大数定理与中心极限定理5
- 格式:ppt
- 大小:602.50 KB
- 文档页数:52
一、大数定律切比雪夫大数定律:设随机变量X1,X2,…,X n,…相互独立,且具有相同的数学期望且方差有界,那么对辛钦大数定律:设X1,X2,…,X n,…为独立同分布的随机变量序列,且数学期望E(X i)=μ存在,则对任意【例87·填空题】设X1,X2,…,X n,…相互独立,且都服从P(λ),那么依概率收敛到_____[答疑编号986305101:针对该题提问]答案:【例88·填空题】设X1,X2,…,X n,…相互独立,且都服从参数为0.5的指数分布,则。
[答疑编号986305102:针对该题提问]【例89·选择题】设随机变量列X1,X2,…,X n,…相互独立,则根据辛钦大数定律,当n充分大时依概率收敛于共同的数学期望,只要X1,X2,…,X n,…()A.有相同的数学期望B.服从同一离散型分布C.服从同一泊松分布D.服从同一连续型分布[答疑编号986305103:针对该题提问]答案:C【例90·选择题】设随机变量,X1,X2,…,X n,…是独立同分布,且分布函数为则辛钦大数定律对此序列()A.适用B.当常数a,b取适当的数值时适用C.不适用D.无法判别[答疑编号986305104:针对该题提问]答案C二、中心极限定理独立同分布的中心极限定理:设随机变量X1,X2,…,X n,…相互独立,服从同一分布,【例91·选择题】(05-4-4)设X1,X2,…,X n,…为独立同分布的随机变量列,且均服从参数为λ(λ>0)的指数分布,记为标准正态分布函数,则()[答疑编号986305105:针对该题提问]答案:C。
第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。
(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。
(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。
另外,利用本不等式估值时精确性也不够。
(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。
(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。
(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。
(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。
第5章 大数定律和中心极限定理本章教学基本要求1.了解切比雪夫不等式,会用该不等式估算某些事件的概率.2.了解相关大数定律.3.了解相关中心极限定理,会用定理近似计算事件的概率.5.1大数定律一、主要知识归纳1.切比雪夫不等式:设随机变量X 具有均值u X E =)(,方差2)(σ=X D ,则对于任意正数ε,有不等式 22}{εσε≤≥-u X P 成立.2. 切比雪夫大数定理:设随机变量⋅⋅⋅,,21X X 相互独立,均具有有限方差,且有公共上界,即C X D i <)( )2,1( =i ,则对于任意0>ε,有1})(11{lim 11=<-∑∑==∞→εni i n i i n X E n X n P 成立.3.辛钦大数定理:设⋅⋅⋅,,21X X 相互独立,服从同一分布的随机变量序列,且具有数学期望u X E k =)(),2,1(⋅⋅⋅=k .作前n 个变量的算术平均值∑=ni i X n 11,则对于任意0>ε,有1}1{lim 1=<-∑=∞→εu X n P ni i n 成立 4.伯努利大数定理:设X 是n 次重复独立试验中事件A 发生的次数,)10(<<p p 是在一次试验中事件A 发生的概率,则对于任意正数ε,有0}{lim =≥-∞→εp nXP n 成立.二、基础练习1.设随机变量X 的数学期望u X E =)(,方差2)(σ=X D ,试利用切比雪夫不等式估计下列概率值:(1)}{σ≥-u X P (2)}3{σ≥-u X P .2.用切比雪夫不等式估计200个新生儿中,男孩多于80个且少于120个的概率(假定生男孩和女孩的概率均为0.5)3.设随机变量n X X X ,,,21⋅⋅⋅是独立同分布的随机变量,其分布函数为)0(arctan 1)(≠+=b bxa x F π,则辛钦大数定理对此序列( ) A 适用 B 当常数a 、b 取适当数值时适用 C 不适用 D 无法判断5.2中心极限定理一、主要知识归纳:1.独立同分布中心极限定理:设随机变量n X X X ,,,21⋅⋅⋅相互独立服从同一分布,且具有有限的均值与方差,则对任意实数x 有⎰∑∑∑∞--===∞→=<-xt ni i ni i ni in dt ex X D X E XP 2111221})()({lim π成立.2.棣莫佛-拉普拉斯(De Moivre-Laplace )定理:设X ~),(p n B ,则对任意实数x ,有)(21})1({lim 22x dt ex p np np X P t xn Φ==<---∞-∞→⎰π成立.二、基础练习1.一加法器同时收到20个噪声电压k V )20,,2,1(⋅⋅⋅=k ,设它们是相互独立的随机变量,且都在区间)10,0(上服从均匀分布.记∑==201k kVV ,求}105{>V P 的近似值.2.对于一个学生而言,来参加家长会的家人是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有400名学生,设各学生参加会议的家长人数相互独立,且服从同一分布. (1)求参加会议的家长人数X 超过450的概率;(2)求有1名家长来参加会议的学生人数不多于340的概率.本章小结一 本章知识结构图二、综合练习1. 