浅谈求极限的方法与技巧
- 格式:doc
- 大小:957.54 KB
- 文档页数:23
极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。
在求解极限的过程中,我们常常会使用一些常用的技巧和方法。
下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。
一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。
例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。
这种方法适用于函数在该点有定义且不产生未定义结果的情况。
二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。
主要有三种情况:有理化分母、有理化分子和有理化共轭。
1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。
例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。
接着我们可以直接代入计算。
2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。
例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。
接着我们可以直接代入计算。
3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。
例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
求极限的方法总结求极限是数学分析中的一个重要概念,用于描述函数在某一点的变化趋势,包括函数趋于无穷大、无穷小、某一常数以及其他特殊情况等。
在解题过程中,需要灵活运用各种极限的计算方法,掌握不同类型极限的求解技巧。
下面将对常见极限的求解方法进行总结。
一、几种常见的极限类型1. 无穷大与无穷小极限当自变量趋于无穷大或无穷小时,函数的极限值称为无穷大或无穷小极限。
在计算过程中,可以利用以下方法求解:(1)使用等价无穷小替换法,将复杂的函数替换为更简单的无穷小,从而求出极限;(2)利用夹逼准则,通过找到两个函数夹住待求函数,确定其极限范围;(3)使用洛必达法则,计算函数的导数与求导后函数的极限,进而求得原函数的极限。
2. 常数极限当自变量趋于某一常数时,函数的极限称为常数极限。
常见的求解方法包括:(1)直接计算法,将自变量带入表达式中,求解对应的极限值;(2)利用函数的连续性,根据定义进行计算;(3)使用复合函数的性质,将函数分解为多个部分,然后计算各部分的极限。
3. 极限的两侧性质当自变量趋于某一点的左右两侧时,函数的极限可能存在不同的值。
这时可根据函数的性质和定义来判断其左右极限是否相等,常用的方法有:(1)利用函数的连续性,判断函数在特定点处是否连续,以及左右极限是否相等;(2)使用夹逼准则,确定左右极限的取值范围。
4. 极限存在性的判定在有些情况下,函数的极限可能不存在。
判断函数是否存在极限的方法有多种:(1)使用保号性质,判断是否存在有界变量和无穷小数列;(2)利用函数的性质,如奇偶性、周期性等,判断函数在某一点的趋势。
二、极限的计算方法1.常用求极限的基本运算法则(1)常数运算法则:如果f(x)和g(x)的极限都存在,那么常数c * f(x)和f(x) ± g(x)的极限也存在,并且满足以下关系:lim(c * f(x)) = c * lim(f(x)),lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))。
16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
浅谈求极限的方法极限是高等数学中最基本最重要的概念,极限思想贯穿高等数学的全部内容,它是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的,求极限的方法因题而异,变化多端,有时甚至无从下手.本文总结了12种常用的求极限的方法,意在广开思路,然后举出三个一题多解的例子,希望这些例题对初学者有所帮助.1 求极限的方法1.1 利用斯托兹定理 定理1[1](57)P (∞∞型Stolz 公式) 数列{},{}n n x y ,设{}n x 严格递增(即∀n ∈N 有1n n x x +<),且lim n n x →∞=+∞,若11limn n n n n y y a x x -→∞--=- (有限数,+∞,或-∞),则lim n n nya x →∞=.证 )1( (a 为有限数)目的在于证明:0,0,ε∀>∃N >当n >N 时,有nny a x ε-<. ① 记 11n n n n n y y a x x α---≡--. ②按已知条件有lim 0n n α→∞=,即0,0,ε∀>∃N >当n ≥N 时,有2n εα<. ③现在的目的在于从③推出①,为此从②解出n y 再代入①,由②得11()()n n n n n y y a x x α--=++- (再迭代使用此式)21121()()()()n n n n n n n y a x x a x x αα-----=++-++- =⋅⋅⋅111()()()()n n n y a x x a x x ααN N+N+N -=++-+⋅⋅⋅++- 1111()()()n n n n n y x x x x a x x ααN N+N+N --=+-+⋅⋅⋅+-+- 两边同时除以n x ,再同时减去a ,得111n n n n n n nx x x x y y ax a x x x ααN+N+N -N N -+⋅⋅⋅+---≤+22n n n n y ax y ax x x x x x εεN N N N N---<+<+将n 再进一步增大,因n x →+∞,故1∃N >N ,使得1n >N 时有2n y ax x εN N -<.于是 22n n y a x εεε-<+=. )2( (极限为+∞的情况)因已知11limn n n n n y y x x -→∞--=+∞-,所以11lim 0n n n n n x x y y -→∞--=-,利用(1)中的结论,只要证明n y 严↗+∞(严格单调上升趋向无穷大),则有lim0n n n x y →∞=,lim n n ny x →∞=+∞(问题得证).因n x 严↗,要证n y 严↗,只要证111n n n n y y x x --->-,事实上, 11limn n n n n y y x x -→∞--=+∞-,所以对1,0M =∃N >,当n >N 时,有111n n n n y y x x --->-,即 n >N 时,110n n n n y y x x --->-> ④ 所以当n >N 时, n y 严↗.④式中令1,2,,,n k =N +N +⋅⋅⋅然后相加, 可知k k y y x x N N ->-,令k →∞,知k y →∞,证毕.)3( (极限-∞的情况) 只要令n n y z =-,即可转化为)2(中的情况.注 11limn n n n n y y x x -→∞--=∞-,一般推不出lim n n nyx →∞=∞,如令n x n =,222{}{0,2,0,4,0,6,}n y =⋅⋅⋅,这时虽然 11limn n n n n y y x x -→∞--=∞-,但{}{0,2,0,4,0,6,}nny x =⋅⋅⋅并不趋向于无穷. 定理2[1](60)P (型Stolz 公式 ) 数列{},{}n n x y ,设n →∞时0n y →,n x 严↘0(严格单调下降趋向零) 若11limn n n n n y y a x x -→∞--=- (有限数,+∞,或-∞),则lim n n nya x →∞=.注 定理1是∞∞型,其实只要求分母n x ↗+∞,至于分子n y 是否趋向无穷大,无关紧要.定理2则是名副其实的型.因为定理条件要求分子,分母都以0为极限. 例1 1112lim ln n n n→∞++⋅⋅⋅+ 解 设1112n y n=++⋅⋅⋅+,ln n x n =.显然,n x 严格单调递增,且lim n n x →∞=+∞,11lim n n n n n y y x x -→∞--=-1lim ln1n n n n →∞-11lim lim 1ln ln(1)11n n n n n n n →∞→∞==+-- 11lim 111ln[(1)(1)]11n n n n →∞-==++-- 由斯托兹定理1, 1112lim ln n n n→∞++⋅⋅⋅+1= 例2 求(ln 2)(ln 3)(ln )lim 12n n nK K K→∞++⋅⋅⋅+++⋅⋅⋅+ (K 为正整数).