阻抗COUPON的设计
- 格式:doc
- 大小:100.00 KB
- 文档页数:4
⼀直有很多⼈问我阻抗怎么计算的⼈家问多了我想给⼤家⼀直有很多⼈问我阻抗怎么计算的. ⼈家问多了,我想给⼤家整理个材料,于⼰于⼈都是个⽅便.如果⼤家还有什么问题或者⽂档有什么错误,欢迎讨论与指教!在计算阻抗之前,我想很有必要理解这⼉阻抗的意义。
传输线阻抗的由来以及意义传输线阻抗是从电报⽅程推导出来(具体可以查询微波理论)如下图,其为平⾏双导线的分布参数等效电路:从此图可以推导出电报⽅程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗⽆耗线下r=0, g=0 得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平⾯波的波阻抗定义)特性阻抗与波阻抗之间关系可从此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不⼀致所求出的电报⽅程的解不⼀致,就造成所谓的反射现象等等.在信号完整性领域⾥,⽐如反射,串扰,电源平⾯切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup)的定义我们来看如下⼀种stackup,主板常⽤的8 层板(4 层power/ground 以及4 层⾛线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下⾯熟悉下在叠层⾥⾯的⼀些基本概念,和⼚家打交道经常会使⽤的Oz 的概念Oz 本来是重量的单位Oz(盎司)=28.3 g(克)在叠层⾥⾯是这么定义的,在⼀平⽅英尺的⾯积上铺⼀盎司的铜的厚度为1Oz,对应的单位如下介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺⼨的真空电容量Co之⽐为介电常数:-ε"ε = Cx/Co = ε'Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两⾯都覆有铜箔,⽽pp 没有.传输线特性阻抗的计算⾸先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有 1 个参考地,⽽带状线有2个参考地,如下图所⽰对照上⾯常⽤的8 层主板,只有top 和bottom ⾛线层才是微带线类型,其他的⾛线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm,差分线阻抗要求是70~110Ohm,厚度要求⼀般是1~2mm,根据板厚要求来分层得到各厚度⾼度. 在此假设板厚为 1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下的叠层来⾛线先来计算微带线的特性阻抗,由于top 层和bottom 层对称,只需要计算top 层阻抗就好的,采⽤polar si6000,对应的计算图形如下:在计算的时候注意的是:1,你所需要的是通过⾛线阻抗要求来计算出线宽W(⽬标)2,各⼚家的制程能⼒不⼀致,因此计算⽅法不⼀样,需要和⼚家进⾏确认3,表层采⽤coated microstrip 计算的原因是,⼚家会有覆绿漆,因⽽没⽤surface microstrip 计算,但是也有⼚家采⽤surface microstrip 来计算的,它是经过校准的4,w1 和w2 不⼀样的原因在于pcb 板制造过程中是从上到下⽽腐蚀,因此腐蚀出来有梯形的感觉(当然不完全是)5,在此没计算出精确的60Ohm 阻抗,原因是实际制程的时候⼚家会稍微改变参数,没必要那么精确,在1,2ohm 范围之内我是觉得没问题6,h/t 参数对应你可以参照叠层来看再计算出L5 的特性阻抗如下图记得当初有各版本对于stripline 还有symmetrical stripline 的计算图,实际上的差异从字⾯来理解就是symmetrical stripline 其实是offset stripline 的特例H1=H2在计算差分阻抗的时候和上⾯计算类似,除所需要的通过⾛线阻抗要求来计算出线宽的⽬标除线宽还有线距,在此不列出选⽤的图是在计算差分阻抗注意的是:1,在满⾜DDR2 clock 85Ohm~1394 110Ohm 差分阻抗的同时⼜满⾜其单端阻抗,因此我通常选择的是先满⾜差分阻抗(很多是电流模式取电压的)再考虑单端阻抗(通常板⼚是不考虑的,实际做很多板⼦,问题确实不算⼤,看样⼦差分线还是⾛线同层同via 同间距要求⼀定要符合)特性阻抗公式(含微带线,带状线的计算公式)a.