向量知识点总结
- 格式:doc
- 大小:567.00 KB
- 文档页数:8
关于向量知识点总结一、向量的概念与性质1.1 向量的定义向量是指具有大小和方向的量,通常用箭头表示。
在数学中,向量通常用有序数对或有序数组表示。
例如,二维向量可以写为(x, y),三维向量可以写为(x, y, z)。
向量的大小称为模,记作|a|;向量的方向可以用角度来表示。
向量常表示为a,b等字母,大写字母则表示定向线段。
1.2 向量的性质向量具有以下性质:1.2.1 大小和方向向量有大小和方向,因此可以用箭头来表示。
1.2.2 平行向量如果两个向量的方向相同或者相反,则它们是平行向量。
平行向量的大小可能不同,但方向一致。
1.2.3 零向量模为0的向量称为零向量,记作0,它没有方向。
1.2.4 单位向量模为1的向量称为单位向量,记作u。
1.2.5 相等向量当且仅当两个向量的大小相等,且方向相同时,它们是相等向量。
1.2.6 平面向量平面向量是一个向量在平面上的表示。
1.3 向量的表示方法在数学中,向量有多种表示方法,例如点表示法、坐标表示法、三角函数表示法等。
1.3.1 点表示法点表示法即表示向量的始点和终点的坐标。
例如,向量a可以表示为OA,其中O为始点,A为终点。
1.3.2 坐标表示法向量a可以表示为(x, y)。
1.3.3 三角函数表示法在向量a的表示中,可以使用向量a与x轴正方向的夹角θ来表示。
即a=(|a|, θ)。
1.3.4 混合表示法向量的表示方法可以混合使用,例如a=(2, 3)=(|a|, θ),表达的含义是向量a的大小为2,方向为x轴正方向与向量a夹角为θ。
1.4 向量的运算1.4.1 向量加法向量加法是指将两个向量相加,得到一个新的向量。
例如,向量a=(3, 2)和向量b=(1, 4)相加得到向量c=(4, 6)。
1.4.2 向量减法向量减法是指将一个向量减去另一个向量,得到一个新的向量。
例如,向量a=(3, 2)减去向量b=(1, 4)得到向量c=(2, -2)。
1.4.3 向量数乘向量数乘是指将一个向量乘以一个数,得到一个新的向量。
向量知识点总结大全1. 向量的定义向量是指具有大小和方向的量,通常用箭头表示。
在数学中,向量可以用来表示力、速度、位移、电场、磁场等物理量。
向量通常用坐标或分量来表示,也可以用一点表示。
向量的模长是其大小,方向是指向量所指方向。
2. 向量的表示(1) 点表示法:用起始点为O,终点为A的箭头表示向量,记作→OA。
(2) 分量表示法:以向量所在的坐标系中的原点O为出发点,A(x, y)为终点,表示向量为→OA = x→i + y→j。
其中,→i和→j是标准基向量,它们的方向分别是x轴和y轴的正方向,长度为1。
(3) 等价向量:长度和方向都相同的向量称为等价向量,用→AB = →CD 表示。
3. 向量的运算(1) 向量的加法:若有两个向量→a 和→b,它们的和记作→c,即→c = →a + →b。
向量的加法满足交换律和结合律,即→a + →b = →b + →a,(→a + →b) + →c = →a + (→b + →c)。
(2) 向量的数量积(点积):若两个向量→a 和→b 的夹角为θ,则它们的数量积定义为→a·→b = |→a|·|→b|·cosθ。
(3) 向量的矢量积(叉积):对于三维向量→a = (a1, a2, a3) 和→b = (b1, b2, b3),它们的矢量积定义为:→a × →b = (a2b3 - a3b2)→i - (a1b3 - a3b1)→j + (a1b2 - a2b1)→k,其中→i、→j、→k 分别是x、y、z轴的单位向量。
(4) 向量的数量积和矢量积的关系:→a·→b = |→a|·|→b|·cosθ,其中θ为夹角;|→a × →b| = |→a|·|→b|·sinθ,即矢量积的模长等于两个向量模长的乘积再乘以它们夹角的正弦值。
4. 向量的相等两个向量相等的充分必要条件是它们的大小和方向都相等。
高中数学向量知识点总结一、基础概念向量是由大小和方向两个方面表示的量,可以用有向线段表示。
向量的模(长度)是一个标量,用||a||表示,其中a为向量。
模为0的向量称为零向量。
向量的方向由其符号决定,同方向向量与相反方向向量称为“对向向量”。
二、向量的加法向量加法:向量加上另一个向量就是在另一个向量的末端从起点开始画一个同样大小的向量。
可加性:若a、b、c为向量,那么a+b=c,即a+b=c-b。
交换律:一个向量加上另一个向量等于另一个向量加上第一个向量。
结合律:(a+b)+c=a+(b+c)三、向量的减法向量减法:一个向量减上另一个向量等于另一个向量的相反数加上第一个向量。
四、向量的数量积向量的数量积:向量 a 与标量 k 的积乘积表示为ka 。
向量 a 与向量 b 的数量积表示为a·b 。
夹角公式:a·b=|a||b|cosθ。
