大庆油田地层油层
- 格式:ppt
- 大小:5.45 MB
- 文档页数:5
试分析大庆油田压裂裂缝形态与特征大庆油田是我国最早开发的油田之一,位于黑龙江省大庆市东南部,地质构造复杂,储层特点明显。
该油田采用了压裂技术,利用高压水射流将岩石破碎,形成裂缝,从而增加油气的渗透性,提高采收率。
下面将详细分析在大庆油田中应用的压裂裂缝形态及其特征。
1.裂缝形态大庆油田中通过压裂技术形成的裂缝可以分为两种形态,分别为垂直于井眼的裂缝和平行于地层走向的裂缝。
根据实际情况,多数井口以全深垂直压裂为主,而横向裂缝的应用相对较少。
1.1 垂直裂缝垂直裂缝是在井眼周围的岩石中形成的,因此也被称为径向裂缝。
它们主要是垂直于井眼的,从而形成一系列沿径向展开的直线型裂缝。
这种形态的裂缝通常是具有高度关联性的,裂缝宽度与深度比较一致,具有较高的渗透性,是压裂技术的居多应用形态。
平行裂缝是指与地层走向平行的裂缝,这种裂缝通常是在地层的纹层和节理面等断层和裂缝上形成。
由于沿着地层走向,这种裂缝通常被认为是具有较强的分段性质的,裂缝宽窄、分布稀密,它们通常比垂直裂缝的渗透性要差。
2.裂缝特征在大庆油田中形成的裂缝密度较高,是一种比较贴近实际情况的景观。
由于该油田中岩石质地较硬,所以在压裂时需要更高的压力,才能形成裂缝,因此裂缝密度较高。
2.2 裂缝宽度在大庆油田中形成的裂缝宽度大多在0.1~1mm之间。
裂缝宽度的大小与井筒的直径和压裂速度等因素有关。
裂缝宽度对渗透性有很大影响,通常越宽的裂缝渗透性越大,但非常宽的裂缝常常难以形成,这是因为压力会在宽裂缝中分散开来无法使岩石形成一条连续的裂缝。
裂缝长度是指由裂缝开口延伸出来的长度。
在大庆油田中形成的裂缝长度通常在几米到几十米之间。
裂缝越长,渗透性越好,能提高油气的采收率。
裂缝面积是指水力压裂后在地层中形成的裂缝在横截面上所占的面积。
裂缝面积的计算对于进行流体运移的数值模拟非常重要。
在大庆油田中形成的裂缝面积通常在0.1~10m\textsuperscript{2}之间,常常通过岩心样本分析来获得。
大庆油田储层渗透率分布概型特征的地质
解释
大庆油田是我国最大的陆上油田之一,其储层渗透率分布概型特征是研究该油田地质特征的重要方面之一。
储层渗透率是指岩石中孔隙或裂缝的连通性和大小,是油气储层的重要物理性质之一。
大庆油田的储层渗透率分布概型特征主要表现为以下几个方面:
大庆油田的储层渗透率分布呈现出明显的非均质性。
在不同地质时期形成的不同岩性储层中,渗透率的分布存在较大差异。
例如,砂岩储层的渗透率普遍较高,而泥岩储层的渗透率则较低。
此外,同一储层中不同位置的渗透率也存在差异,这与储层的地质构造、沉积环境等因素有关。
大庆油田的储层渗透率分布呈现出明显的垂向变化。
随着深度的增加,储层渗透率逐渐降低。
这是因为在地质演化过程中,深部岩石受到了更大的压力和温度影响,孔隙和裂缝的连通性和大小逐渐减小,导致渗透率降低。
大庆油田的储层渗透率分布呈现出明显的空间异质性。
不同区块、不同井位的储层渗透率存在较大差异。
这与储层的地质构造、沉积环境、成岩作用等因素有关。
因此,在勘探开发过程中,需要对不同区块、不同井位的储层渗透率进行详细的地质解释和评价,以制
定合理的开发方案。
大庆油田的储层渗透率分布概型特征是其地质特征的重要方面之一。
了解储层渗透率的分布规律,对于制定合理的勘探开发方案、提高油气勘探开发效率具有重要意义。
大庆石油地质与开发Petroleum Geology & Oilfield Development in Daqing2023 年 10 月第 42 卷第 5 期Oct. ,2023Vol. 42 No. 5DOI :10.19597/J.ISSN.1000-3754.202306037大庆油田萨南开发区三类油层三元复合驱注入参数数值模拟优化秦旗 陈文若 梁文福(中国石油大庆油田有限责任公司第二采油厂,黑龙江 大庆163414)摘要: 大庆萨南开发区三元复合驱开发对象已由以河道砂沉积为主的高孔、高渗的一、二类油层转为储层物性较差的以席状砂沉积为主的中孔、中渗的三类油层,原来适合一、二类油层三元复合驱的注入参数不再适合三类油层三元复合驱开发的需要,提高采收率幅度降低,与数值模拟预测差距大。
从三类油层地质特征出发,明确了影响三元复合驱数值模拟预测的4项关键参数,通过室内实验和矿场测试,确定了4项参数取值范围。
采用正交化方法设计78个方案,应用新参数进行数值模拟,优化出适合三类油层的三元复合驱主、副段塞表面活性剂质量分数和段塞用量并应用在8个三元复合驱工业化区块,平均提高采收率18百分点,应用于L 区块比化学驱预测方案多提高采收率6.00百分点。