微带线(microstrip)Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W为线宽,T为⾛线的铜⽪厚度,H为⾛线到参考平⾯的距离,Er是PCB板材质的介电常数(dielectric constant)。
阻抗匹配设计原理及⽅法阻抗匹配(Impedance matching)是微波电⼦学⾥的⼀部分,主要⽤于传输线上,来达⾄所有⾼频的微波信号皆能传⾄负载点的⽬的,⼏乎不会有信号反射回来源点,从⽽提升能源效益。
阻抗匹配有两种,⼀种是透过改变阻抗⼒(lumped-circuit matching),另⼀种则是调整传输线的波长(transmission line matching)。
要匹配⼀组线路,⾸先把负载点的阻抗值,除以传输线的特性阻抗值来归⼀化,然后把数值划在史密斯图上。
改变阻抗⼒把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿着代表实数电阻的圆圈⾛动。
如果把电容或电感接地,⾸先图表上的点会以图中⼼旋转180度,然后才沿电阻圈⾛动,再沿中⼼旋转180度。
重复以上⽅法直⾄电阻值变成1,即可直接把阻抗⼒变为零完成匹配。
阻抗匹配:简单的说就是「特性阻抗」等于「负载阻抗」。
调整传输线由负载点⾄来源点加长传输线,在图表上的圆点会沿着图中⼼以逆时针⽅向⾛动,直⾄⾛到电阻值为1的圆圈上,即可加电容或电感把阻抗⼒调整为零,完成匹配。
阻抗匹配则传输功率⼤,对于⼀个电源来讲,单它的内阻等于负载时,输出功率最⼤,此时阻抗匹配。
最⼤功率传输定理,如果是⾼频的话,就是⽆反射波。
对于普通的宽频放⼤器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远⼤于电缆长度,即缆长可以忽略的话,就⽆须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产⽣反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
⾼速PCB布线时,为了防⽌信号的反射,要求是线路的阻抗为50欧姆。
这是个⼤约的数字,⼀般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整⽽已,为了匹配⽅便.阻抗从字⾯上看就与电阻不⼀样,其中只有⼀个阻字是相同的,⽽另⼀个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延⼀点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
PCB的差分阻抗测试技术作者: 周英航上网日期: 2006年11月10日打印版订阅关键字:PCB电路板TDR真差分TDR特征阻抗Coupon为了提高传输速率和传输距离,计算机行业和通信行业越来越多的采用高速串行总线。
在芯片之间、板卡之间、背板和业务板之间实现高速互联。
这些高速串行总线的速率从以往USB2.0、LVDS以及FireWire1394的几百Mbps到今天的PCI-Express G1/G2、SATA G1/G2 、XAUI/2XAUI、XFI的几个Gbps乃至10Gbps。
计算机以及通信行业的PCB客户对差分走线的阻抗控制要求越来越高。
这使PCB生产商以及高速PCB设计人员所面临的前所未有的挑战。
本文结合PCB行业公认的测试标准IPC-TM-650手册,重点讨论真差分TDR测试方法的原理以及特点。
IPC-TM-650手册以及PCB特征阻抗测试背景IPC-TM-650测试手册是一套非常全面的PCB行业测试规范,从PCB的机械特性、化学特性、物理特性、电气特性、环境特性等各方面给出了非常详尽的测试方法以及测试要求。
