称图形3.现有四张扑克牌:红桃、黑桃、梅花和方块.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃的概率为()A. 1B.C.D.【答案】B【考点】简单事件概率的计算4.世界人口约7000000000人,用科学记数法可表示为()A.B.C.D.【答案】C【考点】科学记数法—表示绝对值较大的数5.如图,在中,,,,则()A. B. C. D.【答案】A【考点】勾股定理,锐角三角函数的定义6.如图,,,,是上的四个点,,,则的度数为()A.B.C.D.【答案】 D【考点】圆周角定理7.苹果原价是每斤元,现在按8折出售,假如现在要买一斤,那么需要付费()A. 元B. 元C. 元D. 元【答案】A【考点】列式表示数量关系8.如图是某年参加国际教育评估的15个国家学生的数学平均成绩的扇形统计图,由图可知,学生的数学平均成绩在之间的国家占()A. B. C. D.【答案】 D【考点】利用统计图表分析实际问题9.计算:()A. B. C. D.【答案】B【考点】单项式乘单项式10.已知反比例函数的解析式为,则的取值范围是()A. B. C. D.【答案】C【考点】反比例函数的定义二、填空题11.如图,,若,则________ .【答案】46【考点】平行线的性质12.如图,在平面直角坐标系中,点的坐标是________.【答案】(﹣2,3)【考点】点的坐标13.不等式的解集是________.【答案】x≥﹣1【考点】解一元一次不等式14.一元二次方程的解是________.【答案】x1=3,x2=﹣3【考点】直接开平方法解一元二次方程15.篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为________.【答案】【考点】二元一次方程组的实际应用-鸡兔同笼问题16.如图,在中,,,,,则的长为________.【答案】5【考点】含30度角的直角三角形,勾股定理,相似三角形的判定与性质三、解答题17.计算:2 +3.【答案】解:2 +3=4+3=7.【考点】实数的运算18.如图,和相交于点,,.求证:.【答案】解:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【考点】三角形全等的判定19.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.【答案】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m【考点】平均数及其计算20.解方程:.【答案】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【考点】解分式方程21.如图,四边形是菱形,对角线,相交于点,且.(1)求菱形的周长;(2)若,求的长.【答案】(1)解:∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8(2)解:∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO ,∴BD=2【考点】勾股定理,菱形的性质22.如图,一次函数的图象与反比例函数的图象交于,,两点.(1)求该反比例函数的解析式;(2)求的值及该一次函数的解析式.【答案】(1)解:∵反比例函数y 的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y ;(2)解:把B(,n)代入反比例函数解析式,可得n=3,解得n=﹣6,∴B(,﹣6),把A(3,1),B(,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5【考点】待定系数法求一次函数解析式,待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题23.如图,为的内接三角形,为的直径,过点作的切线交的延长线于点.(1)求证:;(2)过点作的切线交于点,求证:;(3)若点为直径下方半圆的中点,连接交于点,且,,求的长.【答案】(1)证明:∵AB是⊙O直径,∴∠ACD=∠ACB=90°.∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°.∵∠D=∠D,∴△DAC∽△DBA;(2)证明:∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA.∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE AD(3)解:如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD 2,过点G作GH⊥BD于H,∴tan∠ABD 2,∴GH=2BH.∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH.在Rt△ABC中,tan∠ABC 2,∴AC=2BC,根据勾股定理得:AC2+BC2=AB2,∴4BC2+BC2=9,∴BC ,∴3BH ,∴BH ,∴GH=2BH .在Rt△CHG中,∠BCF=45°,∴CG GH .【考点】圆周角定理,切线的性质,相似三角形的判定与性质,解直角三角形的应用,切线长定理24.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)解:由题意A(,0),B(﹣3 ,0),C(0,﹣3),设抛物线的解析式为y=a (x+3 )(x ),把C(0,﹣3)代入得到a ,∴抛物线的解析式为y x2x﹣3 (2)解:在Rt△AOC中,tan∠OAC ,∴∠OAC=60°.∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y x﹣1,由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).∵FH=PH,∴1 m﹣1﹣(m2m﹣3)解得m 或(舍弃),∴当FH=HP时,m的值为(3)解:如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EO OA=3,∴E(0,3).∵C(0,﹣3),∴HC 2,AH=2FH=4,∴QH CH=1,在HA上取一点K,使得HK ,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQ AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,相似三角形的判定与性质,二次函数与一次函数的综合应用,二次函数的实际应用-动态几何问题。
2020年广西柳州市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.12的绝对值是()A. −12B. 12C. −2D. 22.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是()A.B.C.D.3.下列几种汽车标志图案是中心对称图形的是()A. B. C. D.4.500米口径球面射电望远镜简称FAST,被誉为“中国天眼”,历时22年建成,占地约25万平方米.其中数据“25万”可用科学记数法表示为()A. 2.5×105B. 2.2×106C. 5×105D. 2.5×1085.为了筹备班级毕业联欢会,班长对全班50名同学喜欢吃哪几种水果进行了民意调查,小明将班长的统计结果绘制成如图所示的条形统计图.下列结论错误的是()A. 一个人可以喜欢吃几种水果B. 喜欢吃葡萄的人数最多C. 喜欢吃苹果的人数是喜欢吃梨人数的3倍D. 喜欢吃香蕉的人数占全班人数的20%6.如图,A,B,C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是()A. 25°B. 50°C. 60°D. 90°AB;AB=2OB;AO+OB=AB中,能7.已知点O在线段A、B上,则在等式AO=OB;OB=12判定点O是线段AB中点的有()A. 1个B. 2个C. 3个D. 4个8.如图,在Rt△ABC中,∠C=90°,AC=2BC,则sin B的值为()A. 2√55B. 12C. √55D. 29.计算:−3x2⋅8xy2=()A. 5x2y2 B. 24x2y2C. 11x3y2 D. −24x3y2 10.