五、向量的叉积向量的叉积可以得到一个新的向量,叉积符号为叉乘号-×。
向量的叉积表示为a×b,结果垂直于a和b所在的平面,方向通过右手定则判断。
六、平面向量平面向量:一个平面向量的模表示这个向量所代表的有向线段的长度,而朝向的方向则由向量的起点指向终点。
标准单位向量i、j 满足|i|=|j|=1,同时是相互垂直的。
平面向量加减的公式与三维向量相同。
七、空间向量空间向量:空间向量是三维向量,定义为一个向量的起点和终点可以在三维空间中的任意两个点之间往返移动。
空间向量加减的公式与平面向量相同。
空间向量的数量积:a·b=|a||b|cosθ。
八、向量的应用平移变换:平移是向量应用最广泛的变换之一,在2D空间或3D空间中使用相同的基础技巧。
投影:当我们需要在三维空间中绘制3D图像时,我们经常需要计算平行于某个坐标轴的投影。
向量的知识点归纳总结一、向量的定义和表示向量是由大小和方向组成的量,可以用箭头表示。
在平面直角坐标系中,向量可以表示为一个有序数对(x,y),也可以用矢量形式表示为a=<x,y>。
在三维空间中,向量可以表示为一个有序三元组(x,y,z),或者用矢量形式表示为a=<x,y,z>。
二、向量的基本运算1. 向量加法:两个向量相加得到一个新的向量,其大小等于两个向量大小之和,方向与第一个向量和第二个向量相同。
2. 向量减法:两个向量相减得到一个新的向量,其大小等于两个向量大小之差,方向与第一个向量和第二个向量相反。
3. 数乘:将一个数乘以一个向量得到一个新的向量,其大小为原来的大小乘以这个数,方向不变。
4. 点积:两个同维度的向量进行点积运算得到一个标量(数量),公式为a·b=|a||b|cosθ。
5. 叉积:只有三维空间中才有叉积运算。
两个同维度的向量进行叉积运算得到一个新的垂直于这两个原始向 0 0 向的向 0 0 量,公式为a×b=|a||b|sinθn。
三、向量的线性相关和线性无关若存在一组不全为零的实数k1,k2,...,kn,使得k1a1+k2a2+...+knan=0,则向量组{a1,a2,...,an}线性相关;否则,向量组{a1,a2,...,an}线性无关。
其中,n表示向量的个数。
四、向量的投影和正交分解1. 向量的投影:一个向量在另一个向量上的投影是这个向量在另一个向量上的投影长度与另一个向量方向相同的新向 0 0 向。
公式为projba=(a·b/|b|^2)b。
2. 正交分解:将一个向量分解成与另一个向量正交和平行于另一个向量两部分之和。
公式为a=a∥+a⊥,其中a∥=projba,a⊥=a−projba。
五、平面几何中的应用1. 向量共线:若两个非零向量共线,则它们可以表示成相等或相反方向的倍数。
2. 向量垂直:若两个非零向量垂直,则它们点积等于零。
向量全部知识点总结一、向量的定义向量是具有大小和方向的量,由起点和终点确定。
通常用有向线段表示,记作AB→,其中A为起点,B为终点,→表示方向。
向量的大小表示为|AB→| 或 ||v||,表示有向线段AB的长度。
向量的方向表示为从起点指向终点的方向,可以用夹角、方向角、方向余弦等方式表示。
二、向量的性质1. 相等性:两个有向线段代表的向量,当且仅当它们的长度和方向都相同时,称为相等向量。
2. 平行性:如果两个向量的方向相同或者相反,则称它们是平行的。
3. 非零向量:如果一个向量的长度不为0,则称为非零向量,反之为零向量。
4. 相反向量:如果一个向量AB→代表的有向线段AB与向量BA→代表的有向线段BA平行且方向相反,则称BA→是AB→的相反向量,记作-AB→。
5. 平移性:向量在空间中的平行移动不改变它的长度和方向。
三、向量的运算向量的运算包括加法、数乘和减法。
1. 向量的加法:设有向线段AB→和BC→,若A、B、C三点共线,则有向线段AB→与BC→的和表示为AC→。
2. 向量的减法:假设有向线段AB→和AC→,则有向线段AB→与-AC→的和表示为AB→-AC→=AB→+(-AC→)。
3. 向量的数乘:实数k与向量AB→的数乘表示为kAB→,它的长度为|k||AB→|,方向与AB→相同或者相反,且方向角与AB→相同。
四、线性组合设有n个向量v1,v2,. . . .,vn及n个实数k1,k2,...,kn,则k1v1+k2v2+...+knvn称为向量v1,v2,...,vn的线性组合。
线性组合常用于描述多个向量的合成效果,如力的叠加、位移的合成等。
五、线性相关性和线性无关性1. 线性相关性:如果存在不全为零的实数k1,k2,...,kn,使得k1v1+k2v2+...+knvn=0,称向量v1,v2,...,vn线性相关。
2. 线性无关性:如果向量v1,v2,...,vn不线性相关,则称其线性无关。
向量知识点与公式总结一、向量的基本概念1. 向量的定义:向量是具有大小和方向的物理量,通常用一个箭头表示,箭头的长度代表向量的大小,箭头的方向代表向量的方向。