设随机变量X 的数学期望100)(=X E ,方差10)(=X D ,则由切比雪夫不等式有______}12080{≥<<X P .2.一颗骰子连续掷4次,点数总和为X .估计}1810{<<X P .3.生产灯泡的合格率为0.6,求10000个灯泡中合格数在5800~6200的概率.4.一大批种蛋中,良种蛋占80%.从中任取500枚,求其中良种蛋率未超过81%的概率.5.某商店负责供应某地区1000人商品,某种商品在一段时间内每人需用一件的概率为0.6,假定在这一段时间个人购买与否彼此无关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销(假定该商品在某一段时间内每人最多可以买一件).6.对敌人的防御阵地进行100次轰炸,每次轰炸命中目标的炸弹数目是一个随机变量,其数学期望是2,方差是1.69,求在100次轰炸中有180颗到220颗炸弹命中目标的概率.7.设)50,,2,1( =i X i 是相互独立的随机变量,且它们都服从参数为03.0=λ的泊松分布.记5021X X X Z +++= ,利用中心极限定理计算}3{≥Z P8.设某种器件使用寿命(单位:小时)服从指数分布,其平均使用寿命为20小时,具体使用时是当以器件损坏后立即更换另一新器件,如此继续,已知每个器件进价为a 元,试求在年计划中应为此器件作多少元预算,才可以有95%的把握一年够用(假定一年有2000个工作小时).三、单元测试一、 填空题:(每小题5分,共20分)1.设随机变量X 与Y 相互独立,且1)(-=X E ,1)(=Y E ,2)(2=X E ,3)(2=Y E ,则由切比雪夫不等式有______}6{≥<+Y X P .2.设n X X X ,,,21⋅⋅⋅是n 个相互独立同分布的随机变量,u X E i =)(,8)(=i X D ,),,2,1(n i ⋅⋅⋅=,对于∑==ni inX X 1,则______}{≤≥-εu X P ,______}4{≥<-u X P . 3.设X ~)6.0,200(B ,当999.0}{≥≤k X P 时,则______≥k . 4.设随机变量10021,,,X X X ⋅⋅⋅相互独立同分布,且1!1}{-==e k k X P i ,⋅⋅⋅=,2,1k ,则______}120{1001=<∑=i i X P .二、选择题:(每小题5分,共20分)1.设随机变量X ~),(2σu N ,则随σ的增大,概率}{σ<-u X P 是( ) A 单调增大 B 单调减少 C 保持不变 D 增减不定2.设⋅⋅⋅,,21X X 为独立同分布序列,且i X ),2,1(⋅⋅⋅=i 服从参数为λ的指数分布,则( )其中dt ex Y t x2221)(-∞-⎰=π.A )(}{lim 1x Y x nnX p ni i n =≤-∑=+∞→λ B )(}{lim 1x Y x nnXp ni in =≤-∑=+∞→C )(}{lim 1x Y x nXp ni in =≤-∑=+∞→λλD )(}{lim 1x Y x n Xp ni in =≤-∑=+∞→λλ3.设随机变量921,,,X X X ⋅⋅⋅相互独立同分布,1)(=i X E ,1)(=i X D ,)9,,2,1(⋅⋅⋅=i ,令∑==919i iXS ,则对任意0>ε,从切比雪夫不等式直接可得( )A 2911}1{εε-><-S P B 2991}9{εε-≥<-S PC 2911}9{εε-><-S P D 2911}191{εε-≥<-S P4.假设随机变量⋅⋅⋅,,21X X 相互独立且服从同参数λ的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律的是( )A ⋅⋅⋅⋅⋅⋅,,,,21n X X XB ⋅⋅⋅+⋅⋅⋅++,,,2,121n X X X nC ⋅⋅⋅⋅⋅⋅,1,,21,21n X nX X D ⋅⋅⋅⋅⋅⋅,,,2,21n nX X X 三、计算题:(每小题12分,共60分)1.已知正常成人男性血液中,每一毫升含白细胞数平均为7300,均方差为700,试利用切比雪夫不等式估计每毫升含白细胞数在5200至9400之间的概率.2.设各零件的重要都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5公斤,均方差为0.1公斤.问5000只零件的总重量超过2510公斤的概率是多少?3.一部件包括10个部分,每部分的长度是一个随机变量,它们相互独立,且服从同一分布,其数学期望为2毫米,均方差为0.05毫米.规定总长度为20±0.1毫米时产品合格,试求产品合格的概率.4.某工厂生产炭末电阻,在正常生产情况下,废品的概率为0.01,今取500个装成一盒,问废品不超过5个的概率是多少?5.有一批建筑房屋用的木柱,其中80%的长度不小于3米,现从木柱中随机取出100根,问其中至少有30根短于3米的概率是多少?第6章 数理统计基础知识本章教学基本要求1.理解总体、样本、统计量等基本概念,了解经验分布函数。
