物流系统规划课件:重心法
- 格式:ppt
- 大小:243.00 KB
- 文档页数:11
一、简单重心法(运输量重心法)单一物流中心选址---重心法公式:x0 = ( ∑ xiwi ) / ( ∑ wi )y0 = ( ∑ yiwi ) / ( ∑ wi )( x0 , y0 ) ----新设施的地址( xi , yi ) ----现有设施的位置wi ----第i个供应点的运量例题:某物流园区,每年需要从P1地运来铸铁,从P2地运来钢材,从P3地运来煤炭,从P4地运来日用百货,各地与某城市中心的距离和每年的材料运量如表所示。
请用重心法确定分厂厂址。
解:x0 = ( 20×2000+60×1200+20×1000+50×2500 ) / ( 2000+1200+1000+2500) = 35.4y0 = ( 70×2000+60×1200+20×1000+20×2500 ) / ( 2000+1200+1000+2500) = 42.1所以,分厂厂址的坐标为(35.4 , 42.1)二、迭代重心法(“运输量—运输距离—运输费率”重心法)单一物流中心选址---迭代重心法单一物流中心选址---迭代重公式:X = ( ∑Q i R i X i/D i) / ( ∑Q i R i/D i ) Y= ( ∑Q i R i Y i/D i) / ( ∑Q i R i/D i )D i= ( ( X i-X)2+(Y i-Y)2 )1/2F = ∑Q i R i D i(Xi , Yi)----现有目标的坐标位置Qi----运输量Ri----运输费率F----总运费(X , Y)----新仓库的位置坐标Di----现有目标到新仓库的距离解题方法:(1)令Di=1A、求出仓库的初始位置;B、将求出的仓库位置(X,Y)代入Di公式中,求出客户到仓库初始位置的距离;C、计算出仓库初始位置的总运费ΣQiRiDi;( 2 ) 迭代计算:A、将Di代入原公式,求出仓库的新位置坐标(X ,Y);B、将求出的(X ,Y)代入Di公式中求出Di;C、计算出仓库新位置的总运费ΣiQiRiDi…不断迭代,直到求出的仓库位置和总运费越来越接近于不变,即为所得;注意:牵涉到运输费率要用重心法做;但如无费率,又要求用迭代重心法计算,则令费率为1。
3.1仓库选址3.1.1 重心法求最佳仓库选址的原理重心法是根据几何的方法确定在一个平面或空间内分布有若干的点,求出一点到这若干的点的总距离最短。
重心法是一种模拟方法,它将物流系统中的需求点和资源点看成是分布在某一平面范围内的物流系统,各点的需求量和资源量分别看成是物体的重量,物体系统的重心作为物流网点的最佳设置点,利用求物体系统重心的方法来确定物流网点的位置。
通常重心法可以用于解决仓库的选址、配送中心的选址等问题。
重心法在解决配送中心的选址问题时,它把运输成本看成现有配送点之间的运输距离和运输的货物量的线性函数。
重心法首先要在坐标系中标出各个地点的位置,目的在于确定各点的相对距离。
坐标系采用经度和纬度建立坐标。
这样就确定了各个配送点的具体地理位置。
同时考虑各段运输路线的运输成本。
设拟建的配送中心有N 个需要收件的配送点,它们所在的位置坐标为(i i y x ,),其中i=1,2,···n ,拟建的配送中心的坐标为(x,y),如下图所示:Y根据在中国地图上查找各城市的经纬度得到每个城市的地理坐标(保留小数点后货物从i 地运至配送中心所在地的运输费用是i c ,设i h 为运输费率即单位货物运输单位距离的费用,且假设配送点与配送中心所在地之间的道路为直线,距离为i d ,i w 为运输量。
则i i i i d w h c ⨯⨯=...........................(1) 且i d =22)()(i i y y x x -+- (2)总运输费用H 为: H=i i ni i ni i d w h c ⨯⨯=∑∑==11 (3)由于i d 与配送中心位置(x,y)有关,因此总运输费用是x,y 的函数,将式(2)带入式(3),得:221)()(),(i i i ni i y y x x w h y x H -+-⨯⨯=∑= (4)(1)根据以上公式和案例给定的各个分拨中心的业务量求出配送中心的初始地理坐标(假设一级分拨中心的运输费率为0.05,二级分拨中心的运输费率为0.075)初始坐标:X=111.25585/3.67=30.3149 Y=442.185525/3.67=120.49 (2)计算配送中心在目前初始坐标位置的总运输成本则配送中心在初始坐标的总费用H=3.927671108为求得运输费用最小的配送中心,就变成了对函数H(x,y)求极值的问题,即求(**,y