2. 向量的表示:通常用字母加上一个箭头表示向量,如a、b、c等,也可以用粗体字母表示向量,如a、b、c等。
3. 向量的模:向量的大小叫做模,通常用|a|表示,表示向量a的大小。
4. 向量的方向:向量的方向是指向量所在的直线的方向。
通常用角度来表示,如θ,表示与x轴的夹角。
5. 坐标表示:向量也可以用坐标来表示,如(a₁, a₂, a₃)表示三维空间中的一个向量。
6. 零向量:大小为零的向量叫做零向量,通常用0表示。
7. 平行向量:如果两个向量的方向相同或者相反,那么它们就是平行向量。
8. 共线向量:如果两个向量在同一条直线上,那么它们就是共线向量。
二、向量的运算1. 向量的加法:向量的加法是指将两个向量的相应分量相加得到一个新的向量。
表示为a + b = c,其中c的分量是a和b的分量相加得到的。
2. 向量的减法:向量的减法是指将一个向量的分量减去另一个向量的分量得到一个新的向量。
表示为a - b = c,其中c的分量是a和b的分量相减得到的。
3. 向量的数量乘法:向量的数量乘法是指将一个向量的每个分量乘以一个数量得到一个新的向量。
表示为ka = b,其中b的分量是a的每个分量乘以k得到的。
4. 内积:两个向量a和b的内积表示为a·b,它等于a与b的模的乘积与它们的夹角的余弦值的乘积。
内积的计算公式为a·b = |a||b|cosθ。
5. 外积:两个向量a和b的外积表示为a×b,它等于一个新的向量,它的大小等于a与b 所构成的平行四边形的面积,方向垂直于a和b所构成的平面。
三、向量的性质1. 方向性:向量有方向性,即向量的方向是它的一个重要特征。
2. 大小性:向量有大小性,即向量有模,它的大小可以用模来表示。
向量题型知识点总结大全一、向量的基本概念1. 向量的定义向量是具有大小和方向的几何量,通常用有向线段表示。
在数学上,向量通常用粗体字母或者用字母上加箭头来表示,如a或者→a。
2. 向量的表示方法向量有多种表示方法,包括(a1, a2, a3)、a→、|a|等形式。
其中(a1, a2, a3)是向量在空间直角坐标系中的坐标表示,a→表示向量的有向线段,|a|表示向量的模长。
3. 向量的运算向量有加法、数乘等运算法则,其基本概念如下:(1)向量的加法:若a→=(x1, y1)、b→=(x2, y2),则a→+b→=(x1+x2, y1+y2)。
(2)数乘:若k为实数,则ka→=(kx, ky)。
4. 向量的特点向量除了具有大小和方向外,还有以下特点:(1)平行向量:具有相同或相反方向的向量称为平行向量。
(2)共线向量:所有在同一条直线上的向量称为共线向量。
(3)相等向量:模长相等且方向相同的向量称为相等向量。
二、线性相关与线性无关1. 线性相关若存在不全为0的实数k1、k2,使得k1a→+k2b→=0,其中a→、b→为非零向量,则称a→、b→线性相关。
2. 线性无关若对于任意的实数k1、k2,只有k1=k2=0时,才有k1a→+k2b→=0,则称a→、b→线性无关。
3. 线性相关与线性无关的判定线性相关与线性无关的判定方法有以下几种:(1)行列式判定法设a→、b→线性相关,当且仅当行列式|a→, b→|=0。
(2)向量加法判定法设a→、b→线性相关,当且仅当a→+b→、a→-b→、2a→-3b→都线性相关。
三、向量的数量积1. 定义向量数量积,也称为内积或点积,是指两个向量的数量相乘后相加的运算,通常用a→·b→或(a,b)表示。
2. 运算法则设a→=(x1, y1)、b→=(x2, y2),则a→·b→=x1x2+y1y2。
3. 几何意义向量的数量积有很强的几何意义,具体表现在:(1)夹角公式:cosθ=a→·b→/|a||b|。
高一数学向量知识点总结一、向量的基本概念1. 向量的定义- 既有大小又有方向的量叫做向量。
例如力、位移等都是向量。
2. 向量的表示- 几何表示:用有向线段表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
以A为起点、B为终点的向量记作→AB。
- 字母表示:用小写字母→a,→b,→c·s表示向量。
3. 向量的模- 向量→AB或→a的大小称为向量的模,记作|→AB|或|→a|。
模是一个非负实数。
4. 零向量- 长度为0的向量叫做零向量,记作→0,零向量的方向是任意的。
5. 单位向量- 长度等于1个单位长度的向量叫做单位向量。
与非零向量→a同向的单位向量为(→a)/(|→a|)。
二、向量的运算(一)向量的加法1. 定义- 已知向量→a、→b,在平面内任取一点A,作→AB=→a,→BC=→b,则向量→AC叫做→a与→b的和,记作→a+→b,即→a+→b=→AB+→BC=→AC。
这种求向量和的方法叫做三角形法则。