研究成果为大庆长垣油田三类油层和其他油田同类油层三元复合驱优质高效开发提供了参考和借鉴。
关键词:三类油层;三元复合驱;注入参数;数值模拟;萨南开发区;大庆油田中图分类号:TE357.46 文献标识码:A 文章编号:1000-3754(2023)05-0123-07Numerical simulation optimization of injection parameters of ASP floodingfor Class Ⅲ reservoirs in Sanan development area of Daqing OilfieldQIN Qi ,CHEN Wenruo ,LIANG Wenfu(No.2 Oil Production Company of PetroChina Daqing Oilfield Co Ltd ,Daqing 163414,China )Abstract :The object of ASP flooding in Daqing Sanan development area has changed from Class Ⅰ and Class Ⅱ reservoirs with high porosity and permeability and mainly channel sand sediments to Class Ⅲ reservoirs with poor reservoir quality and with mainly medium -porosity and medium -permeability sheet sand sediments. Original injec‑tion parameters of ASP flooding suitable for ClassⅠ and Class Ⅱ reservoirs are no longer suitable for ASP flooding development of Class Ⅲ reservoirs , with incremental recovery reduced , being much different from numerical simu‑lation prediction. Based on geological characteristics of Class Ⅲ reservoirs , 4 key parameters affecting numericalsimulation prediction of ASP flooding are defined , and the value ranges of the 4 key parameters are determined bylaboratory experiments and field tests. By using orthogonalization method , 78 schemes are designed. The new pa‑rameters are used in numerical simulation to optimize the surfactant mass fraction and slug size of the main and aux‑收稿日期:2023-06-20 改回日期:2023-08-23基金项目:中国石油天然气股份有限公司重大科技专项“三类油层提高采收率技术研究与试验”(2016E -0208)支撑项目“萨南开发区薄差油层三元复合驱压裂提效技术研究”(dqp -2020-sccy -ky -002)。
试分析大庆油田压裂裂缝形态与特征大庆油田是我国最大的陆上油田之一,采用了压裂技术来提高油井的产能。
压裂技术通过在油井中注入高压液体,使地层岩石断裂,形成裂缝,从而增加油井的产能。
下面我们来分析大庆油田压裂裂缝的形态与特征。
一、裂缝形态1. 平直裂缝:这是最常见的裂缝形态,裂缝沿垂直于井筒的方向延伸,具有直线状的特点。
平直裂缝形态一般出现在岩性较坚硬的地层中。
2. 弯曲裂缝:这种裂缝形态是由于地层中存在弯曲的缺陷或压力的影响导致的。
弯曲裂缝通常呈曲线状,有时会呈现出S形或Z形。
3. 阶梯状裂缝:这种裂缝形态常出现在砂岩、灰岩等具有明显层理的地层中。
裂缝的形态呈阶梯状,裂缝之间有一定的高差。
4. 支裂缝:这种裂缝形态是裂缝主支汇聚成的特殊形态。
支裂缝通常正交分布,与主裂缝形成“网格状”。
二、裂缝特征1. 空间分布特征:大庆油田的压裂裂缝呈现出明显的空间分布规律。
裂缝通常沿着地层的走向延伸,具有一定的方向性。
裂缝的密度和长度会随着注入压裂液体的压力和注液量的变化而变化。