解 令(ln 2)(ln 3)(ln )n y n K K K=++⋅⋅⋅+,12n x n =++⋅⋅⋅+ ,显然,{}n x 单调递增,且lim n n x →∞=+∞,11lim nn n n n y y x x -→∞--=-()n n n K∞→ln lim 又1(ln )(ln )!limlim lim 0k k x x x x k x k x xx -→+∞→+∞→+∞==⋅⋅⋅==,由海涅定理()n n n K∞→ln lim 0= ,由斯托兹定理1, (ln 2)(ln 3)(ln )lim 12n n nK K K→∞++⋅⋅⋅+++⋅⋅⋅+0=1.2 定义法 定义1[2](23)P 数列极限的""N ε-方法 设{}n a 为数列,a 为定数,lim 0,0,,.n n n a a n a a εε→∞=⇔∀>∃N >>N -<有定义2[2](4244)P - 函数极限的""N ε-方法 设f 为定义在[,)a +∞上的函数,A 为定数,lim ()0,()0,x f x a ε→∞=A ⇔∀>∃M ≥>使得当x >M 时有()f x ε-A <.函数极限的""εδ-方法 设函数f 在点0x 的某个空心邻域0(;)U x δ'内有定义,A 为定数.0lim ()0,()0,x x f x εδδ→'=A ⇔∀>∃<>使得当00x x δ<-<时有()f x ε-A <.例3[1](17)P 按极限定义(εδ-法)证明11x →= 证2711169x =≤-=-1611(43)(43)x x x x +-+- 再用分步法寻找δ,使上式右端继续扩大,此方法在操作上有较大的灵活性、自主性、多样性,并不要求一步到位,可以逐步缩小搜寻范围.此题因1x →,若要简化分子可先设11x -<即02x <<,则上式右端16313344x x ⋅-≤⋅-3((1;1)[,))4U +∞在成立,进一步设118x -<即 111188x -<<+,于是上式右端321x ≤-(在1(1;)8U 内成立).故0,ε∀>取1min{,}328εδ=,则当1x δ-<时, 就有1ε<.用定义证明极限存在,有一先决条件,即事先得知极限的猜测值A ,但通常只给定了数列}{n x ,或函数)(x f ,对其极限A 不得而知,我们只能根据具体情况进行具体分析和处理,不妨再参考一下1.1,1.5,1.7或1.10.1.3 利用四则运算法则 定理3(四则运算法则)[2](30)P 若{}n a 与{}n b 为收敛数列,则{}n n a b +,{}n n a b -,{}n n a b ⋅也都是收敛数列,且有lim n →∞(n n a b ±)=lim lim n n n n a b →∞→∞±,lim n →∞(n n a b ⋅)=lim lim n n n n a b →∞→∞⋅.若再假设0n b ≠及lim 0,n n b →∞≠则{}n na b 也是收敛数列,且有lim lim .lim nn n n n n n a a b b →∞→∞→∞=注 对指数运算亦成立.若n x 0>,⋅⋅⋅=,2,1n 且a x n n =∞→lim ,b y n n =∞→lim ,则 b y nn a x n=∞→lim .1.3.1 “∞+∞∞+∞”型.例4 求极限1(4)7sin lim57cos(1)n n n n n n n +→∞-+++++解 1(4)7sin lim 57cos(1)nn n nn n n +→∞-+++++4sin ()777lim 75cos(1)()177n nn n nn n →∞-++==+++ 1.3.2“∞-∞∞-∞”型 例5 求极限n解n=n =13112123lim ++++∞→nnn =32. 注 函数的四则运算法则同样成立,这里不再一一列出来.但必须强调的是函数极限四则运算法则的条件是充分而非必要的,所以,利用四则运算法则求函数极限时,要对所给的函数进行验证,看是否满足条件.满足条件者,方能利用极限四则运算法则进行求之.但并非不满足该条件的函数就没有极限,而是不再适用该方法,通常用一些简单的技巧如拆项,分子分母同乘某一因子,变量替换,分子分母有理化等等.例6求极限lim x →+∞解lim x →+∞=limx=55limx +52=1.4 利用无穷小量的性质 1.4.1 无穷小量定义3 若lim 0,n n a →∞=则称n a 是n →∞时的无穷小量.定义4[2](59)P lim ()0,x x f x ︒→=则称()f x 是0x x →时的无穷小量.性质(1)有限个无穷小量的和、差、积为无穷小量.(2)有界量乘以无穷小量是无穷小量. 例7 求极限222(21)!!1lim[]sin cos (2)!!n n n n n→∞+解 222(21)!!1lim[]sin cos (2)!!n n n n n →∞+2222221sin(21)!!(21)lim()cos 1(2)!!n n n n n n n n →∞-+= 其中2(21)!!113355(23)(23)(21)(21)0()(2)!!224466(22)(22)22n n n n n n n n n n-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----≤=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅2210()(2)n n n -<→→∞,所以 2(21)!!lim()0(2)!!n n n →∞-=, 又22221sin(21)lim4141n n n n n →∞+=⋅=(有限数),2cos 1n ≤(有界量),根据无穷小量性质(2)得 原式0=,从而 222(21)!!1lim[]sin cos (2)!!n n n n n→∞+0=.1.4.2 等价无穷小量 定义5[2](61)P 设函数()f x ()g x ,0lim ()0x x f x →=,0lim ()0x x g x →=,且()0g x ≠,若0()lim1()x x f x g x →=,则称f 是g 当0x x →时的等价无穷小量.记为()fx 0()()g x x x →.常用的等价无穷小量有, 当0x →时, sinxx ,tanx x ,arctanx x ,ln(1)x+x ,(1cos )x-22x ,1xe-x11x n.例8[1](33)P求极限21cos)limn n -解因1n =,故原式2224111(1cos)n n n n n -==2212lim 1112n n n→∞==.所以21cos )n n -1=但是还应注意,等价无穷小求函数极限不要轻易代换,一般只在以乘除形式出现时使用,若以和差形式出现时,必须先变换形式才能用.例9 求极限302sin 2sin 4limx x xx →-解 32002sin 2sin 42sin 21cos 2lim lim x x x x x xx x x→→--=⋅=220222lim x x x x x →⋅⋅8= 错误的解法是302sin 2sin 4limx x x x →-=30224lim x x xx →⋅-0=错在对加减中的某项进行了等价无穷小代换.1.5 利用迫敛性定理1.5.1 数列及函数的迫敛性定理 定理4(数列的迫敛性定理)[2](30)P 设收敛数列{}n a ,{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n >N 时有n n n a c b ≤≤则数列n c 收敛,且lim n n c a →∞=.定理5(函数的迫敛性定理)[2](49)P 设0lim ()x x f x →=0lim ()x x g x →=A ,且在某邻域0(;)U x δ内有()()()f x h x g x ≤≤,则0lim ()x x h x →=A .当极限不易直接求出时,可考虑将求极限的变量作适当的放大、缩小,使所得的新变量易于求极限,且二者的极限值相同,则原极限存在,且等于此公共值.例10 求极限lim[(1)]n n n αα→∞+- (01)α<<解 10(1)(1)n n n n nααααα≤+-=+-1((1)1)n nαα=+- 由1(1)xα+ (01)α<<的单调性知11(1)1x x α+<+,于是111(1)111n n nα+-<+-=所以 1110(1)((1)1)0n n n n nααααα-≤+-=+-<→ ()n →∞由迫敛性定理, lim[(1)]n n n αα→∞+-0=例11 求极限1,,m n a a ⋅⋅⋅其中为正数.解 记A =1max{,,},,m i a a a i ⋅⋅⋅=为某一整数则A =i a =≤≤=A A ()n →∞由迫敛性定理知 lim n =A例12 求极限lim n n x →∞,13(21)24(2)n n x n ⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅解 因几何平均值小于算术平均值,故分母中的因子1322+=> 3542+=>⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ (21)(21)22n n n -++=>由此可知, 13(21)0024(2)n n x n ⋅⋅⋅⋅⋅⋅-<=<→⋅⋅⋅⋅⋅⋅,故lim n n x →∞=0.注 迫敛性定理求极限应用十分广泛,优越性在于经过放大或缩小,可以把复杂的东西去掉,使问题化简,但应注意,放大不能放得过大,缩小也不能缩得过小,必须具有相同的极限.1.5.2 利用子列收敛定理定理6(子列收敛定理)[2](37)P 数列收敛的充要条件是:任何非平凡子列都收敛(且收敛于 同一个数).即A →n x (当∞→n 时)∀⇔子列}{k n x 有A →k n x (当∞→k ). 同样还有这样的结论:}{n a 收敛}{2k a ⇔,}{12-k a 都收敛且收敛于同一个数.