- 平行四边形法则:已知向量→a、→b,作→AB=→a,→AD=→b,以AB、AD为邻边作平行四边形ABCD,则→AC=→a+→b。
2. 运算律- 交换律:→a+→b=→b+→a。
- 结合律:(→a+→b)+→c=→a+(→b+→c)。
(二)向量的减法1. 定义- 向量→a与→b的差→a-→b=→a+(-→b),其中-→b是→b的相反向量,→b 与-→b大小相等,方向相反。
求两个向量差的运算叫做向量的减法。
- 几何意义:如果把两个向量的起点放在一起,则这两个向量的差是以减向量的终点为起点,被减向量的终点为终点的向量。
(三)向量的数乘1. 定义- 实数λ与向量→a的积是一个向量,记作λ→a,它的长度|λ→a|=|λ||→a|,当λ> 0时,λ→a的方向与→a的方向相同;当λ < 0时,λ→a的方向与→a的方向相反;当λ = 0时,λ→a=→0。
2. 运算律- 结合律:λ(μ→a)=(λμ)→a。
向量基本性质的知识点总结一、定义1. 点向量点向量是从原点指向某一点的有向线段,也是向量的一种表示方法。
点向量通常用大写字母表示,如A、B、C等。
2. 自由向量自由向量是没有固定位置的向量,只有大小和方向,没有固定的起点和终点。
自由向量通常用小写字母表示,如a、b、c等。
3. 向量的模向量的模是向量的长度,也就是向量的大小。
用||a||表示向量a的模。
4. 单位向量模为1的向量称为单位向量。
单位向量通常用a^表示。
二、性质1. 向量的加法向量的加法满足交换律和结合律。
即对于任意向量a、b、c,有a+b=b+a,(a+b)+c=a+(b+c)。
2. 向量的数量积向量的数量积也称为点积,其定义为:a·b=||a|| ||b|| cosθ,其中θ为a、b两向量之间的夹角。
向量的数量积满足交换律和分配律。
即对于任意向量a、b、c和实数k,有a·b=b·a,a·(b+c)=a·b+a·c,(ka)·b=k(a·b)。
3. 向量的向量积向量的向量积也称为叉积,其定义为:a×b=||a|| ||b|| sinθn,其中n为垂直于a、b所在平面的单位法向量,θ为a、b两向量之间的夹角。
向量的向量积满足反交换律和分配律。
即对于任意向量a、b和实数k,有a×b=-b×a,a×(b+c)=a×b+a×c,(ka)×b=k(a×b)。
4. 向量的平移向量的平移是指将向量的起点平移至另一个点,其大小和方向保持不变。
平移前后向量的模、方向和大小不变。
5. 平行向量如果两个向量的方向相同或相反,则它们称为平行向量。
平行向量有以下性质:(1) 两个非零向量平行,当且仅当它们的数量积为零;(2) 若a和b为非零向量,则它们平行的充分必要条件是存在一个实数k,使得a=k·b。
高中向量知识点总结简要一、向量的概念1、向量的基本概念向量是一个有大小和方向的量,通常用箭头或者有向线段表示,向量的大小叫做模,记作|a|或a,其方向表示向量的指向。
两个有相同模和方向的向量是相等的,称之为零向量。
在空间直角坐标系中,向量可以表示为一个元素是实数的有序数组。
2、向量的性质(1) 相等的向量具有相同的大小和方向。
(2) 向量的加法满足交换律和结合律。
(3) 向量的数乘即一个向量与一个数的乘积,也满足分配律。
3、单位向量单位向量指模为1的向量,通常用字母e加方向符号表示。
4、零向量向量的大小为零,方向不定。
5、向量的相等向量完全相等(具有相同的大小和方向)时,称为相等。
符号:→AC=→BD。
6、向量的夹角(1) 向量的夹角是指两个向量之间的夹角。
向量夹角的余弦公式:cosθ=→a•→b/|→a||→b|。
(2) 向量的夹角为0时,两个向量为共线向量,夹角为90度时,两个向量垂直。
7、向量的模向量的模是向量的大小,表示为向量的长度。
在直角坐标系中,向量的大小可以用勾股定理来求解。
8、向量的方向角向量必须与坐标轴的正方向所成的角,叫做向量的方向角。
向量的方向角是α、β、γ三组件角所确定的。
9、向量的三角形定理向量的三角形定理即两边和等于第三边,两个向量相加之后的结果是第三个向量。
二、向量的坐标表示1、二维坐标系中的向量表示二维空间中的一个向量可以表示为(x,y),表示向量在坐标系中的横纵坐标。
2、三维坐标系中的向量表示三维空间中的一个向量可以表示为(x,y,z),由三个有序数组成。
三、向量的运算1、向量的加法两个向量相加等于将两个向量的对应分量相加,即(a,b)+(c,d)=(a+c, b+d)。
2、向量的减法两个向量相减等于将两个向量的对应分量相减,即(a,b)-(c,d)=(a-c, b-d)。
3、向量的数乘向量a与实数k相乘,等于将a的每个分量乘以k,即k•(a,b)=(ka, kb)。
