阶行列式定义
- 格式:ppt
- 大小:295.51 KB
- 文档页数:28
关于行列式的一般定义和计算方法(一)n 阶行列式的定义n 阶行列式nnn n n n a a a a a a a a a212222111211=∑-nnn j j j nj j j j j j a a a 21212121)()1(τ2 N 阶行列式是N !项的代数和;3、N 阶行列式的每项都是位于不同行、不同列N 个元素的乘积;特点:(1)(项数)它是3!项的代数和;(2)(项的构成)展开式中的每一项都是取自行列式不同行不同列的三个元素之积.其一般项为:(3)(符号规律)三个正项的列标构成的排列为123,231,312.它们都是偶排列;三个负项的列标构成的排列为321,213,132, 它们都是奇排列.§行列式的性质性质1:行列式和它的转置行列式的值相同。
即nn n n n n a a a a a a a a a212222111211=nnn n n n a a a a a a a a a212221212111; 行列式对行满足的性质对列也同样满足。
性质2互换行列式的两行(列),行列式的值变号.如: D=d c b a =ad-bc , b a dc =bc-ad= -D以r i 表第i 行,C j 表第j 列。
交换 i ,j 两行记为rjir ↔,交换i,j 两列记作Ci322311332112312213a a a a a a a a a ---322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a D ++==(1↔C j 。
性质3:如果一个行列式的两行(或两列)完全相同,那么这个行列式的值等于零。
性质4:把一个行列式的某一行(或某一列)的所有元素同乘以某一个常数k的结果等于用这个常数k 乘这个行列式。
(第i 行乘以k ,记作r i k ⨯)推论1:一个行列式的某一行(或某一列)的所有元素的公因式可以提到行列式符号的前面。
行列式的定义与计算行列式是线性代数中的一个重要概念,用于描述线性方程组的性质以及矩阵的特征。
在本文中,将介绍行列式的定义以及计算方法。
一、行列式的定义行列式是一个数学函数,用一种特定的方式将矩阵映射为一个数字。
对于n阶矩阵A = [aij]来说,其行列式记作det(A)或|A|。
行列式的定义如下:当n=1时,矩阵只有一个元素,此时矩阵的行列式就是这个元素本身。
当n>1时,矩阵A可以分为n行n列,可以表示为:A = [a11 a12 (1)a21 a22 (2)... ... ... ...an1 an2 ... ann]其中a11、a12...ann是矩阵A的元素。
对于n>1的情况,行列式的计算可以使用展开定理或按行(列)展开等方法进行。
二、行列式的计算(一)二阶行列式二阶行列式的计算公式如下:|A| = a11·a22 - a12·a21(二)三阶行列式三阶行列式的计算公式如下:|A| = a11·a22·a33 + a12·a23·a31 + a13·a21·a32 - a13·a22·a31 -a12·a21·a33 - a11·a23·a32(三)n阶行列式n阶行列式的计算可以通过列展开、行展开或使用拉普拉斯定理等方法进行。
这里以列展开为例介绍。
设A为一个n阶矩阵,可以将其表示为A = [a1 a2 ...an],其中ai为A的第i列。
若选择第k列进行展开,则根据列展开法可得:|A| = a1k·A1k - a2k·A2k + ... + (-1)^(k+1)·ank·Ank其中,Aik是移去第i行第k列元素所形成的(n-1)阶行列式。
根据此公式,可以递归地计算n阶行列式的值。
三、行列式的性质行列式具有以下性质:1. 互换行列式的两行(列),行列式的值变号。
第一章 行列式行列式的概念是在研究线性方程组的解的过程中产生的. 它在数学的许多分支中都有着非常广泛的应用,是常用的一种计算工具。
特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具。
§1.1 n 阶行列式定义和性质一、 二、三阶行列式定义的引出1. 二阶行列式例1:二阶线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a且021122211≠-a a a a . 解:利用加减消元可求得122122112121121122122111221221,.b a a b a b b a x x a a a a a a a a --==--取 2112221122211211a a a a a a a a D -==,2122212221211b a a b a b a b D -==,得 .,2211DD x DD x ==定义1 二阶行列式 由22个数排成2行2列所组成下面的式子(或符号)2112221122211211a a a a a a a a -=称为二阶行列式,行列式中每一个数称为行列式的元素,数ij a 称为行列式的元素,它的第一个下标i 称为行标,表明该元素位于第i 行,第二个下标j 称为列标, 表明该元素位于第j 列.位于第i 行第j 列的元素称为行列式的),(j i 元。
2阶行列式由22个数组成,两行两列;展开式是一个数或多项式;若是多项式则必有2!2=项,且正负项的各数相同。
应用:解线性方程例2:解方程组.328322121⎩⎨⎧-=-=+x x x x 解 D 2132-=13)2(2⨯--⨯=,7-=1D 2338--=)3(3)2(8-⨯--⨯=,7-=1112112121212a b D a b b a a b ==-2D 3182-=18)3(2⨯--⨯=.14-=因,07≠-=D 故所给方程组有唯一解1x D D 1=77--=,1=2x DD 2=714--=.2=2.三阶行列式定义2由23个数排成3行3列所组成下面的式子(符号) 333231232221131211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++称为三阶行列式。