2. 长度分布特征:大庆油田的压裂裂缝长度通常在几米至几十米之间,不同地层的裂缝长度有所不同。
裂缝长度对增加油井产能有重要影响,较长的裂缝能够更有效地提高油井的产量。
3. 宽度分布特征:大庆油田的压裂裂缝宽度通常在毫米至几毫米之间。
裂缝的宽度会随着地层的岩性、裂缝形态和施工参数的变化而变化。
4. 连通性特征:大庆油田的压裂裂缝通常呈现出一定的连通性,裂缝之间可以相互汇聚形成裂缝网。
具有较好连通性的裂缝会增加地层的渗透性,提高油井的产能。
大庆油田压裂裂缝的形态与特征主要包括平直裂缝、弯曲裂缝、阶梯状裂缝和支裂缝等形态特征,以及空间分布、长度分布、宽度分布和连通性等特征。
对这些特征的分析可以为压裂施工提供参考,提高油井的产能。
盆地沉积盖层自侏罗系开始,至中,新生代均有不同程度的发育,但是以白垩系,尤其是下白垩统为主,新生界厚度不大。
地表均被第四系所覆盖。
盆地内发现三套含油组合,起上部含油组合为黑地庙油层,分布在嫩江祖的三四中;中部含油组合为萨尔图,葡萄花和高台子油层,分布在青山口组二三段及姚家组和嫩江祖一段中;下部含油组合为扶余和扬大城子油层,分布在泉头组三四段中,油田集中在中部含油组合内。
盆地沉积盖层被划分为七个一级构造单元,31个二级构造和130多个局部构造,目前所发现的油田大部分都集中在中央坳陷区内。
松辽盆地基底分别由大兴安岭华里西晚期褶皱带和吉黑华里西晚期褶皱带汇合而成。
在经历了三叠纪和侏罗纪早期的抬升剥蚀后,在侏罗纪晚期由于以断裂为主的构造运动的作用,在这里产生了众多的断陷、地垒和断阶带。
进入早白垩世松辽盆地沉降作用不断增强,使早期出现的分割性的小断陷扩大沟通,形成统一的松辽盆地大型沉积坳陷,至晚白垩世和第三纪,由于淤积充填而使盆地沉降速度明显减缓,坳陷渐趋萎缩。
松辽盆地是我国东北地区的大型中新生代陆相沉积盆地,面积约26×104km2,沉积地层厚度5000~6000m,全盆地分为7 个一级构造单元:中央坳陷区、西部斜坡区、东南隆起区、东北隆起区、北部倾没区、西南隆起区、开鲁坳陷区,大庆长垣是松辽盆地北部的一个二级构造单元,由喇嘛甸、萨尔图、杏树岗、太平屯、高台子、葡萄花、敖包塔7个背斜构造组成大庆松辽盆地属于我国著名地质学家李四光同志划分的中国东部新华夏系第二沉降带,即呈北北东走向的中新生代沉降带中的一个大型沉积盆地。
盆地内部总的轮廓是北部、东北部、东南部和西南部为隆起区,西部是平缓斜坡,中间是大面积的拗陷区大庆长垣北部,基岩以上沉积了上侏罗统、白垩系、第三系和第四系的巨厚地层。
各沉积岩层的层序、岩性及含油状况见图1—3。
厚度最大、分布最广的是白垩系地层。
根据岩性、沉积环境和生、储、盖的组合关系可划分四个沉积旋回:即登娄库组、泉头组—青山口组、姚家组—嫩江组、四方台组—明水组。
CFT地层测试技术在大庆油田外围油藏评价中的应用CFT地层测试采用单层封隔、泵抽和电子传感技术,能在套管井内快速准确的取得储层的地层压力资料及地层流体样本资料,并可利用地层压力资料计算单层的产能情况,从而进行产能预测、固井质量串槽检查等;利用取得的地层流体样本分析资料可以辅助测井解释进行流体性质判别及地层污染判别。
随着油藏评价的继续进行,评价工作的重点转移到了向斜区内。
存在薄差层多、油水关系复杂等难点。
CFT地层测试技术的投入使用,为有效解决外围油藏评价测井解释难点提供了新的方法。
实际应用表明,CFT地层测试技术为储层流体性质及地层压力认识提供了重要依据,能部分满足储层评价和工程评价的需要。
标签:CFT地层测试技术;流体性质判别;地层压力;产能预测;测井解释Abstract:The CFT formation testing technique,which adopt the single packer,pump exhausting and electronic sensing technology,can obtain the formation pressure and fluid sample data of the reservoir in cased hole quickly and accurately,thus,we can use the formation pressure data to calculate the monolayer capacity,to do the productivity prediction and to do the well cementing quality and channeling inspection,etc;we can use the sample analysis data of the formation fluid to assist in