(证明略)例13 }{n a 满足∑∞=1n na收敛,且n k a a 1000≤≤,(n k n 2≤≤)证明 ∞→n lim 0=n na .证明 n ∀,i n i 22≤≤(12,1,-⋅⋅⋅+=n n n i )所以,i n a a 10002≤≤(12,1,-⋅⋅⋅+=n n n i )把式子展开再对应相加,得 )(10001212-++⋅⋅⋅++≤≤n n n n a a a na从而有 )(200201212-++⋅⋅⋅++≤≤n n n n a a a na )(0∞→→n 得偶子列收敛于0. 同理 n ∀,212i n i ≤-≤(,1,21)i n n n =+⋅⋅⋅-所以, 210100n i a a -≤≤(,1,21)i n n n =+⋅⋅⋅-,把式子展开再对应相加, 得 211210100()n n n n na a a a -+-≤≤++⋅⋅⋅+从而有21211210(21)2200()n n n n n n a na a a a --+-≤-≤≤++⋅⋅⋅+0()n →→∞ 得奇子列收敛于0,从而 ∞→n lim 0=n na .1.6 利用单调有界定理 定理7(数列的单调有界定理)[2](35)P 在实数系中,有界的单调数列必有极限.即若单调递增数列有上界,则上确界便是它的极限;若单调递减数列有下界,则下确界便是它的极限.定理8(函数单侧极限的定理)[2](35)P ()f x 为定义在0()U x ︒+的单调有界函数,则右极限lim ()x x f x +→存在; ()f x 为定义在0()U x ︒-的单调有界函数,则左极限0lim ()x x f x -→存在. 例14设数列1x =2x =⋅⋅⋅,n x ,⋅⋅⋅,求极限lim n n x →∞.解 1) {}n x 为单调递增数列.事实上,12x x =<=,设1x x K -K <则由于1x K+=故,11x x K+K ==>,即10x x K+K >>,由归纳法知,数列{}n x 单调递增. 2) {}n x 有上界.13x =<,设3x K <,则13x K+=<=.由数学归纳法知{}n x 有上界.3) 由数列的单有界定理得lim n n x →∞存在.设lim n n x →∞=A,对n x = 两端关于n →∞求极限,则A=230⇒A =A ⇒A =或3A =,而}{n x 为正值数列,0=A 舍去.所以lim n n x →∞3=.1.7 柯西收敛准则定理9(数列的柯西收敛准则)[2](38)P数列{}n a 收敛⇔0,()0,,,n m n m a a εεε∀>∃N >∀>N -<使有.⇔0,()0,,,n n n a a εεε+P ∀>∃N >∀>N ∀P -<使正整数有.定理10(函数的柯西收敛准则)[2](54)P 函数()f x 定义在0(;)U x δ︒上,0lim ()x x f x →∃0,()0,εηδ⇔∀>∃<>使0,(;)x x U x η︒'''∀∈,有()()f x f x ε'''-<例15 数列{}n x ,0110,,0,1,2,2n nx x n x +>==⋅⋅⋅+,证明lim n n x →∞存在,并求值.证明 设0<0x <12,0<1x =012x +<12,假设0<n x <12,则0<1n x +=12n x +<12, 由数学归纳法,,n ∀0<n x <12. 111111112222n n n n n n n n x x x x x x x x +P--+P +P--+P----=-=++++ 112221144n n n n x x x x +P--+P--<-<-<⋅⋅⋅ 1111111111()()()44224n n n x x --P+-<-<⋅+=ε∀0>,要使11()4n ε-<取ln []2ln 4εN =+-,当n >N 时,有n n x x ε+P -<, 由柯西收敛准则{}n x 收敛,从而极限存在,不妨设为0x ,则对112n nx x +=+两边当n →∞时, 取极限得0012x x =+,解得01x =-,由数列极限的保不等式性,取正值01x =-,从而lim 1n n x →∞=-.1.8 利用海涅定理 定理11(海涅定理)[2](52)P (或称归结原则) 设()f x 在0(;)U x δ内有定义,lim ()x x f x →∃⇔{}n x ∀⊂ 0(;)U x δ,0lim ,n n x x →∞=都有lim ()n n f x →∞存在且相等.这个定理深刻地揭示了函数极限和数列极限的关系.例16求极限n nπ解 取{}{}n x n =,令lim n n x →∞=+∞,则原式⇔sin limlim0x x x xxπππ→+∞==. 由海涅定理n nπ0=.例17[3](37)P求极限lim(,(0,0)2nn a b →∞≥≥ 解 (1)当,a b 有一为0时,比如0a =,则n n →∞=lim 2n n b→∞0== ①(2)当0,0a b >>时,令1()2x x x a b y +=,则1ln ln 2x xa b y x +=.0limln x y →=0012ln ln lim lnlim 22x x x x x x x x a b a a b b x a b →→++=+1(ln ln )2a b =+=. 由海涅定理,当0,0a b >>时, lim(2nn →∞=② 再由①,②两式得lim(2nn →∞=1.9 利用重要极限即利用①0sin lim 1x x x →=[2](56)P ②1lim(1)x x ex→∞+=[2](56)P 和1lim(1)xx x e →+=,其中的x 都可以看作整体来对待.第一个重要极限是“00”型,第二个重要极限是“1∞”型. 例18 求极限 01cos cos 2cos3lim 1cos x x x xx →--解 这是“0”型,那么想办法把它凑成第一个重要极限的形式.原式01cos cos (1cos 2)cos cos 2(1cos3)lim 1cos x x x x x x x x→-+-+-=-00cos (1cos 2)cos cos 2(1cos3)1lim lim 1cos 1cos x x x x x x x x x→→--=++--2200223cos cos 22sin cos 2sin 21lim lim 2sin 2sin 22x x x x x x x x x→→⋅⋅⋅=++22222002223()sin ()sin 2221limcos 4limcos cos 293sin ()sin 222x x x x x x x x x x x x x →→=+⋅⋅⋅+⋅⋅⋅⋅ 14914=++=.例19[2](58)P 求极限211lim(1)n n n n→∞+- 解 这是“1∞”型的.显然要用第二个重要极限的形式.2111(1)(1)()n n e n n n n+-<+→→∞. 另一方面,当1n >时有2221112221111(1)(1)(1)n nn n n n n n n n n nn -------+-=+≥+,而由海涅定理,(取2,2,3,1n n x n n ==⋅⋅⋅-) 得 222112211lim(1)lim(1)n n n n n n n n n n ---→∞→∞--+=+=x x x)11(lim ++∞→=e . 所以,由数列极限的迫敛性得211lim(1)nn n n →∞+-e =. 1.10 利用定积分的定义求极限由于定积分是一个有特殊结构和式的极限,这样又可利用定积分的值,求出某一和数的极限.若要利用定积分求极限,其关键在于将和数化成某一特殊结构的和式.定义6 若()f x 在[,]a b 上连续,那么()baf x dx ⎰存在,01()lim ()nbi i ai f x dx f x ζT →==∆∑⎰110()lim ().()lim ().nn i n n i i b a b a f a n n i b a b a f a n n →∞=-→∞=--⎧+⋅⎪⎪=⎨--⎪+⋅⎪⎩∑∑ 取右端点 取左端点 例20 求极限22233333312lim()12n n n n n n →∞++⋅⋅⋅++++ 解 22233333312lim()12n n n n n n→∞++⋅⋅⋅++++ 2222333312()()()lim ()121()1()1()n nnn n n n n n n n→∞=++⋅⋅⋅++++231()1lim 1()nn i i n i n n→∞==⋅+∑21301x dx x =+⎰13301131dx x =+⎰1ln 23= 例21 求极限221lim1nn n →∞K=K+K +∑ 解 221(1)nn K =K +K +∑≤2211n n K =K +K +∑≤221nn K=K+K ∑ 左边 221(1)nn K =K +K +∑=22221111(1)(1)n nn n K=K=K +-+K ++K +∑∑ =222111111(1)1()nnn n n nK=K=K +-K ++K ++∑∑ 其中, 22211100(1)nn n K =≤≤→+K +∑ ()n →∞ lim n →∞211111()nn n nK=K +K ++∑=1201ln 212x dx x =+⎰所以, limn →∞221(1)nn K =K +K +∑ =1ln 22 右边 221nn K=K +K ∑=21111()nnn nK=KK +∑=1201ln 212x dx x =+⎰由迫敛性定理得 221lim 1nn n →∞K=K +K +∑=1ln 22 1.11 利用洛比达法则洛比达法则是计算不定式极限的重要方法,形如00,,0,,0,,10∞∞∞⋅∞∞-∞∞∞等七种未定式均可用洛比达法则求解.