x ),使:H=H(**,y x )min根据函数极值的原理,式(4)分别对x,y 求偏导,令偏导为0,得:0/)(1=-=∂∂∑=i i i ni i d x x w h x H………………………(5) 0/)(1=-=∂∂∑=i i i n i i d y y w h y H………………………(6) 由式(5)和(6)可以求得函数H(x,y)的极值点,由于式(6)是非线性方程组,难以求得**,y x 的表达式,需要用迭代法求解,展开式(5)和(6)得:∑∑===ni iii ni iiiid wh d xw h x 11*// (7)∑∑===ni iii ni iiiid wh d yw h y 11*// (8)(3)求出第一次迭代以后的配送中心的坐标X=189.3623755/6.251962728=30.2884684Y=753.9872233/6.251962728=120.6000829则第一次迭代以后的坐标为(30.2884684,120.6000829)(4)计算配送中心在目前初始坐标位置的总运输成本则配送中心在初始坐标的总费用H=3.860409954其中i d =2*2*)()(i i y y x x -+- ,将式(7)和(8)写成迭代式,有k 次迭代结果表达式:()()∑∑=-=-=ni k i ii ni k i iiid wh d xw h k x 1111*//)( (9)()()∑∑=-=-=ni k i iini k i iiid wh d yw h k y 1111*//)( (10)其中:()2*)1(2*)1(1)()(i k i k k i y y x x d -+-=--- (11)如果k H <1-k H ,说明总运费仍有改进改善的余地,返回步骤(5),继续叠加;否则,说明(()()*1*1,--k k y x )为最佳场址,则停止叠加。
物流系统选址规划设计---重心法课件重心法,即重心最小化法,是一种数学优化方法,适用于物流系统的选址规划设计。
本文将介绍重心法的基本原理及其在物流系统选址规划设计中的应用。
一、重心法的基本原理重心法是在平面或空间中寻找一个点,使得该点到一组点的距离之和最小。
这个点被称为重心,也称为质心或重心点。
重心是物体几何形状的一个量度,它的位置可以通过该物体各点的坐标来计算。
在物流系统选址规划设计中,我们可以应用重心法来确定物流中心的最佳位置。
二、物流系统选址规划设计中的应用1. 收集数据在使用重心法之前,首先需要收集与物流系统有关的数据。
这些数据包括客户地址、货物流动量、货物种类、交通运输工具、在途时间等信息。
通过对这些数据进行分析,确定适宜的物流中心选址。
2. 建立模型在收集到数据之后,需要建立合适的模型。
建模的目的是将复杂的物流网络转化为一个简单的数学模型,方便计算。
通常,物流系统的网络模型可以用图的形式表示,节点表示客户和物流中心,边表示运输线路。
然后,我们可以通过建立目标函数和约束条件来对模型进行优化。
3. 确定重心通过将所有物流节点的位置坐标与其货物流动量相乘,可以得到各节点的质量。
然后,可以通过计算每个节点的质量之和和各节点的坐标之间的加权平均位置,求出物流中心的重心。
4. 评估结果在确定重心之后,需要对结果进行评估。
评估包括评估物流中心的距离、货物的运输成本、交通运输的效率、货物是否按时到达等因素。
评估结果有助于确定物流中心是否最佳,并帮助确定是否需要重新选址。
三、小结重心法是一种简单有效的优化方法,适用于物流系统选址规划设计。
通过收集数据、建立模型、确定重心和评估结果,可以找到最佳的物流中心位置,优化物流系统的效率和效益。
重心法重心法是将物流系统的需求点看成是分布在某一平面范围内的物体系统,各点的需求量和资源量分别看成是物体的重量,物体系统的重心将作为物流网点的最佳设置点,利用确定物体中心的方法来确定物流网点的位置。
具体过程如下。
设在某计划区域内,有N 个资源点和需求点,各点的资源量或需求量为),,2,1(n j W j =,它们各自的坐标是),,2,1)(,(n j y x j j =。
该网络用图5-2示如下:在计划区域内准备设置一个配送中心,设该配送中心的坐标是),(y x ,配送中心至资源点或需求点的运费率是jC 。
根据求平面中物体重心的方法,可以得到:⎪⎪⎩⎪⎪⎨⎧==∑∑∑∑====n j nj j j j j j n j nj j j j j j W C Y W C y W C X W C x 1111 (5-15)代入数值,实际求得),(y x 的值,即为所求得配送网点位置的坐标。