logging interpretation of fluid property and formation pollution discrimination.With the continued evaluation of reservoir evaluation,shift working emphasis to the syncline region.There are thin and poor reservoir,complicated oil-water relationship difficulties.The application of CFT formation test technology,providing a new effective way to solve the interpretation difficulties in peripheral reservoir evaluation.The practical application shows that,the CFT formation test technology had provided very important basis for pfreservoir fluid property and formation pressure discrimination,it can meet part of the needs in reservoir and engineering evaluation.Keywords:CFT formation test technology;The fluid property discriminant;Formation pressure;Productivity prediction;Log interpretation一、引言电缆地层测试最近十几年来在技术装备、资料解释、工业应用等方面均取得了质的飞跃,为试油测井事业和石油工业的高速发展做出了重要贡献[1]。
大庆油田合理地层压力的保持水平油气田地面工程第25卷第1期(2006.1)】1大庆油田合理地层压力的保持水平唐莉(北京大学地球与空间科学学院,大庆油田州十三合作区块管理部) 刘惠(大庆油田勘探开发研究院)姜雪源(大庆油田采油六厂)1.影响地层压力的几个重要因素(1)保持原油在油层中的流动性能不变.国内外许多研究者都把保持地层原油不脱气作为保持地层压力的根本目的.从这点出发,把地层压力不低于饱和压力作为保持压力的最低下限.图1是应用油气两相稳定渗流理论公式和北三区原油物性参数计算的相对采油指数(油气两相流时的采油指数与单相油流采油指数之比)与流饱压差,地饱压差的关系曲线.从图l中可以看到:当地层压力低于饱和压力时,油井的采油指数只有单相油流时的一半左右.这就是说地层压力低的油井生产能力不能得到充分的发挥.当地层压力高于饱和压力时,随着地层压力的下降,油井产能就随之下降,而且地饱压差在0~1.5MPa之间时,地层压力的下降对产能影响最大.一Pb(MPa)圈1相对采油指数与流饱压差理论计算曲线油层压力下降不仅使油井生产压差减小,还会引起油层渗流能力的下降.因此保持地层压力大于饱和压力就成了注水开发油田的一条基本原则.(2)保持油井在一定的生产压差下采油.油井在保持自喷采油的条件下最大生产压差为:AP=PR—PiH=PR—P一一exp(一C+)(1)式中:厶P——油井最大生产压差,MPa.由式(1)看出:当油井最低自喷流压一定时,即保持油井在自喷条件下采油时,地层压力越高,油井最大生产压差越大,随着油井含水上升.生产压差可调的范围也就越大,这样就为保持油井产量稳定或控制油井产量递减速度提供了保证.大庆油田原油粘度高,油层非均质严重,注水开发的无水采收率低,大部分储量需要在含水期采出,因此要求油田要稳产到…定含水阶段.而油井含水后采油指数要下降,井筒举升所消耗的能量要增加(最低自喷流压上_歹),这些都需要靠增加油层压力来弥补.因此保持油层压力就显得异常重要.(3)油层压力过高带来的一些负而影响.到l980年,大庆油田主体部分喇萨杏油田含水已达到60%,油田保持自喷与稳产所需的地层压力达到l1.6MPa,此时油田实际地层压力为1】.43M1a, 由于地层压力较高,已经给油田正常开发带来许多负面影响,这些影响包括:①地层压力保持过高.会加剧层问矛盾;②地层压力过高会增加钻加密调整井,修井和井下作业的难度,会加速套管损坏的速度;③会造成过渡带地区原油外流,如萨北东部过渡带地区;④地层压力提离后,注水泵压必然要相应地提高,在相同注水量下所消耗的能量要增加,设备管线的耐压要求也要提高,这些都会增加原油的开采成本.