定理12(洛比达法则)[2](127)P 假设①函数()f x 和()g x 在x a =的某邻域()U a 可微,且()0g x '≠;②lim ()lim ()0x ax af xg x →→==(或为无穷大);③()lim()x af xg x →存在(或为无穷大);则 ()()limlim ()()x ax a f x f x g x g x →→'=' 如果用洛比达法则算不出结果,不等于极限不存在.只是因为它是充分条件,不是必要条件.但只要满足洛比达法则的条件就可进一步微分,也可多次使用该法则.例22 求极限30sin lim 7x x xx→- 解 这是一个“0”型的极限,满足洛比达法则的条件,注意两次使用洛比达法则,得30sin lim 7x x x x →-2001cos sin 1lim lim 214242x x x x x x →→-===. 例23 求极限1121cos 2lim4x x tdt x t→+∞⎰ 解 由于202cos 214lim 14t tt t →=所以112cos 24xtdt t→+∞⎰()x →+∞ 因此,原极限是∞∞型的,满足洛比达法则的条件. 所以 1121cos 2lim 4x x t dt x t →+∞⎰12122cos 21cos 2114lim lim 144()x x x t dt t x x x x→+∞→+∞-===⎰. 例24[1](45)P 求极限11cos0sin lim()xx x x-→解 首先像这样幂指函数较复杂,要考虑取对数后再求极限,那么求极限11cos0sin lim ln()xx x x-→, 11cos 0sin lim ln()xx xx-→01sin limln 1cos x xx x→=-20sin (ln)lim()2x xx x →'='20cos sin lim sin x x x x x x→-= 30(cos sin )lim ()x x x x x →'-='20sin lim 3x x x x →-=13=-,故原式13e -=. 1.12 利用函数的泰勒展式.泰勒公式的形式有很多种,但是在利用泰勒公式求极限的时候,通常用到的是皮亚诺型麦克劳林公式,因此在这里就只给出泰勒公式的这种特殊的形式:[2](136)P()2(0)(0)(0)()(0)()1!2!!n nn f f f f x f x x x o x n '''=+++⋅⋅⋅++下面是具体的常用皮亚诺型麦克劳林公式:[2](136)P231()2!3!!nxn x x x e x o x n =++++⋅⋅⋅++ ()x -∞<<+∞351212(1)sin ()3!5!(21)!n n n x x x x x o x n ---=-++⋅⋅⋅++- ()x -∞<<+∞24221(1)cos 1()2!4!(2)!n nn x x x x o x n +-=-++⋅⋅⋅++ ()x -∞<<+∞231ln(1)(1)()23nn n x x x x x o x n++=-++⋅⋅⋅+-+ (11)x -<≤ 2(1)(1)(1)(1)1()2!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++⋅⋅⋅++ (1)x <211()1n n x x x o x x=+++⋅⋅⋅++- (1)x < 例25求极限x x →解 2211()2xe x x o x =+++2211()2x o x =-+.所以22002211()12lim 122(1())2xx x x x o x x x o x →→+++--=--+222201()12lim ()2x x o x x o x →+==+. 例26 求极限2240cos limx x x e x -→-解 244cos 1()2!4!x x x o x =-++; 222224442()21()()1()22!28x x x x x e o x o x --=+-++=-++则2240cos lim x x x e x -→-=242444011()2!4!28lim x x x x x o x x→-+-+-+44401()112lim 12x x o x x →-+==-例27[1](46)P 222012lim (cos )sin x x x x e x→+- 解 利用泰勒展式,12244211(1)1()28x x x o x +=+-+,24241()2!x x e x o x =+++, 224sin ()x x o x =+,244cos 1()2!4!x x x o x =-++;代入原式,有222012lim (cos )sin x x x x e x→+-0lim x →=224424442424111(1())228(1()(1()))(())2!4!2!x x x o x x x xo x x o x x o x +-+-+-++-++++ 0limx →=44244241()8311(())(())224x o x x x o x x o x +--++=112- 综上所述,本文精选了十二种常用的求极限的方法,我们学生在解题时要根据具体的情形选用合适简洁的方法.另外,求极限的方法还有很多,比如求某种递推数列极限时要证明其存在用到的“压缩映像”原理和不动点方法,而这些方法又是比较难,在此就不一一列举了.适当的时候还可用变量代换法把一些复杂的式子简单化,再选用上述的十二种方法中的一种来求数列或一元函数的极限.2 一题多解有些求极限问题可以用多种方法来解决,下面我选择了一些题目运用上述方法进行求解. 例1 求极限1lim ((1))nn n e n→+∞-+解法1 首先求极限101lim((1))xx e x x →-+,即求10(1)lim xx e x x→-+.101lim ((1))xx e x x →-+10(1)limxx e x x→-+==洛比达1ln(1)0lim((1))lim()x x xx x x e+→→''-+=-ln(1)0lim x xx e +→=-⋅2ln(1)1x x x x -++=连续性0ln(1)lim x x x e →+-⋅20ln(1)1lim x x x x x →-++ =洛比达e -⋅1()2-2e =,再由海涅定理1lim ((1))n n n e n →+∞-+2e=.解法2 首先求极限101lim((1))xx e x x →-+,即求10(1)lim xx e x x→-+.利用泰勒展式,22()1ln(1)2(1)x x o x x xxxx ee-+++==1()2xo x e-+=,所以, 10(1)limxx e x x →-+1()()22001limlimxxo x o x x x e eee xx-+-+→→--===洛比达2e, 再由海涅定理 1lim ((1))nn n e n→+∞-+2e =. 解法3 1lim ((1))n n n e n→+∞-+1(1)lim1nn e n n→∞-+=, 令1(1)n n y e n =-+,1n x n =,lim lim 0n n n n x y →∞→∞==,1n n x x -<,11lim n n n n n y y x x -→∞---111(1)(1)1lim 111n nn n n n n -→∞+-+-=--12112(1)(1)lim (1)n n n n n n n n n n n ----→∞+--=- 11111(1)(1)1lim11(1)1n n n n n n n n n -→∞--+--=-- 到这里式子已经很复杂,也许可以再用洛比达法则和海涅定理来求出极限或者用泰勒展式求出极限,再由斯托兹定理得出所求值,也许它根本就没有极限值,或极限值不确定,那么就不能再用斯托兹定理求出所要的值.这里由于表达式很复杂,计算量很大,就不再写出过程,我们重在解题思想,所以选择适当的方法很重要.例2 ()f x 在[1,1]-上连续,恒不为0,求极限0x →解法1 由等价无穷小性质,31x-ln3(0)x x →,11()sin 3f x x . 故0x →001()sin sin ()3lim limln 33ln 3x x f x x x f x x x →→===(0)3ln 3f .解法2 ()f x 在[1,1]-上连续,因而()f x 在其上有界.11()sin ()3f x x o x =++,31ln 3()x x o x =++得0x →01()sin ()3lim ln 3()x f x x o x x o x →+=+01sin ()(1)3lim ln 3(1)x x f x o x o →+=+=(0)3ln 3f . 例3 设113(1)0,,1,2,3n n nx x x n x ++>==⋅⋅⋅+证明:此数列有极限,并求其极限值.解法1 由已知0n x >.)1(当1x >12113(1)63333x x x x +==->-=++16333n n x x -=->-=+213333n n nn n n x x x x x x ++---=+0n=<,1,n n n x x x +<,从而n x 收敛.)2(当0n x <≤160333n n x x -<=-≤-=+且1)03n n n n nx x x x x +-=≥+,即1n n x x +≥,n xn x 收敛.由)2(),1(知n x 必收敛,且13(1)lim lim3n n n n nx x x x +→+∞→+∞+==+,得3(1)3x x x +=+,23x =,由0n x >得x =lim n n x →∞=解法2 假设0n x >收敛,令lim n n x x →∞=由解法1知x =下用ε-N 证明n x0ε∀>取N ∈N,使N >,当n N >时,有13(1)3n n nx x x ++=+n =≤11n Nx x ε≤⋅⋅⋅≤-≤<.所以lim n n x →+∞=.有很多求极限的题目可以用多种方法来求解,这里不再一一举例.我们应选择最适当的方法,这样不仅可以使题简化,而且使我们的解题思路更加清晰,解题正确率高,节省时间,提高效率.极限是高等数学中一个基础而重要的概念,它贯穿高等数学的内容始终,是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的.希望我的论文能为正在学习和已经学过数学分析的人提供一些有益的视觉.。