高中数学第五章-平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移. 考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.§05. 平面向量 知识要点1.本章知识网络结构2.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 AB ;字母表示:a ;坐标表示法 a =xi+yj =(x,y).(3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x(6) 相反向量:a =-b ⇔b =-a ⇔a +b =0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量. 3.向量的运算运算类型几何方法坐标方法运算性质向量的加法1.平行四边形法则2.三角形法则1212(,)a b x x y y+=++a b b a+=+()()a b c a b c++=++ACBCAB=+向量的减法三角形法则1212(,)a b x x y y-=--()a b a b-=+-AB BA=-,ABOAOB=-数乘向量1.aλ是一个向量,满足:||||||a aλλ=2.λ>0时, a aλ与同向;λ<0时, a aλ与异向;λ=0时, 0aλ=.(,)a x yλλλ=()()a aλμλμ=()a a aλμλμ+=+()a b a bλλλ+=+//a b a bλ⇔=向量的数量积a b•是一个数1.00a b==或时,a b•=.2.00||||cos(,)a ba b a b a b≠≠=且时,1212a b x x y y•=+a b b a•=•()()()a b a b a bλλλ•=•=•()a b c a c b c+•=•+•2222||||=a a a x y=+即||||||a b a b•≤4.重要定理、公式(1)平面向量基本定理e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)两个向量平行的充要条件a∥b⇔a=λb(b≠0)⇔x1y2-x2y1=O.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O. (4)线段的定比分点公式设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP,则 OP =λ+111OP +λ+112OP (线段的定比分点的向量公式) ⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式)当λ=1时,得中点公式:OP =21(1OP +2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x (5)平移公式设点P (x ,y )按向量a =(h,k)平移后得到点P ′(x ′,y ′),则P O '=OP +a 或⎩⎨⎧+='+='.,k y y h x x曲线y =f (x )按向量a =(h,k)平移后所得的曲线的函数解析式为:y -k=f (x -h)(6)正、余弦定理 正弦定理:.2sin sin sin R CcB b A a === 余弦定理:a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .(7)三角形面积计算公式:设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P --- [海伦公式]⑥S △=1/2(b+c-a )r a [如下图]=1/2(b+a-c )r c =1/2(a+c-b )r b[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3如图:图1 图2 图3 图4图1中的I 为S △ABC 的内心, S △=Pr图2中的I 为S △ABC 的一个旁心,S △=1/2(b+c-a )r a附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O 是△ABC 的内切圆,若BC =a ,AC =b ,AB =c [注:s 为△ABC 的半周长,即2cb a ++] 则:①AE=a s -=1/2(b+c-a ) ②BN=b s -=1/2(a+c-b ) ③FC=c s -=1/2(a+b-c )综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt △ABC ,c 为斜边,则内切圆半径r =cb a abc b a ++=-+2(如图3). ⑹在△ABC 中,有下列等式成立C B A C B A tan tan tan tan tan tan =++. 证明:因为,C B A -=+π所以()()C B A -=+πtan tan ,所以C BA BA tan tan tan 1tan tan -=-+,∴结论!