其中PCB板电气特性要求在第2.5节中描述,而其中的2.5.5.7a(IPC-TM-650官方网站下载链接/4.0_Knowledge/4.1_Standards/test/2-5-5-7a.pdf)则全面的介绍了PCB特征阻抗测试方法和对相应的测试仪器要求,重点包括单端走线和差分走线的阻抗测试。
TDR的基本原理及IPC-TM-650对TDR设备的基本要求1.TDR的基本原理图1是一个阶跃信号在传输线(如PCB的走线)上传输时的示意图。
而传输线是通过电介质与GND分隔的,就像无数个微小的电容的并联。
电信号到达某个位置时,就会令该位置上的电压产生变化,就像是给电容充电。
因此,传输线在此位置上是有对地的电流回路的,因此就有阻抗的存在。
但是该阻抗只有阶跃信号自身才能“感觉到”,这就是我们所说的特征阻抗。
阻抗设计指引1.0、目的确定阻抗控制的要求,规范阻抗计算方法,拟定阻抗测试Coupon设计之准则,确保产品能够满足生产的需要及客户要求。
2.0、范围所有需要阻抗控制产品的设计、制作及审核。
2.1、定义特性阻抗的定义:在某一频率下,电子器件传输信号线中,相对某一参考层,其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它是电阻抗,电感抗,电容抗……的一个矢量总和。
2.2、特性阻抗的分类:目前我司常见的特性阻抗分为:单端(线)阻抗、差分(动)阻抗、共面阻抗此三种情况。
2.2.1、单端(线)阻抗:英文Single Ended Impedance ,指单根信号线测得的阻抗。
2.2.2、差分(动)阻抗:英文Differential Impedance,指差分驱动时在两条等宽等间距的传输线中测试到的阻抗。
2.2.3、共面阻抗:英文Coplanar Impedance ,指信号线在其周围GND/VCC(信号线到其两侧GND/VCC间距相等)之间传输时所测试到的阻抗。
3.0、职责3.1、工程部负责本文件的编制及修订。
3.2、MI设计人员负责对客户资料中阻抗要求的理解及转换,负责编写阻抗控制的流程指示、菲林修改指示及阻抗测试Coupon的设计。
MI在生产使用过程中负责解释相关条款内容。
3.3、品保部QAE负责对工程资料的检查及认可。
4.0、内容4.1、阻抗设计流程:测量阻抗是否符合客户要求4.2、阻抗控制需求的决定条件:当信号在PCB导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线,一般信号传输线均需做阻抗控制。
PCB制作时,依客户要求决定是否需管控阻抗,若客户要求某一线宽需做阻抗控制,生产时则需管控该线宽的阻抗。
4.3、阻抗匹配的三个要素:4.3.1、输出阻抗(原始主动零件) 特性阻抗(信号线) 输入阻抗(被动零件)(PCB板)阻抗匹配4.3.2、当信号在PCB上传输时,PCB板的特性阻抗必须与头尾元件的电子阻抗相延误等现象,从而导致信号不完整,信号失真。
1、導線傳導為直流電流(D.C.)時,所受到的阻力稱為電阻(Resistance),符號為 R 單位為"歐姆" (Ohm,Ω);導線傳導為交流電流(A.C.)時,所遭遇的阻力稱為阻抗(Impedance),符號為 Z , 單位為Ω。
電路板業界中一般的"阻抗控制"嚴格說來並不正確,專業性的說法應為"特性阻抗 控制"(Characteristic Impedance Control)才對。
因PCB 線路中所"流通"的"東西"並不是電流,而 是針對方波訊號或脈衝(Square Wave Signal,Pulse)在能量上的傳輸。
此種"訊號"傳輸時所受到 的"阻力"另稱為"特性阻抗",代表的符號是Zo 。
2、組裝高速零件時,其訊號線中之"特性阻抗"值(Characteristic Impedance)必頇控制在某一歐姆 數值範圍內,使高頻訊號得以順利傳播,此種品質要求即一般業界通稱之"阻抗控制" (Impedance Control)。
3、近來高速零件的廣泛應用,致使電路板必頇跟上腳步與之配合,電路板已不再只做為簡單的 互連(Interconnection)工具而已。
也就是說PCB 在傳播高頻"訊號"的線路已不再只是簡單的導 線,而是扮演特性良好的"傳輸線"。