浅谈极限的求解方法毕业论文1000字一、引言极限是微积分中最基本的概念之一,也是微积分理论的重要组成部分。
求极限可以帮助我们对函数的性质有更全面的了解,进而掌握一些更深入的微积分及数学分析知识。
本文将从定义、性质和求解方法三个方面进行讨论,希望能够帮助读者深入理解极限的概念和应用。
二、极限的定义在微积分中,极限是用来描述一个函数在某一点处的趋势性质的。
一般来说,我们将自变量不断逼近某一个值时,对应的函数值是否会逐渐趋近于一个确定的数,就称这个数为函数在该点的极限。
严格来说,极限的定义应该满足以下要求:(1)函数在无穷远点时也应有极限;(2)左极限等于右极限;(3)如果函数有极限,那么极限值应该是唯一确定的。
三、极限的性质(1)极限的唯一性:如果一个函数在某一点处有极限,那么它的极限值应该是唯一的。
这个性质可以通过反证法来证明。
假设一个函数f在某一点x0处有两个不同的极限L1和L2,那么我们就可以得到一个矛盾。
如果L1≠L2,那么我们就可以找到一个足够小的邻域,使得f(x)与L1的距离和f(x)与L2的距离之和小于某一个正数e。
但这与L1和L2不相等的前提矛盾,即假设不成立。
(2)局部有界性:如果一个函数在某一点x0处有极限,那么它在该点的某个邻域内是有界的。
因为如果函数在x=x0处有极限,那么意味着随着x越来越靠近x0,f(x)与L的差距会越来越小,也就是说函数值的范围将会越来越集中在一个很小的区域内。
(3)保号性:如果一个函数在某一点x0处有极限且不等于0,那么在该点的某个邻域内,函数与极限值之间的关系将会有一个明确的规律。
具体来说,如果极限值L>0,那么在一个充分小的邻域内,函数值将始终大于0;如果极限值L<0,那么在一个充分小的邻域内,函数值将始终小于0。
四、极限的求解方法(1)初值法:初值法又称数列逼近法,是一种基本的极限求解方法。
这个方法的具体过程是,我们先找到一个充分靠近极限的初始点,然后不停地不断逼近目标值,直到误差达到所需精度。
浅谈恒等变形在求极限运算中的技巧与方法
恒等变形在求极限运算中是一种常用的技巧和方法,可以有效帮助研究人员优化研究设计,提高极限的精度。
恒等变形法的基本思想就是从某个求极限运算的角度,对某个参数满足恒等变形要求,间接得出极限结果。
恒等变形法定义为所求函数f (x )在x处的前限和后限,当且仅当f (x )的概率分布与实际赋值极限的概率分布谱相等时,定义的前限和后限就是极限的值,才具有证明可行性。
也就是说,只有在恒等变形关系成立的时候,极限的值才能够被定义,这也是求极限精度较高的关键。
恒等变形法是利用满足某种条件,从函数f (x )拉格朗日变换中可以求出极限的唯一解,同时还可以用拉格朗日变换中的变量作为求解极限的变量,从而达到优化研究设计的目的。
由于满足恒等变形要求,研究人员可以把重点放在求解极限的关键点上,把变量从函数f (x )中提取出来,使用边界条件,消除无用功能点,从而控制算法的准确性来提高运算精度。
此外,恒等变形法不仅可以提高极限运算的精度,还可以提高运算速度。
因为满足恒等变形要求的变量可以在较短的时间内求得极限的结果,且算法的准确性也得到相应的提高,从而节省大量的运算资源。
因此,恒等变形在求极限运算中可以说是一种非常有效的技巧和方法。
一定的满足恒等变形要求,不仅可以对变量重新定义,也能够提高求极限运算的精度和速度。
浅谈两个重要极限解题技巧极限是高等数学中的一个重要概念,它是指一个函数在一个点上趋近于某一值的过程。
在实际的解题中,常常会遇到需要求解极限的问题,因此,掌握一些极限的解题技巧对于学生来说至关重要。
本文将浅谈两个重要的极限解题技巧,供广大同学参考学习。
一、夹逼准则夹逼准则也称为挤压定理,它是解决极限问题的一种经典方法。
夹逼准则的思路是通过比较原函数与其他两个已知的函数之间的关系,来推导出原函数的极限。
通常情况下,夹逼准则适用于以下两种情况:1. 原函数与其他两个函数都趋近于同一个值,且中间的那个函数能够通过比较确定原函数的上限或下限。
2. 原函数在某个区间内“夹在”两个已知函数之间,且这两个函数具有相同的极限。
例如,假设我们需要求解函数$f(x)=\frac{x^3+3x^2-1}{x^2+2}$在$x=2$处的极限。
我们可以通过夹逼准则来求解该极限。
具体步骤如下:首先找到两个函数$g(x)$和$h(x)$,它们满足$g(x)\leq f(x)\leq h(x)$,且$g(x)$和$h(x)$在$x=2$处的极限相等,即$\lim_{x\to 2}g(x)=\lim_{x\to 2}h(x)$。
其次,我们需要确定$g(x)$和$h(x)$的表达式。
由于当$x$趋近于2时,分母$x^2+2$的值变得非常接近于4,因此我们可以令$g(x)=3x-1$和$h(x)=\frac{x^3+3x^2+5x+1}{x^2+2}$。
这样,在$x=2$处,$g(x)=5$,$h(x)=5$,且$g(x)\leq f(x)\leq h(x)$。
最后,我们需要证明$\lim_{x\to 2}g(x)=\lim_{x\to 2}h(x)$。
对于函数$g(x)$,我们可以使用极限的定义来证明:$$ \begin{aligned} \lim_{x\to 2}g(x) &=\lim_{x\to 2}(3x-1)\\ &=5 \end{aligned} $$对于函数$h(x)$,我们可以将其进行分解,得到:因此,根据夹逼准则,可以得到:$$ \lim_{x\to 2}\frac{x^3+3x^2-1}{x^2+2}=5 $$二、洛必达法则洛必达法则是解决极限问题的另一种有效方法,它是通过求函数在某一点处的导数来确定函数的极限。
浅谈两个重要极限解题技巧【摘要】本文将讨论两个重要的极限解题技巧:利用夹逼准则和使用换元法。
首先解释了这两种技巧的基本原理和应用方法,然后进一步讨论了如何在实际问题中灵活运用这两种技巧。
通过具体例题的分析演示了这两个技巧在解决极限问题中的重要性和有效性。
同时提醒读者在使用这些技巧时需要注意的问题,避免在解题过程中出现错误或误解。
通过本文的介绍和讨论,读者将能够更好地掌握和运用这些重要的极限解题技巧,提高解题效率和准确性。
【关键词】极限解题技巧、夹逼准则、换元法、实例分析、注意事项、引言、结论1. 引言1.1 引言极限是高等数学中重要的概念之一,它在微积分、数学分析等领域中都有着广泛的应用。
在求解极限时,常常需要运用一些技巧和方法来辅助计算,提高求解的效率和准确性。
本文将重点讨论两个重要的极限解题技巧:利用夹逼准则和使用换元法。
在学习极限的过程中,我们经常会遇到一些难以直接计算的极限表达式,这时可以考虑利用夹逼准则来近似求解。
夹逼准则是一种常用的极限方法,通过构造一个夹在待求极限函数和已知函数之间的函数序列,来逼近待求极限的值。
这种方法常常可以简化复杂的极限计算,提高求解的效率。
使用换元法也是解决极限问题的重要技巧之一。
当遇到形式复杂的极限表达式时,可以尝试通过换元的方式将问题转化为更简单的形式,从而更容易求解。
换元法可以帮助我们找到一些隐含的规律和关联,为极限计算提供新的思路和方法。
通过深入学习和实践这两种极限解题技巧,我们可以更加灵活地处理各种复杂的极限计算问题,并提高解题的效率和准确性。
接下来,我们将详细讨论如何应用这两个技巧来解决不同类型的极限问题,并通过实例分析和具体例题演示技巧的运用。
我们也将介绍在使用这些技巧时需要注意的问题和注意事项。
希望本文能够帮助读者更好地理解和掌握极限解题的方法和技巧,提升数学分析的能力和水平。
2. 正文2.1 技巧一:利用夹逼准则夹逼准则是解决极限问题时非常重要且常用的一种技巧。
求极限的方法总结在数学中,我们经常会遇到需要求解极限的问题。
极限是一种重要的概念,它可以帮助我们理解函数的行为和趋势。
然而,求解极限并不总是简单的,往往需要运用不同的方法和技巧。
在这篇文章中,我将总结一些常用的方法,希望能给读者提供一些帮助。
一、代入法代入法是最简单的求解极限的方法之一。
它的基本思想是将待求的极限代入函数中,通过计算函数在极限点附近的取值,得到极限的近似值。
这种方法适用于一些简单的函数,比如常函数、幂函数以及一些简单的三角函数。
举个例子,我们考虑求解lim(x→0) 2x + 1。
我们可以直接代入x=0,得到2(0) + 1 = 1。
所以,lim(x→0) 2x + 1 = 1。