第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22}{εσεμ≤≥-X P 或221}{εσεμ-><-X P 成立.2、大数定律(1)切贝雪夫大数定理:设 ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1( =i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<-∑=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2=≠=i X D i σ.则对任意实数x ,随机变量σμσμn n Xn XY ni ini in ∑∑==-=-=11)(的分布函数)(x F n 满足⎰∞--∞→∞→=≤=xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2=≠=i X D i i σ .记 ∑==ni inB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→-∑=++ni ii nX E Bδδμ, 则随机变量nni ini ini i ni i ni in B X X D X E XZ ∑∑∑∑∑=====-=-=11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰∑∑∞--==∞→∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n ni i n i i n n n dt e x B X x F 2/11221lim )(lim πμ.当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni in B N XN Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于 1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析【例1】设每次试验中某事件A 发生的概率为0.8,请用切贝雪夫不等式估计:n 需要多大,才能使得在n 次重复独立试验中事件A 发生的频率在0.79~0.81之间的概率至少为0.95? 分析:根据切贝雪夫不等式进行估计,须记住不等式.解: 设X 表示n 次重复独立试验中事件A 出现的次数,则)8.0,(~n B X ,A 出现的频率为n n X D n X E nX16.02.08.0)(,8.0)(,=⨯==, 220001.016.01)01.0()(1}01.08.0{81.079.0n n n X D n n X P n X P -=-≥<-=⎭⎬⎫⎩⎨⎧<< n16001-= 由题意得 95.016001≥-n,32000≥n .可见 做32000次重复独立试验中可使事件A 发生的频率在0.79~0.81之间的概率至少为0.95.【例2】证明:(马尔柯夫定理)如果随机变量序列 ,,,,21n X X X ,满足0)(1lim 12=∑=∞→n k k n X D n ,则对任给0>ε,有1)(11lim 11=⎭⎬⎫⎩⎨⎧<-∑∑==∞→εn k k n k k n X E n X n P .证明: )(1)1(),(1)1(12111∑∑∑∑======nk k n k k n k k n k k X D n X n D X E n X n E ,由切贝雪夫不等式,得22111)(1)(11lim εεn X D X E n X n P nk k nk k n k k n ∑∑∑===∞→-≥⎭⎬⎫⎩⎨⎧<-,根据题设条件,当∞→n 时, 1)(11lim 11≥⎭⎬⎫⎩⎨⎧<-∑∑==∞→εnk k n k k n X E n X n P ,但概率小于等于1,故马尔柯夫定理成立.【例3】一本书共有100万个印刷符号.排版时每个符号被排错的概率为0.0001,校对时每个排版错误被改正的概率为0.9,求校对后错误不多于15个的概率.分析:根据题意构造一个独立同分布的随机变量序列,具有有限的数学期望和方差,然后建立一个标准化的随机变量,应用中心极限定理求得结果.解:设随机变量⎩⎨⎧=.,0,1 其它 错个印刷符号校对后仍印 第n X n 则)1(≥n X n 是独立同分布随机变量序列,有5101.00001.0}1{-=⨯===n X P p .作)10(,61==∑=n XY nk Kn ,n Y 为校对后错误总数.按中心极限定理(德—拉定理),有)58.1(]))101(1010/[5(15}15{553Φ≈-Φ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤--npq np npq np Y P Y P n n9495.0=.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体. 从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21 称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21 是随机变量n X X X ,,,21 的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21 是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f 称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值 ∑==ni i X n X 11;(2)样本方差 ][11)(11122122∑∑==--=--=ni i n i i X n X n X X n S ; (3)样本标准差 2S S =;(4)样本k 阶原点矩 ,2,1,11==∑=k X n A n i ki k ;(5)样本k 阶中心矩 ,2,1,)(11=-=∑=k X X n B kn i i k .2、经验分布函数设n x x x ,,,21 是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤ ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(nk k n x x x x x nk x x x n x x x F 