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A. S1<S2B. S1>S2C. S1=S2D. S1≥S211.下列各式中能用平方差公式因式分解的是()A. −x2y2B. x2+y2C. x2−y2D. x−y12.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可以列出方程为()A. 480x =360140−xB. 480140−x=480xC. 480x +360x=140 D. 360x−140=4808x二、填空题(本大题共6小题,共18.0分)13.如图,直线AB,CD被直线AE所截,AB//CD,∠A=110°,则∠1=______度.14.一元一次方程6−8x=0的解是__________.15.(1)若分式2a+3a−1有意义,则a的取值范围是;(2)若分式2x+1无意义,则x的值为.16.已知点M(−1,5)向右平移3个单位长度,又向上平移4个单位长度得到点N的坐标为________.17.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有______个正方形.18.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为______.三、解答题(本大题共8小题,共66.0分)19.计算:(π−4)0+(−1)−2−|√2−2|.20. 已知:如图,点D ,C 在BF 上,且BD =CF ,∠B =∠F ,∠A =∠E .求证:△ABC≌△EFD .21. 解不等式组{x +11≥2x +3①x+72−1>2x −(3x −2)②并把解集在数轴上表示出来.22.有4张卡片,正面分别写上1,2,3,4,它们的背面都相同.现将它们背面朝上,先从中任意摸出一张,卡片不放回,再任意摸出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求摸出的两张卡片上的数之和大于5的概率.23.如图所示,▱ABCD的对角线AC,BD相交于点O,AE=EB,OE=3,AB=5.求▱ABCD的周长.x+2分别与x,y轴交于点B、A两点,与反比例函数24.如图在平面直角坐标系中,直线y=−12的图象分别交于点C、D两点,CE⊥x轴于点E,点E坐标为(−2,0)。
2020年广西中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106 5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab 3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax 2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x 与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a 2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BF=BC,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB?BC=OC?BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE =360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE =90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG?CE=CB?EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG=?DQ?CH=CH?DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x 与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE?k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE?k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM?|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN?|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键。
2020年柳州市初中毕业升学考试试卷数学(考试时间共120分钟,全卷满分120分)第Ⅰ卷(选择题,共36分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅰ卷为第1页至第2页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦干净后,再填涂其它答案. 在第Ⅰ卷上答题无效.一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,错选、不选或多选均得零分) 1.5-的相反数是A .5 B.5- C.55-D.552.如图1,点A B C 、、是直线l 上的三个点,图中共有线段条数是A .1条 B.2条 C.3条 D.4条 3.三条直线a b c 、、,若a c ∥,b c ∥,则a 与b 的位置关系是A .a b ⊥ B.a b ∥ C.a b a b ⊥或∥ D.无法确定 4.图2的几何体中,主视图、左视图、俯视图均相同的是图1图25.若分式2有意义,则x的取值范围是3x-A.3x>x<D.3x≠B.3x=C.36.不等式5x+≥8的解集在数轴上表示为A. B. C. D.7.一个正多边形的一个内角为120度,则这个正多边形的边数为A.9 B.8 C.7 D.68.如图3,Rt ABC∠的平分线BD交AC于D,若3cmCD=,则点D∠=°,ABC△中,90C到AB的距离DE是A.5cm B.4cm C.3cm D.2cm图3 图4 图59.如图4,在正方形ABCD的外侧作等边ADE∠的度数为△,则AEBA.10°B.12.5°C.15°D.20°10.上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是A.19岁B.20岁C.21岁D.22岁11.抛物线2=-++上部分点的横坐标x,纵坐标y的对应值如下表:y x bx cx…2-1-0 1 2 …y…0 4 6 6 4 …从上表可知,下列说法正确的个数是①抛物线与x轴的一个交点为(20)-,②抛物线与y轴的交点为(06),③抛物线的对称轴是:1x=④在对称轴左侧y随x 增大而增大A.1 B.2 C.3 D.412.如图6,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B'处,点A对应点为A',且3B C'=,则图6AM的长是A.1.5B.2C.2.25D.2.52010年柳州市初中毕业升学考试试卷第Ⅱ卷(非选择题,共84分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅱ卷为第3页至第10页.答题时,用蓝黑色墨水笔或圆珠笔直接将答案写在试卷上.二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在题中横线上的空白处)·= .13.计算:2314.因式分解:29x-=.15.写出一个经过点(11),的一次函数解析式.16.2010年广州亚运会吉祥物取名“乐羊羊”.图7中各图是按照一定规律排列的羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有只羊.图717.关于x 的一元二次方程(3)(1)0x x +-=的根是 .18.如图8,AB 是O ⊙的直径,弦2cm BC =,F 是弦BC 的中点,60ABC ∠=°.若动点E 以2cm/s 的速度从A 点出发沿着A B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当t值为 s 时,BEF △是直角三角形.