然而,代入法并不适用于所有情况。
当我们需要求解的极限形式不适合代入时,就需要考虑其他方法。
二、夹逼法夹逼法是一种常用的求解极限的方法。
它的思想是通过找到两个较为简单的函数,它们的极限与待求的极限相等,然后利用这些函数对待求的极限进行“夹逼”。
这个方法可以帮助我们解决一些复杂的极限问题。
例如,我们考虑求解lim(x→0) x*sin(1/x)。
这个极限在x=0附近的取值非常复杂。
但是,我们可以利用两个简单的函数:f(x) = -|x| 和 g(x) = |x|。
很显然,对于任何x,我们都有f(x) ≤ x*sin(1/x) ≤ g(x)。
现在,我们来考虑这两个函数的极限。
当x趋近于0时,f(x)和g(x)的极限都是0。
因此,根据夹逼法,我们可以得出lim(x→0) x*sin(1/x) = 0。
三、无穷小代换法无穷小代换法是一种常用的求解极限的方法。
它的基本思想是将一个符合一定条件的无穷小量代换到需要求解的极限式中,通过对无穷小量进行简化计算来求解极限。
这种方法适用于一些复杂的极限问题。
例如,我们考虑求解lim(x→∞) (√x + 3)/(2x - 1)。
这个极限在x 趋近于无穷大时的计算非常困难。
但是,我们可以进行一次无穷小代换。
浅谈函数极限的求解方法函数极限是数学分析中一个重要的内容,通过对函数极限的求解,可以发现函数的特点,进而研究函数的性质和求解函数的问题。
那么,函数极限的求解方法有哪些呢?本文将对函数极限的求解方法进行浅谈。
首先,可以使用测点法来求解函数极限。
在这种方法中,需要选择若干个点作为测点,查看这些点对应的函数值,从而推断函数极限。
例如,函数y=1/x,在x趋于无穷大时,y趋于0,这就是函数y=1/x 的极限形式。
在求解时,可以任意选择若干个点,比如x=1、x=2、x=3…,依次求出相应的函数值y=1、y=1/2、y=1/3…,发现随着x的值越来越大,函数值y也越来越小,最终收敛到0,表明函数的极限为0。
其次,可以使用函数的定义域、等价转换和关系式等方法来求解函数极限。
函数的定义域指的是函数取值的范围,比如函数y=x2的定义域是[0,∞),即x的取值范围是[0,∞),据此可以求出函数y=x2的极限是无穷大,及其对应的极限形式是lim x2=∞。
等价转换指的是将函数表示成另一种形式,而关系式则是比较函数的极限值,可以根据它们来求解函数极限。
例如函数y=x2 + 3x + 2,其定义域为(-∞,∞),可以通过等价转换将y表示成y = (x+1)2 + 1的形式,显然,(x+1)2 + 1的极限就是1,及其对应的极限形式为lim (x+1)2 + 1=1,那么推断函数y=x2 + 3x + 2的极限也就是1。
此外,还可以使用洛必达法则、局部极限定义和初等函数来求解函数极限。
洛必达法则是用来计算函数在连续处处有极限的情况,即可以把连续处限简化为一个极限,而局部极限定义则是用来计算极限的特殊情况,可以通过局部极限的定义求出函数的极限。
另外,初等函数指的是常用的函数,如多项式、指数函数和对数函数等,这些函数的极限可以直接应用定义和定理来求解。
综上所述,函数极限的求解方法可以分为测点法、函数的定义域、等价转换及关系式、洛必达法则、局部极限定义、初等函数等几种。
求极限的常用方法求极限是数学分析中一个重要的概念,它可以帮助我们理解函数在一些点处的行为,并在许多数学领域中发挥重要作用。
下面是一些常用的方法和技巧,来帮助我们求解各种类型的极限。
1.代入法:当函数在其中一点的极限存在时,我们可以尝试直接将该点的值代入函数中,看看是否会得到一个有意义的结果。
如果代入的结果是有限的,那么说明极限存在并等于该有限值。
然而,这种方法只适用于简单的函数和特定的极限问题。
2.分母有理化:当我们遇到含有分母中包含根式或其他不便计算的因素时,可以尝试将其有理化。
常用的方法有利用平方差公式或者乘法公式,以及通过分子分母同乘共轭式等。
3.分子有理化:类似于分母有理化,当我们遇到函数中含有根式时,可以尝试将其有理化。
常用的方法有利用平方差公式,乘方差公式以及平方和公式等。
4.拆分分数项:对于复杂的分式函数,我们可以尝试将其分解成简单的分式项,然后对各项求极限,再根据极限的性质进行求解。
5.极限的性质和定理:除了直接计算极限,我们还可以利用一些常见的极限性质和定理来简化问题。
例如,极限的四则运算法则、复合函数的极限、极限的保号性等都可以帮助我们更好地理解和求解极限。
6.夹逼定理:夹逼定理是求解一些复杂极限的常用方法之一、该定理的核心思想是通过构造两个函数,一个上界函数和一个下界函数,然后利用这两个函数对待求函数进行夹逼,从而确定待求函数的极限。
这个方法常用于求解无穷大和无穷小的极限。
7.泰勒展开:泰勒展开是求解一些复杂函数的极限的重要方法。
该方法利用了泰勒级数的定义,将复杂的函数近似为一个无穷级数,然后通过截断级数来计算近似的极限值。
8. L'Hospital法则:L'Hospital法则是求解一些不定型极限的重要方法之一、该法则利用导数和洛必达法则,将一个不定型极限转换为一个更简单的极限,然后进行求解。
9.递推关系:递推关系是求解一些递推数列的极限的重要方法。
该方法利用数列之间的递推关系,将数列的极限转化为递归方程的极限,并利用递归方程的解求解极限。
求极限的方法与技巧求极限是微积分中一个重要的概念,它在数学分析、物理学、经济学等许多领域都有广泛的应用。
正确理解和应用极限的方法和技巧对于解决复杂问题至关重要。
在本文中,我将分享一些求极限的方法和技巧。
一、代入法代入法是求解极限最基本的方法之一、当函数在特定点不可求值或复杂时,我们可以通过代入该点的相邻值来近似求解极限。
例如,对于函数f(x)=x^2,要求极限lim(x->2)f(x),我们可以尝试代入x=2附近的数字,如1.9、1.99、1.999等,通过逐渐逼近2,来估算极限的值。
当代入的数字越接近2时,得到的极限值越接近真实值。
二、基本极限法则基本极限法则是求极限过程中的重要工具,它基于一系列基本的极限结果。
以下是常用的基本极限法则:1. 常数法则:lim(x->a)c=c,其中c为常数;2. 幂函数法则:lim(x->a)x^n=a^n,其中n为正整数,a为实数;3. 指数函数法则:lim(x->0)(1+x)^n=1,其中n为正整数;4. 三角函数法则:lim(x->0)sin(x)/x=1,lim(x->0)(1-cos(x))/x=0;5. 对数函数法则:lim(x->1)ln(x)=0。
通过灵活运用这些基本极限法则,可以简化复杂的极限计算过程。
三、夹逼法夹逼法是求解极限中一种常用的思路。
当我们需要求解一个函数f(x)在特定点的极限时,可以通过构造两个函数g(x)和h(x),使得g(x)≤f(x)≤h(x),且lim(x->a)g(x)=lim(x->a)h(x)=L,则根据夹逼定理,可以得到lim(x->a)f(x)=L。
通过灵活选择g(x)和h(x),我们可以利用夹逼法求解复杂的极限问题。
四、换元法换元法是极限求解中一种常用的技巧。
通过进行变量替换,可以将复杂的极限问题转化为简单的形式。
例如,对于极限lim(x->0)sin(2x)/x,我们可以进行变量替换令u=2x,得到lim(u->0)sin(u)/(u/2),进一步化简为lim(u->0)2sin(u)/u。
浅谈两个重要极限解题技巧在数学学科中,极限是一个非常重要的概念,涉及到函数的发散、收敛性质等等。
极限问题的解题技巧对于学生来说是非常重要的,它可以帮助学生更好地理解和掌握数学中的极限概念。
在本文中,我们将会浅谈两个重要的极限解题技巧,希望能够对广大学生有所帮助。
一、套路分析法套路分析法是一种常见的解决极限问题的技巧,它主要通过找到一个适当的“套路”或者“路线”,来解决一些较为复杂的极限问题。
在数学中,很多极限问题都是通过套路分析法来解决的,它可以帮助学生更好地理解和掌握极限的性质和运算规律。
套路分析法的核心在于发现合适的“套路”,而这种“套路”本质上是一种数学规律或者性质。
在解决极限问题时,学生可以通过观察和分析函数的性质和特点,找到其中的规律和“套路”,从而更好地解决问题。
比如对于一些复杂的函数极限问题,学生可以通过观察函数的单调性、周期性、对称性等性质,来发现其中的规律和“套路”,从而更好地解决问题。
套路分析法也需要学生熟练掌握各种数学运算技巧和性质,这样才能在解决问题时更加得心应手。
套路分析法的优势在于它能够帮助学生更好地把握问题的本质和规律,从而更加方便快捷地解决问题。
通过套路分析法,学生可以更好地发现问题中的一些隐藏性质和特点,从而更好地理解和掌握数学中的极限概念。
二、极限函数逼近法极限函数逼近法的核心在于利用一些简单的、已知的极限函数来逼近复杂的函数,从而更好地求解其极限值。
在解决极限问题时,学生可以通过构造一些极限函数序列,逐步逼近目标函数,从而更好地了解其极限性质。
比如对于一些复杂的函数极限问题,学生可以通过构造一些简单的、已知的极限函数,逐步逼近目标函数,从而更好地求解其极限值。
极限函数逼近法也需要学生熟练掌握各种已知的极限函数及其性质,这样才能更好地逼近目标函数,并求解其极限值。
套路分析法和极限函数逼近法是两种非常重要的极限解题技巧,它们都可以帮助学生更好地解决一些复杂的函数极限问题,从而更好地理解和掌握极限的性质和运算规律。
浅谈函数极限的求解方法
函数极限是指对变量按照特定的规则做无限次运算,得出的结果不为正无穷或
负无穷,而是一个有限的常数,这独特的数学结果就称为函数的极限。