⑺在△ABC 中,D 是BC 上任意一点,则DC BD BCBCAB BD AC AD ⋅-+=222.证明:在△ABCD 中,由余弦定理,有 B BD AB BD AB AD cos 2222⋅⋅-+=① 在△ABC 中,由余弦定理有 BCAB AC BC AB B ⋅-+=2cos 222②,②代入①,化简B I A BC D EF IAB C D EF r ar ar abc a a b c C可得,DC BD BCBCAB BD AC AD ⋅-+=222(斯德瓦定理)①若AD 是BC 上的中线,2222221a cb m a -+=; ②若AD 是∠A 的平分线,()a p p bc cb t a -⋅+=2,其中p为半周长; ③若AD 是BC 上的高,()()()c p b p a p p ah a ---=2,其中p 为半周长.⑻△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π 2c >⇔+22b a △ABC 为锐角△⇔∠A + ∠B >2π 附:证明:abc b a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos c b a c b a C +⇔-+⇔⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.)2=空间向量1.空间向量的概念:具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a AB OA OB+=+= b a OB OA BA-=-=)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a++=++DACB图5⑶数乘分配律:b a b aλλλ+=+)(3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线. 4.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a.其中向量a叫做直线l 的方向向量. 5.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++ ① ①式叫做平面MAB 的向量表达式7 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++8 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥.9.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a . 10.向量的数量积: a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅. 11.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅. 12.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律)(3)()a b c a b a c ⋅+=⋅+⋅(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔0332211=++⇔⊥b a b a b a b a222321aaa++==(aa=⇒⋅=)232221232221332211||||,cosbbbaaababababababa++⋅++++=⋅⋅>=<②空间两点的距离公式:212212212)()()(zzyyxxd-+-+-=.(2)法向量:若向量a所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a,如果α⊥a那么向量a叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n是平面α的法向量,AB是平面α的一条射线,其中α∈A,则点B到平面α||n②利用法向量求二面角的平面角定理:设21,nn分别是二面角βα--l中平面βα,的法向量,则21,nn所成的角就是所求二面角的平面角或其补角大小(21,nn方向相同,则为补角,21,nn反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a平面α,α∈⋅∈⋅DCaBA,,且CDE三点不共线,则a∥α的充要条件是存在有序实数对μλ⋅使CECDABμλ+=.(常设CECDABμλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB与平面相交).A B。