为了保证油田在合理的条件下进行开发,大庆喇萨杏油田从1980年开始转变开采方式,将自喷井逐渐转为抽油开采,通过注采系统的调整,把地层压力控制在原始地层压力以下.因此油层压力不是越高越好,应该有一个合理的上限值,这个数值应该根据油藏的具体条件来研究确定.2.油田地层压力的合理界限大庆长垣内部各开发区地层压力系数较小,:均为1.O6,油藏原始地层压力接近静水柱压力,属于正常压力油藏,原油粘度高为8.6mPa?s,平均地饱压差为2.16MPa,其中南部杏树岗油田高达3.5—4.OMPa;无水期平均最低自喷流压为7.3MPa,最大生产压差为4.OMI'-0_,含水到60%时最低自喷流压上升至9.3MPa,最大生产压差减小到2.OMPa,属于中等自喷能力的油田.开发过程中如果不保持地层压力,把地层压力由原始压力降低到饱和压力附近,油田含水6O%时油井就会停喷停产,这时油井生产压差将降低到零.大庆长垣外围油田,油井无自喷能力,均采用12油气田地面工程第25卷第1期(2006.1)气液两相流气液量与流型转变的研究吕宇玲王鸿膺(中国石油大学储运与建筑工程学院)石油在开采和输送过程中,通常是以气液混合物的形式存在的,所以对气液两相流动特性的研究就显得尤为重要.在多相流动中,流型是研究压降,持液率等其它参数的前提,只有充分考虑流型的影响,其它参数的研究才能有足够的精度.本文利用电导探针信号研究了水平管路中空气一水两相流动流型,绘制了流型图,并研究了气液量的变化对流型转变的影响.1.实验方法与系统试验装置由水罐(1m),离心泵,气体涡轮流量计,液体涡轮流量计,气液混合器,试验管段和气液分离器组成.试验段下游安装有长lm,直径50mm的有机玻璃管,用于流型的观察,其上安有4 组电导探针,用于测量实验数据和流型的识别.2.气液两相流流型(1)气液两相流流型分类.气液两相在管路中的流动形式较为复杂,目前,学术界存在多种流型分类方式,但作者认为,在不影响研究精度及工业应用的前提下,流型划分种类应尽量少,只有集中在几种流型上才有可能使研究更加深入,结果更具通用性.本文根据观察到的现象将气液两相流划分为以下五种流型:光滑分层流,波浪流,段塞流,环状流和泡状流.由于实验条件所限,实验中观测到的泡状流流型不明显,数据不具代表性,因此,主要研究了前四种流型.(2)气液两相流流型与探针信号的分析.气液两相流动试验中,通过采集卡将流动特征信号以电压的形式采集至计算机,经过处理后得到典型流型的试验结果.图l是四种流型的探针电压输出信号,根据图l对信号予以分析.图中纵坐标为电压值(V),横坐标为时间(s),由图可以看出:光滑分层流动信号比较平缓,波动很小,此时肉眼观察气液分界明显,界面平滑.波浪流电压信号波小而密,振幅不大,最大值与最小值差在1V以内,波峰排列均匀,并且没有明显的间歇性.此时肉眼观察气液分界面明显, 界面有波动.段塞流探针电压信号呈现出明显的波峰,波谷,最大值与最小值差别在3V以上.这是因为在液塞通过时,它充满管路整个界面,液位非常高,当液膜通过时,气泡是不导电的,探针输出抽油方式开采.在抽油开采方式下,保持地层压力同样具有非常重要的意义:①可以保持油井具有较大的生产压差,为油井放大压差采油提供保证;②在油井生产压差一定的条件下,地层压力保持水平越高,泵的工作压力也就越高,这样可以保证泵在最佳的状况下进行工作,使抽油泵具有较高的沉没度和充满系数.大庆油田采取早期内部注水保持压力的开发方针.把地层压力界限确定在原始地层压力附近,是符合油田的实际情况的.不同油田原油性质不同, 油层压力系数不同,注水保持压力的界限也应当有所区别.3.结论在确定地层压力保持水平时,应考虑以下一些基本原则:(1)保证原油在油层中具有很好的渗流条件,为此应使地层压力高于油藏饱和压力.由于油藏弹性驱采收率很低,因此即使地饱压差较大也不应使地层压力下降得太低.(2)地层压力保持水平应能满足油井持续稳定生产的需要.无论是自喷开采还是抽油开采的油井都应保持一定的压力水平,使油井具有足够大的生产压差及合理的井底流压,使油井产量具有较大的调整余地.(3)地层压力上限不宜高于原始地层压力.地层压力水平过高会影响油田的正常合理开发. (4)地层压力系数较高的油藏,可以将地层压力降低到静水柱压力附近,以便充分利用油层的天然能量;对于高凝油藏,当把主要能量用来降低井底流压时,就可以把地层压力在一定范围内降低下来,这是合理的,也是符合油藏地质特征的. (5)对于低或特低渗透油藏,即使采取同步注水,高注采比注水,地层压力也难以保持.对于这类油藏应当允许地层压力有所下降,如果油藏地质条件允许,如储量丰度比较高,可以通过缩小注采井距或提高注采井数比来达到保持地层压力的目的.因此,根据油田其地质及动态特征不同,地层压力保持的合理水平也应当有所不同.(栏目主持杨军)。