求函数极限的方法是多种多样的,可以从多面入手,用不同的角度来推导出函数的极限,例如可以利用极限的定义,也可以根据定义符号和法则来求解。
首先,可以利用极限的定义来求解函数极限,用符号定义法将函数极限表示出来。
例如:定义极限,当x趋近于某个值a时,函数y=f(x)可以写成
∞lim_(x→a)f(x)=L,其中L为某个有限的常数,对应的极限就是L。
其次,可以利用极限的定义符号和法则来求解函数极限。
最常见的极限法则有
及时差法则、加法法则、乘法法则、恒等式法则、极限连续性法则等等,比如加法法则是:若前提是除0之外,且若存在此限就是f(x)+g(x) 的极限,则。
此外,还可以结合数学定理等来求解极限,比如利用不等式定理来进行证明等等。
最后,可以利用数值计算来求解函数极限,例如根据函数的定义域进行计算,
并逐步缩小它的范围来求解极限值,或者使用数值计算软件等来进行计算,jsut make sure you enter the correct formula and parameters for the program.
总之,函数极限的求解方法有很多,以上三种方法是最常用的。
借助于这三种
方法,我们可以轻松计算出函数极限所对应的有限值,有能力的人还可以从科学的角度推出极限的公式,从而加深我们对函数极限的理解。
高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。
其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。
本文将介绍求极限的常用方法,并提供相应的例题和详解。
一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。
具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。
2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。
3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。
则可以得到 lim[f(x)] = lim[g(x)] = A。
下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。
解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。
则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。
二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。
具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。
其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。
浅谈两个重要极限解题技巧极限是高等数学中非常重要的一个概念,它在数学和物理等领域中都有着广泛的应用。
在解题过程中,掌握一些重要的极限解题技巧对于提高解题效率和准确性都有着非常重要的意义。
本文将从两个重要的极限解题技巧进行浅谈,希望能够对大家在学习和应用极限时起到一定的帮助和指导。
一、变量代换法变量代换法在解极限题时是一种非常常用且有效的技巧。
它常常适用于那些包含复杂变元的极限题目,通过合理的变量代换,可以将原极限题目转化成更加简单的形式,从而更容易求解。
对于极限\lim_{n \to \infty} (\frac{n+1}{n})^n,我们可以用变量代换方法进行解题。
首先令a=\frac{1}{n},则当n \to \infty时,a \to 0。
这样原极限题目就可以转化成\lim_{a \to 0} (1+\frac{1}{a})^{1/a}。
这时候再用一些常用的极限公式和技巧,就能够比较容易地求解出极限的值。
二、夹逼定理夹逼定理也是解极限题时经常用到的一种重要技巧。
夹逼定理适用于那些求解极限题目时比较难以直接求解的情况,通过构造一个上下夹逼的序列,可以找到目标极限值的范围,从而更容易求解出极限的值。
对于极限\lim_{n \to \infty} \frac{sin n}{n},我们可以通过夹逼定理进行解题。
由于-1 \leq sin n \leq 1,所以-\frac{1}{n} \leq \frac{sin n}{n} \leq \frac{1}{n},根据夹逼定理,当n \to \infty时,-\frac{1}{n} \to 0,\frac{1}{n} \to 0,所以\lim_{n \to \infty} \frac{sin n}{n}=0。
在进行极限题的解题过程中,变量代换法和夹逼定理都是非常重要的解题技巧。
希望大家在学习和应用极限过程中,能够灵活运用这些技巧,提高解题效率和准确性。
求极限的方法与技巧求极限是微积分中的基本问题,它在解决实际问题中起着关键作用。
在高等数学中,求极限的方法有多种。
下面将介绍一些常见的求极限的方法与技巧。
一、代入法:当极限中存在一些点,可以通过直接将该点代入函数中来求得极限。
二、化简法:当题目给出的函数比较复杂时,可以通过化简来求极限。
比如,利用封闭函数性质、基本运算法则等进行化简。
三、夹逼法:夹逼法也叫夹定理法,是一种常用的求极限方法。
其基本思想是给出两个函数,找到一个中间函数,使得中间函数的极限等于极限所求的值。
通过夹定理可得:若函数f(x)、g(x)、h(x)满足f(x)≤g(x)≤h(x),当x趋于其中一值a时,f(x)和h(x)的极限都等于L,则g(x)的极限也等于L。
四、间断分解法:当函数在其中一点存在间断时,可以将函数分解开来,单独求解每一段函数的极限,然后再进行综合得出最后的极限。
五、无穷小量替换法:当给出的函数极限不好求解时,可以通过将其替换为一个相等的无穷小量来简化计算。
比如,将极限中的分子或分母替换为无穷小量,或者将函数替换为等价的无穷小量。
六、洛必达法则:洛必达法则是求解一些形如$\displaystyle\frac{0}{0}$ 或$\displaystyle\frac{\pm\infty }{\pm\infty }$型极限的常用方法。
其基本思想是将函数的极限转化为分数的形式,然后对分子和分母同时求导,最后将得到的导数值带入原函数中。
如果在求导之后依然得到一个$\displaystyle\frac{0}{0}$形式的极限,可以继续应用洛必达法则,直到得到非$\displaystyle\frac{0}{0}$形式的极限。
七、级数展开法:对于一些无穷级数的极限求解,可以通过级数展开来计算。
例如,利用泰勒级数展开,将函数展开成无穷级数的形式,然后利用级数的性质进行计算。
八、极限换元法:有时候对于一些较为复杂的函数,可以通过对变量进行换元简化问题。
浅谈极限的求法技巧极限是贯穿高等数学的一条主线。
学好极限是从以下两方面着手。
首先,考察所给函数是否存在极限。
其次,若函数否存在极限,则考虑如何计算此极限。
本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行阐述。
一、利用两个准则(1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则有 lim n x y a→∞= .利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和 {}n z ,使得n n n y x z ≤≤。
例n x =求n x 的极限解:因为n x 单调递减,所以存在最大项和最小项.......n x ≥=.......n x ≤+=n x ≤≤又因为1x x ==lim 1n x x →∞=(2):单调有界准则:单调有界数列必有极限,而且极限唯一。
利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。
例:证明下列数列的极限存在,并求极限。
123,ny y y y a a a a===++++证明:从这个数列构造来看ny显然是单调增加的。
用归纳法可证。
又因为23,ny y y===所以得21n ny a y-=+. 因为前面证明ny是单调增加的。
两端除以n y得1nnayy<+因为1ny y≥则nay≤从而11nay+≤1ny≤即n y是有界的。
根据定理{}ny有极限,而且极限唯一。
令limnny l→∞=则21lim lim()n nn ny y a-→∞→∞=+则2l la=+. 因为0,ny>解方程得12l=所以1lim2nny l→∞+==二、利用四则运算极限的四则运算性质:两收敛数列的和或积或差也收敛且和或积或差的极限等于极限和的或积或差。
两收敛数列且作除数的数列的极限不为零,则商的极限等于极限的商。
目录中文摘要 (2)外文摘要 (3)引言 (4)1.求极限的相关技巧与方法 (4)1.1 利用极限的四则运算法则求极限 (4)1.2 利用函数的连续性求极限 (5)1.3 利用无穷小的性质求极限 (6)1.4 利用等价无穷小的代换求极限 (6)1.5 利用两个重要极限求极限 (7)1.6 利用两个极限存在准则求极限 (9)1.7 利用L'Hospital法则求极限 (10)1.8 利用泰勒展式求极限 (11)1.9 利用积分求极限 (13)1.10 利用Lagrange中值定理求极限 (14)1.11 利用微分中值定理来求极限 (15)1.12 用Stolz法求极限 (16)1.13 用代数函数方法求极限 (17)2.多种极限方法的综合运用 (19)参考文献 (22)致谢 (23)浅谈求极限的方法与技巧陶习满指导老师:胡玲(黄山学院数学系,黄山,安徽 245041)摘要:极限的概念是高等数学中最重要、最基本的概念之一,它是研究分析方法的重要理论基础,但极限定义并未直接提供如何去求极限。