"傳輸線":是由訊號線(Signal Line)、介質層(Dielectric Layer),及接地層 (Ground)三者所共同組成。
註:"訊號"(Signal,即方波Square Wave 或稱脈衝Pulse)輸出阻抗(Output Impedance)通過"傳輸線" (Transmission Line)中的訊號線(Signal Line)朝向另一端的工作零件(Loader)進行訊號傳播 (Propagation)之際,其A 、原始主動零件之"輸出阻抗"值(Output Impedance)B 、訊號線中的"特性阻抗"值C 、被動零件的"輸入阻抗"值(Input Impedance)唯有當輸出端、訊號線、與輸入端三者之阻值得以匹配時,才能減少半途中或末端的反射 (Reflection 或 Ringing)引起的雜訊(Noise)或訊號振盪(Signal Ringing)與損失,以達降低雜訊與 堵絕失真的目的。
常用阻抗设计及叠层1. 引言在电路板设计中,阻抗设计及叠层是非常重要的方面之一。
通过正确设计阻抗,可以确保信号传输的质量和稳定性。
本文将介绍一些常用的阻抗设计方法和叠层技术,帮助读者更好地理解和应用于自己的电路板设计中。
2. 阻抗设计基础2.1 什么是阻抗?在电路中,阻抗是指电流与电压之间的比值。
它是一个复数,由实部和虚部组成,表示电流和电压之间的相位差。
阻抗的大小和相位差对信号传输非常重要。
在高速信号传输和高频率电路中,正确设计阻抗可以降低信号反射、串扰和功耗等问题,提高信号品质。
2.2 常见的阻抗值常见的阻抗值有50欧姆(Ω)和75欧姆(Ω)两种,分别用于不同的应用场景。
在高速数字和模拟电路中,通常使用50欧姆阻抗。
而在视频和音频设备中,通常使用75欧姆阻抗。
2.3 随频率变化的阻抗阻抗是一个与频率有关的值。
在高频率下,阻抗的值可能会有所变化,这就需要设计合适的叠层来平衡阻抗。
3. 阻抗设计方法3.1 单终端阻抗设计单终端阻抗设计是指信号线的阻抗与周围环境的阻抗相等。
这可以通过调整信号线的宽度、间距和高度来实现。
在PCB设计中,常见的实现方式有微带线和同轴线两种。
微带线是将信号引线和地线放置在同一层上,通过调整线的宽度来控制阻抗。
同轴线则是在信号线周围包裹一层金属屏蔽层,通过调整屏蔽层和内导体之间的间距来控制阻抗。
3.2 差分阻抗设计差分阻抗设计是指两个信号引线的阻抗相等且相等。
差分信号传输常用于高速信号传输和抗干扰能力较强的应用中。
差分阻抗设计需要考虑两个信号引线之间的间距、宽度和相对位置等因素。
这样可以确保两个信号引线之间的阻抗相等,从而减少串扰和噪声。
3.3 多层板阻抗设计在复杂的电路板设计中,可能需要多层板结构来满足设计要求。
多层板阻抗设计较为复杂,需要考虑信号层、地层和电源层的相互影响。
在多层板设计中,可以通过增加地层的分布来改善阻抗。
同时,还可以选择合适的层间距和层间电介质常数,以满足设计要求。
一、微条线阻抗COUPON 的设计: 四层板,微条线在L1和L4层,分别参考L2和L3层,(线宽依客户要求): 以下绿色为钻孔;蓝色为铜;白色为基材
L1 L2
L3
L4
六层板,微条线在L1,L3,L4和L6层,参考L2和L5层(线宽依客户要求): 以下绿色为钻孔;蓝色为铜;白色为基材
L1 L2 L3
L4
L5
L6
二、差动阻抗线阻抗COUPON的设计:四层板,差动阻抗线在L1、L4层,分别参考L2、L3层,(线宽和间距按客户要求):
以下绿色为钻孔;蓝色为铜;白色为基材
阻抗COUPON的设计注意事项:
1.当线长无法做到4inch长时,可采用S形线路设计,但需保证前后两条线间距大于2mm
2.TDR试算时,
H/HOZ基板,镀铜AVG:800U”,铜厚:2.0mil;
镀铜AVG:1000U”,铜厚:2.2 mil
1/1OZ基板,镀铜AVG:800U”,铜厚:2.7 mil;
镀铜AVG:1000U”,铜厚:2.9 mil
单张2116厚度范围:+/-0.4mil
单张7628厚度范围:+/-0.6mil,
7628+2116; 7628+1080厚度范围:+/-0.6mil,
7628+ 7628厚度范围:+/-0.8mil,
3. 线宽范围Min:+/-1mil, Max:+/-20%。