九年级数学解直角三角形4
- 格式:pdf
- 大小:562.80 KB
- 文档页数:9
湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》是本册教材中的一个重要内容。
在此之前,学生已经学习了直角三角形的性质、勾股定理等知识。
本节课主要让学生掌握解直角三角形的应用,即如何利用直角三角形的性质解决实际问题。
教材通过例题和练习题的形式,引导学生学会运用解直角三角形的方法解决生活中的问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形的概念和性质有一定的了解。
但是,他们在解决实际问题时,往往不知道如何将数学知识运用到具体情境中。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.知识与技能目标:使学生掌握解直角三角形的应用方法,能够运用所学知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。
3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:解直角三角形的应用方法。
2.难点:如何将实际问题转化为直角三角形问题,并运用解直角三角形的方法解决。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现问题,提出解决方案。
2.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。
3.合作学习法:学生分组讨论,共同解决问题,培养团队合作精神。
六. 教学准备1.教师准备:教材、课件、黑板、直角三角板等教学工具。
2.学生准备:课本、练习本、直角三角板等学习工具。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如测量旗杆高度、房屋面积等,引导学生发现这些问题都可以通过解直角三角形来解决。
从而激发学生的学习兴趣,引入新课。
2.呈现(10分钟)教师展示教材中的例题,引导学生观察题干,分析问题。
然后,教师通过讲解,展示解直角三角形的步骤和方法。
湘教版数学九年级上册4.3《解直角三角形》教学设计一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。
本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的,主要让学生了解解直角三角形的意义和作用,学会使用解直角三角形的方法,提高解决实际问题的能力。
教材通过引入直角三角形中的边长和角度的关系,引导学生利用已学的锐角三角函数知识来解决直角三角形中的问题。
教材内容由浅入深,逐步引导学生掌握解直角三角形的方法,同时注重培养学生的空间想象能力和解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形和锐角三角函数有一定的了解。
但是,学生对解直角三角形的理解和应用能力参差不齐,部分学生可能对解直角三角形的实际应用还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同层次的学生进行有针对性的教学,引导学生理解解直角三角形的意义,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握解直角三角形的方法,能够运用解直角三角形解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探索解直角三角形的规律,提高学生的空间想象能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和勇于挑战的精神。
四. 教学重难点1.重点:让学生掌握解直角三角形的方法,能够运用解直角三角形解决实际问题。
2.难点:引导学生理解解直角三角形的实际应用,提高学生解决实际问题的能力。
五. 教学方法1.情境教学法:通过生活实例引入解直角三角形的概念,激发学生的学习兴趣。
2.引导发现法:引导学生观察、分析、归纳解直角三角形的规律,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。
4.实践操作法:让学生通过动手操作,加深对解直角三角形的理解和应用。
湘教版数学九年级上册《4.3 解直角三角形》教学设计2一. 教材分析湘教版数学九年级上册《4.3 解直角三角形》是学生在学习了三角形的性质、勾股定理的基础上进行学习的。
本节内容主要让学生掌握直角三角形的性质,学会用勾股定理解决实际问题,进一步培养学生的观察能力、思考能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的性质、勾股定理等相关知识,具备一定的观察、思考和解决问题的能力。
但部分学生对直角三角形的性质和勾股定理的理解不够深入,解决实际问题的能力有待提高。
三. 教学目标1.理解直角三角形的性质,掌握用勾股定理解决实际问题的方法。
