n 1
n 1 n
C
n n
倒序相加法
思考3.在(3x -2y)20的展开式中,求:(1)二项 式系数最大的项;(2)系数绝对值最大的项;(3) 系数最大的项; 解:(2)设系数绝对值最大的项是第r+1项. 则 r 20 r r r 1 19 r r 1
C 20 3 C 3
r 20
2 C 20 3 2 C
r r 1 20
2
20 r
3
21 r
2
r 1
即
3(r+1)>2(207 r8 5 5
8
所以当r=8时,系数绝对值最大的项为 8 12 8 12 9 20
T C 3 2 x y
即
3(r+1)>2(20-r)
令a=1,b=-1得
C C C C
0 n 2 n 1 n 3 n
1答案 2答案
2 n
启示:在二项式定理中,对a,b赋予一些特定的值, 是解决二项式有关问题的一种重要方法——赋值法。
0 2 1 2 2 2 n 2 n ) (C n ) (C n ) (C n ) C2 思考2求证: (Cn n. 略证:由(1+x)n(1+x)n=(1+x)2n,两边展开 后比较xn的系数得:
m m m 1 C C 这就是组合数的性质 2: C n 1 n n
可运用函数的观点,结合“杨辉三角”和函数图象, 研究二项式系数的性质. f( r ) 20 n (a+b) 展开式的二项式系数是
C , C , C , , C , , C .
0 n
1 n