必须指出的是,通过上述方法求得的配送中心坐标还不是最优的,因为它没有考虑设置一个配送中心后现有资源点和需求点之间将不再直接联系而要通过该配送中心中转,运输距离将发生变化,从而运输成本也将变化。
所以必须将以上方法加以如下优化。
假设配送中心的地理坐标是),(00y x 。
配送中心到资源点或者需求点的发送费用为jC ,总的发送费用为D ,则有:∑==nj jC D 1(5-16)而jC 又可以用下面的式子来表示:jj j j d W r C = (5-17)式(5-17)中:j r——从配送中心到资源点或者需求点的发送费率(即单位吨公里的发送费);jW ——资源点的供应量或者需求点的发送量;jd ——从配送中心到资源点或者需求点的直线距离。
其中,jd 也可以写成如下形式:][)(2)(2021j jj y yx x d --=- (5-18)把方程式(5-18)代入(5-17),得到:∑==nj jj j d W r D 1(5-19)从方程式(5-19)和方程式(5-16)可以求得使D 为最小的),(00y x 。
单一物流中心选址重心法设计重心法是一种模拟方法。
这种方法将物流系统中的需求点和资源点看成是分布在某一平面范围内的物流系统,各点的需求量和资源量分别看成是物体的重量,物体系统的重心作为物流网点的最佳设置点,利用求物体系统重心的方法来确定物流网点的位置。
i d i R n m i i V TC ∑+==1min 运输总费用(1) 式中:V i —i 点运输量;R i —待定物流中心到i 点的运输费率;d i —待定物流中心到i 点的距离。
求解算法—数值分析法(重心法)1) 设供应点和需求点所在地的坐标为(X i ,Y i ),待定物流中心的位置坐标为(X 0,Y 0) 则 ()()2020Y Y X X d i i i -+-=(2) 2) 将(2)式代入(1)式,然后求运输总费用TC 对X 0和Y 0的偏导数,并令其等于零。
∑-+-=2020)()(Y Y X X R V TC i i i i0)(00=--=∂∂∑ii i i d X X R V X TC 00=-∑∑ii i i i i i d R V X d X R V ∑∑=)()(0ii i ii i i d R V d X R V X (3) ∑∑=)()(0ii i i ii i d R V d Y R V Y (4) 上述两式中仍含有未知数d i ,因此一次不能求得X 0和Y 0(解析解),需要通过迭代收敛法得到数值解。
迭代收敛法具体步骤:图 供应地和需求地分布情况1、 先用重心公式估算初始选址点(大致位置): ∑∑=)()(0ii ii i R V X R V X (5) ∑∑=)()(0i i ii i R V Y R V Y (6) 2、将X 0和Y 0代入公式2,计算d i (i=1,2,…,m+n );3、将d i 代入公式3和4,解出修正值X 0和Y 0;4、根据修正值X 0和Y 0,再重新计算d i ;5、重复步骤3和4,直至X 0和Y 0的值在连续迭代过程中不再变化,即△X 0≈0,△Y 0≈0,即得到精确仓库选址位置,继续计算无意义。
重心法的概念
嘿,大家知道什么是重心法吗?听起来好像很专业很复杂的样子,但其实它并没有那么难理解啦!
想象一下,你有一堆东西,要怎么找到一个最合适的点来平衡它们呢?这个点就是重心啦!重心法呢,就是一种用来确定这个关键平衡点的方法。
比如说,你有一堆积木,你想让它们稳稳地堆起来,那你就得找到一个能让整个积木结构平衡的位置,这其实就是在找重心呀。
在实际生活中,重心法的应用可多了去了。
比如在物流领域,仓库要怎么选址才能让货物运输最方便、成本最低呢?这时候就可以用重心法来帮忙啦!通过计算各个需求点的位置和需求量,就能找到一个最理想的仓库位置,就好像找到了让整个物流系统平衡的那个关键点。
再想想看,在建筑设计中,高楼大厦要稳稳地矗立在那里,设计师们也得考虑重心呀。
如果重心不稳,那不是很危险吗?
这不就跟我们人一样嘛,如果我们心里没有一个平衡的点,就会觉得慌乱、不知所措。
重心法就像是我们生活中的一个指引,帮助我们找到平衡和稳定。
大家想想看,要是没有重心法,很多事情是不是会变得一团糟呀?物流会混乱,建筑会不安全,那我们的生活不就乱套了吗?所以说呀,重心法真的超级重要呢!
总之,重心法虽然听起来有点神秘,但其实它就在我们身边,默默地发挥着重要的作用呢!它让我们的生活更有序、更稳定,难道我们不应该好好了解它、重视它吗?。