三、解答题(本大题8分,满分66分.解答应写出必要的文字说明、演算步骤或推理过程) 19.(本题满分6分)计算:30(2)(20103)tan 45-+--°.20.(本题满分6分)如图9,在88⨯的正方形网格中,ABC △的顶点和线段EF 的端点都在边长为1的小正方形的顶点上.(1)填空:ABC ∠= .BC = ;(2)请你在图中找出一点D ,再连接DE DF 、,使以D E F 、、为顶点的三角形与ABC △全ACB FOE 图8等,并加以证明.21.(本题满分6分)桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”“4”.先将卡片背面朝上洗匀.(1)如果让小唐从中任意抽取一张,抽到奇数的概率是;(2)如果让小唐从中同时抽取两张.游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由.22.(本题满分8分)如图10,从热气球P 上测得两建筑物A B 、的底部的俯角分别为45°和30°,如果A B 、两建筑物的距离为90m ,P 点在地面上的正投影恰好落在线段AB 上,求热气球P 的高度.(结果精确到0.01m ,参考数据:3 1.732≈,2 1.414≈)23.(本题满发8分)目前,“低碳”已成为保护地球环境的热门话题.风能是一种清洁能源,近几年我国风电装机容量迅速增长.图11是我国2003年-2009年部分年份的内力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题.45°30°图10(1)2007年,我国风力发电装机容量已达 万千瓦;从2003年到2009年,我国风力发电装机容量平均每年增长......万千瓦; (2)求2007~2009这两年装机容量的年平均增长率......;(参考数据: 5.04 2.24≈,1.26 1.12≈,14 3.74≈)(3)按(2)的增长率,请你预测2010年我国风力发电装机容量.(结果保留到0.1万千瓦)图1124.(本题满分10分)某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低?25.(本题满分10分)如图12,AB 为O ⊙直径,且弦CD AB ⊥于E ,过点B 的切线与AD 的延长线交于点F . (1)若M 是AD 的中点,连接ME 并延长ME 交BC 于N .求证:MN BC ⊥.(2)若4cos 35C DF ∠==,,求O ⊙的半径.图1226.(本题满分12分)如图13,过点(43)P -,作x 轴、y 轴的垂线,分别交x 轴、y 轴于A B 、两点,交双曲线(2)ky k x=≥于E F 、两点. (1)点E 的坐标是 ,点F 的坐标是 ;(均用含k 的式子表示) (2)判断EF 与AB 的位置关系,并证明你的结论;(3)记PEF OEF S S S =-△△,S 是否有最小值?若有,求出其最小值;若没有,请说明理由.图132010年柳州市初中毕业升学考试数学参考答案及评分标准第Ⅰ卷:一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12答案A CB D A A DC C B C B 第Ⅱ卷:二、填空题题号13 14 15 16 17 18答案6(3)(3)x x+-如y x=,等等(答案不唯一,只要正确均可得分)55 1x=或3x=-1或1.75或2.25(说明:第17题只写对一个结果给2分,两个结果都写对给3分;第18题每写对一个结果给1分)三、解答题:19.本题满分6分.解:原式=811-+-····································································································· 3分=8-··············································································································· 6分20.本题满分6分.(1)135ABC∠=°,22BC=,··················································2分(2)(说明:D 的位置有四处,分别是图中的1234D D D D 、、、.此处画出D 在1D 处的位置及证明,D 在其余位置的画法及证明参照此法给分)解:EFD △的位置如图所示.················································ 3分证明:FD BC ===························································ 4分9045135EFD ABC ∠=∠==°+?° ·············································································· 5分2EF AB ==EFD ABC ∴△≌△ ······································································································· 6分(说明:其他证法参照此法给分)21.本题满分6分.解:(1)12················································································································· 2分 (2)(方法一)这个游戏不公平. ······································································································· 3分理由如下:任意抽取两个数,共有6种不同的抽法,其中和为奇数的抽法共有4种. P ∴(和为奇数)=4263= ··························································································· 4分 P (和为偶数)=13····································································································· 5分 (方法二)设2008年的风力发电装机容量为a 万千瓦.5002520500a a a--= ········································································································ 4分 21260000a = ···········································································································0a >1122a ∴≈ ·············································································································· 5分经检验,1122a ≈是所列方程的根.则2007到2009这两年装机容量的年增长率为1122500 1.24124%500-=≈ ····· 6分答:2007到2009这两年装机容量的年平均增长率约为124%.(3)(1 1.24)25205644.8+⨯= ················································································ 7分∴2010年我国风力发电装机容量约为5644.8万千瓦. ······································· 8分24.本题满分10分.