为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21 是X 的一个样本,则统计量∑==ni iX122χ服从自由度为n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且Y X ,相互独立,则随机变量nY X t /=服从自由度为n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,相互独立,则随机变量21//n Y n X F =服从自由度为),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21 是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ或)1,0(~/2N nX U σμ-=;(2)样本方差)1(~)1(222--n S n χσ;(3)统计量)1(~/--n t nS X μ.设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X 是X 的一个样本, 2,,,21n Y Y Y 是Y 的一个样本,两者相互独立.则(1)统计量)1,0(~//)()(22212121N n n Y X σσμμ+---;(2)当21σσ=时,统计量)2(~/2/1)()(212121-+⋅+---n n t S n n Y X wμμ,其中2)1()1(21222211-+-+-=n n S n S n S w ;(3)统计量 )1,1(~//2122222121--n n F S S σσ; (4)统计量),(~/)(/)(2112221222112121n n F n n yxn j jn i i⋅--∑∑==σμσμ.疑 难 分 析1、为什么要引进统计量?为什么统计量中不能含有未知参数?引进统计量的目的是为了将杂乱无序的样本值归结为一个便于进行统计推断和研究分析的形式,集中样本所含信息,使之更易揭示问题实质.如果统计量中仍含有未知参数,就无法依靠样本观测值求出未知参数的估计值,因而就失去利用统计量估计未知参数的意义. 2、什么是自由度?所谓自由度,通常是指不受任何约束,可以自由变动的变量的个数.在数理统计中,自由度是对随机变量的二次型(或称为二次统计量)而言的.因为一个含有n 个变量的二次型),,2,1,,(11n j i a a X X aji ij n i nj j i ij==∑∑==的秩是指对称矩阵n n ij a A ⨯=)(的秩,它的大小反映n 个变量中能自由变动的无约束变量的多少.我们所说的自由度,就是二次型的秩.例 题 解 析【例1】设)5,2,1)(,(~2=i N X i i σμ,(1)521,,,μμμ 不全等;(2)521μμμ=== .问:521,,,X X X 是否为简单随机样本?分析:相互独立且与总体同分布的样本是简单随机样本,由此进行验证.解:(1) 由于)5,2,1)(,(~2=i N X i i σμ,且521,,,μμμ 不全等,所以521,,,X X X 不是同分布,因此521,,,X X X 不是简单随机样本.(2)由于521μμμ=== ,那么521,,,X X X 服从相同的分布,但不知道521,,,X X X 是否相互独立,因此521,,,X X X 不一定是简单随机样本.【例2】设),(~2σμN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值,2n S 为样本二阶中心矩,2S 为样本方差,问下列统计量(1)22σn nS ,(2)1/--n S X n μ,(3)212)(σμ∑=-ni i X 各服从什么分布?分析:利用已知统计量的分布进行分析.解:(1)由于)1(~)1(222--n S n χσ,又有21221)(1S nn X X n S n i i n-=-=∑=22)1(S n nS n-=,因此)1(~222-n nS nχσ;(2)由于)1(~/--n t nS X μ,又有1-=n S nS n ,因此)1(~1/---n t n S X n μ;(3)由),,2,1)(,(~2n i N X i =σμ得:),,2,1)(1,0(~n i N X i =-σμ,由2χ分布的定义得:)(~)(2212n Xni iχσμ∑=-.【例3】设总体服从参数为λ的指数分布,分布密度为⎩⎨⎧≤>=-0,00,);(x x e x p x λλλ求X D X E ,和2ES .分析:利用已知指数分布的期望、方差和它们的性质进行计算.解:由于),,2,1(/1,/12n i DX EX i i ===λλ,所以λ1)(1)1(11===∑∑==n i i n i i X E n X n E X E ;21211)(1)1(λn X D nX n D X D ni i n i i ===∑∑==; 221212)1(111)(11])(11[λλ-=⋅-=-=--=∑∑==n n n n X D n X X n E ES n i i n i i .【例4】设总体)4,(~μN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值.问样本容量n 取多大时有:(1)1.0)(2≤-μX E ;(2)95.0}1.0{≥≤-μX P .解:(1)要使1.0/4/)()()(2≤===-n n X D X D X E μ,即有40≥n ,故取40=n .(2)由中心极限定理,要使)05.0(}4/1.0)(/{}1.0{n n X D X P X P Φ≈≤-=≤-μμ95.01)05.0(2)05.0(≥-Φ=-Φ-n n ,即有64.1536,96.105.0,975.0)05.0(≥≥≥Φn n n ,故取1537=n .。