然而求极限的方法很多,本文总结几种常用的求极限的方法。
关键词:极限;技巧;方法。
Of Getting The Methods And TechniquesLimitTao XimanDirector : Hu Ling(The mathematics department of huangshan university,Huangshan,Anhui,245041)Abstract:The concept of limit of higher mathematics is the most important and one of the most basic concepts,the definition does not tell us how to seek limits.There are a lot of methods to get limits, This paper summarizes several common ways to limit demand for reference.Key Words: Limit; skills; method.引言在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。
掌握好求极限的方法对学好高等数学是十分重要的。
因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。
然而求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。
1.求极限的相关技巧与方法 1.1 利用极限的四则运算法则求极限定理:若 A x f x x =→)(lim 0B x g x x =→)(lim 0(1)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0(2)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(3)若 0≠B ,则BAx g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000(4)cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者,方能利用极限四则运算法则进行求之;不满足条件者,不能直接利用极限四则运算法则求之。
但是,并非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之,而对函数进行恒等变形时,通常运用一些简单技巧如拆项,分子分母同乘某一因子,变量替换、分子分母有理化等等。
例1 求2lim →x 352-+x x解 2lim →x 352-+x x =732323lim lim 5lim lim 222222-=-+=-+→→→→x x x x x x例2 求)13(lim 22x x x x x +-++∞→解)13(lim 22x x x x x +-++∞→=xx x x x x +++++∞→221312lim=xx x xx 1113112lim2+++++∞→=21.2 利用函数的连续性求极限)()](lim [))((lim )()(lim )]([)()()(lim )()(000a f x f x f a u u f a x x f ii x f x f x x x f i x x x x x x x x ======→→→→ϕϕϕϕ则处连续,在且是复合函数,又若处连续,则在若因为一切初等函数在其定义区间内都是连续的,所以如果)(x f 是初等函数,且0x x =是)(x f 的定义区间内的点,则).()(lim 0x f x f ox n =→例1 求612arcsinlim 1+→x x 解 因为复合函数612arcsin+x 是初等函数,而1是其定义区间内的点,极限值就等于该点处的函数值。
因此6π21arcsin 6112arcsin 612arcsin==+⨯=+x 例2 求下列函数的极限)1ln(15cos lim )1(20x x x e x x -+++→ xx x )1ln(lim)2(0+→()1ln ))1(lim ln()1ln(lim )1ln(lim )1()1ln()1ln()2(6)0()1ln(15cos lim )1ln(15cos )(0)1(1010011202==+=+=++=+=+==-+++-+++==→→→→e x x xx x x x x x f x x x e x x x e x f x x x x x x xxx x x 故有:令由有:故由函数的连续性定义的定义域之内。
属于初等函数由于解:ϕ1.3 利用无穷小的性质求极限定理:若自变量在同一变化过程中(0x x →或∞→x )(1)如果已知数)(x f 为无穷大量则)(1x f 为无穷小量。
(2)如果已知数)(x f 为无穷小量且0)(≠x f ,则)(1x f 为无穷大量。
因为有界量与无穷小的乘积仍为无穷小;有限个无穷小的和仍为无穷小;在自变量的同一变化过程中无穷大量的倒数为无穷小,利用这些性质可以使我们的计算得以简化。
例1 xx x 1sinlim 20→ 解 因为当0→x 时,2x 是无穷小,而1|1sin |≤x ,所以01sin lim 20=→xx x例2 4532lim21+--→x x x x解 因为分母的极限04151)45(lim 221=+⨯-=+-→x x x ,不能应用商的极限的运算法则,但因03124151lim 3245lim2121=-⨯+⨯-=-+-→→x x x x x ,故∞=+--→4532lim 21x x x x 1.4 利用等价无穷小的代换求极限定理:若自变量在同一变化过程中αβαβαβββαα''=''''lim lim lim~~存在,则且、 利用等价无穷小代换求函数的极限时,一般只在以乘除形式出现时使用,若以和、差形式出现时,不要轻易代换,因为经此代换后,往往会改变无穷小之比的阶数,故此慎用为好。
还应该熟悉一些常用的等价无穷小,如当0=x 时有如下等价无穷小:,2~cos 1),1ln(~,1~,arctan ~tan ~,arcsin ~sin ~2x x x x x x x x x x x x e-+-x x αα~1)1(-+等等。
例1 求 )1ln()1(cos 1lim0x e xx x +--→解 因为当0→x 时有,)1ln(~,1~,2~cos 12x x e x x x x +--,所以)1ln()1(cos 1lim 0x e x x x +--→=212lim 20=⋅→x x x x例2 求302sin sin 2limx xx x -→解 11lim )cos 1(2sin lim 2sin sin 2lim2202030=⨯=-=-→→→xx x x x x x x x x x x 错误的解法是:302sin sin 2limx x x x -→=022lim 30=-→xxx x 错在对加减中的某一项进行了等价无穷小代换。
例3 求)12(lim+-+∞→x x x x解 xx x x x 11211)12(+++=+-+2111211lim)12(lim =+++=+-+∴∞→∞→xx x x x x x1.5 利用两个重要极限求极限1sin lim)(0=→x x A x e xB x x =+∞→)11(lim )(变形:))((,))(11lim()()0)((,1)()(sin lim)()(''∞→=+→=x e x B x x x A x ϕϕϕϕϕϕ在此即利用① 1sin lim 0=→x x x , ②e x x x =+→10)1(lim 和e xx x =+∞→)11(lim ,其中的x 都可以看作整体来对待。
其中第一个重要极限是“”型;第二个重要极限是“∞1”型,在“0”型中满足“外大内小,内外互倒”。
在利用重要极限求函数极限时,关键在于把要求的函数极限化成重要极限的标准型或它们的变形,这就要抓住它们的特征,并且能够根据它们的特征,辨认它们的变形。
例1 求20cos 1limx xx -→解 20cos 1limx xx -→=21)2(2sin 21lim 2sin 2lim220220==→→x xx x x x例2 求xa x x 1lim 0-→解 )1ln(ln 1 ln )1ln( ,1u au x a a u x u a x x+=-+==-于是则令 a u auu a u a u xa u x uu u u x x ln )1ln(ln lim )1ln(ln lim )1ln(ln lim 1lim 010000=+=+=+=-→→→→→→故有:时,又当例3 求xx xx 10)121(lim +-→解 为了利用极限e x xx =+→10)1(lim ,故把原式括号内式子拆成两项,使得第一项为1,第二项和括号外的指数互为倒数进行配平。