解:(1)设甲种树苗买x 株,则乙种树苗买(300)x -株. ································ 1分6090(300)21000x x +-= ···························································································· 3分200x =······························································································ 4分 300200100-=····························································································· 5分 答:甲种树苗买200株,乙种树苗买100株.(2)设买x 株甲种树苗,(300)x -株乙种树苗时该小区的空气净化指数之和不低于90. 0.20.6(300)90x x +-≥ ······························································································· 6分0.21800.690x x +-≥0.490x --≥225x ≤························································································· 7分此时费用6090(300)y x x =+-3027000y x =-+·························································································· 8分 y 是x 的一次函数,y 随x 的增大而减少∴当225x =最大时,302252700020250y =-⨯+=最小(元) ································ 9分即应买225株甲种树苗,75株乙种树苗时该小区的空气净化指数之和不低于90,费用最小为20250元. ············································································································ 10分(说明:其他解法参照此法给分)25.本题满分10分(1)(方法一)连接AC .AB 为O ⊙的直径,且AB CD ⊥于E ,由垂径定理得:点E 是CD 的中点.························· 1分 又M 是AD 的中点ME ∴是DAC △的中位线 ············································ 2分MN AC ∴∥···································································· 3分 AB 为O ⊙直径,90ACB ∴∠=°,·························· 4分90MNB ∴∠=°即MN BC ⊥········································· 5分 (方法二)AB CD ⊥,90AED BEC ∴∠=∠=°························ 1分 M 是AD 的中点,ME AM ∴=,即有MEA A ∠=∠·············································· 2分 又MEA BEN ∠=∠,由A ∠与C ∠同对BD 知C A ∠=∠C BEN ∴∠=∠ ·············································································································· 3分 又90C CBE ∠+∠=°90CBE BEN ∴∠+∠=°································································································ 4分 90BNE ∴∠=°,即MN BC ⊥. ················································································ 5分 (方法三)AB CD ⊥,90AED ∴∠=° ······················································································ 1分 由于M 是AD 的中点,ME MD ∴=,即有MED EDM ∠=∠又CBE ∠与EDA ∠同对AC ,CBE EDA ∴∠=∠ ················································· 2分 又MED NEC ∠=∠NEC CBE ∴∠=∠ ·········································································································3分 又90C CBE ∠+∠=°90NEC C ∴∠+∠=° ·····································································································4分即有90CNE ∠=°,MN BC ∴⊥ ················································································ 5分(2)连接BDBCD ∠与BAF ∠同对BD ,C A ∴∠=∠ 4cos cos 5A C ∴∠=∠= ············································· 6分 BF 为O ⊙的切线,90ABF ∴∠=°在Rt ABF △中,4cos 5AB A AF ∠== 设4AB x =,则5AF x =,由勾股定理得:3BF x =························································································ 7分又AB 为O ⊙直径,BD AD ∴⊥ABF BDF ∴△∽△BF DF AF BF∴= ··················································································································· 8分 即3353x x x= 53x = ···················································································································· 9分 ∴直径5204433AB x ==⨯= 则O ⊙的半径为103····································································································· 10分 (说明:其他解法参照此法给分)26.本题满分12分.解:(1)44k E ⎛⎫-- ⎪⎝⎭,,33k F ⎛⎫ ⎪⎝⎭, ·············································································· 3分 (说明:只写对一个点的坐标给2分,写对两个点的坐标给3分)(2)(证法一)结论:EF AB ∥ ··········································································· 4分证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫ ⎪⎝⎭,, 即得:3443k k PE PF =+=+, ·················································································· 5分。