2.培养学生的观察能力、思考能力和解决问题的能力。
3.提高学生的数学素养,使学生在实际生活中能运用数学知识解决问题。
四. 教学重难点1.重点:直角三角形的性质,用勾股定理解决实际问题。
2.难点:如何引导学生发现直角三角形的性质,以及如何将实际问题转化为数学问题。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形,激发学生的学习兴趣。
2.启发式教学法:引导学生发现直角三角形的性质,培养学生独立思考的能力。
3.实践教学法:让学生通过动手操作、解决实际问题,加深对知识的理解。
六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画等。
2.教学素材:准备一些实际问题,用于引导学生运用勾股定理解决问题。
3.学生活动材料:为学生提供一些卡片,上面写有直角三角形的性质和勾股定理。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如建筑物的角落、三角板等,引导学生关注直角三角形。
提问:“你们知道直角三角形的性质吗?”让学生回顾已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)讲解直角三角形的性质,引导学生发现并总结直角三角形的特征。
通过课件展示直角三角形的特点,如直角边的平方和等于斜边的平方。
同时,给出勾股定理的公式。
湘教版数学九年级上册4.3《解直角三角形》教学设计一. 教材分析《解直角三角形》是湘教版数学九年级上册4.3的内容,这部分内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的。
本节课的主要内容有:了解解直角三角形的概念,学会用锐角三角函数解直角三角形,能运用解直角三角形的知识解决实际问题。
本节课的内容在数学学科中占有重要的地位,它不仅巩固了锐角三角函数的知识,而且为后续学习三角函数的图像和性质奠定了基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数和直角三角形的性质有一定的了解。
但是,对于解直角三角形的概念和运用可能还不够熟练。
因此,在教学过程中,需要引导学生通过实际问题来理解和掌握解直角三角形的方法,提高他们运用数学知识解决实际问题的能力。
三. 教学目标1.了解解直角三角形的概念,掌握用锐角三角函数解直角三角形的方法。
2.能够运用解直角三角形的知识解决实际问题。
3.提高学生运用数学知识解决实际问题的能力,培养学生的逻辑思维能力。
四. 教学重难点1.重点:解直角三角形的概念,用锐角三角函数解直角三角形的方法。
2.难点:如何引导学生从实际问题中发现解直角三角形的规律,运用解直角三角形的知识解决实际问题。
五. 教学方法1.情境教学法:通过设计实际问题,引导学生理解和掌握解直角三角形的方法。
2.小组合作学习:学生在小组内讨论和分享解直角三角形的方法,培养学生的合作意识和团队精神。
3.案例教学法:通过分析具体的案例,让学生理解解直角三角形的应用。
六. 教学准备1.准备相关的实际问题,用于引导学生理解和掌握解直角三角形的方法。
2.准备解直角三角形的案例,用于分析和讲解。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何求解直角三角形的边长。
例如,一个直角三角形的两个锐角分别是30度和60度,求这个三角形的斜边长。
2.呈现(10分钟)呈现相关的实际问题,让学生独立思考和解决问题。
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。
华师大版数学九年级上册《解直角三角形》说课稿4一. 教材分析华师大版数学九年级上册《解直角三角形》这一节的内容是在学生已经学习了锐角三角函数的基础上进行的。
这部分内容主要让学生了解直角三角形的性质,掌握解直角三角形的方法,以及熟练运用解直角三角形的知识解决实际问题。
教材从生活实际出发,通过让学生观察和分析实际问题,引出直角三角形的性质和解直角三角形的方法。
然后,通过例题和练习题的讲解和练习,使学生掌握解直角三角形的方法,并能够运用到实际问题中。
二. 学情分析学生在学习这一节内容时,已经掌握了锐角三角函数的知识,对三角函数有一定的理解。
但是,对于解直角三角形的方法和应用,可能还比较陌生。
因此,在教学过程中,需要引导学生从生活实际出发,理解直角三角形的性质和解直角三角形的方法,并通过大量的练习,使学生能够熟练掌握解直角三角形的方法,并能够运用到实际问题中。
三. 说教学目标教学目标主要包括三个方面:知识与技能、过程与方法、情感态度与价值观。
1.知识与技能:使学生了解直角三角形的性质,掌握解直角三角形的方法,能够熟练运用解直角三角形的知识解决实际问题。
2.过程与方法:通过观察、分析实际问题,引导学生发现直角三角形的性质,学会解直角三角形的方法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用,培养学生的创新精神和实践能力。
四. 说教学重难点教学重点是使学生掌握解直角三角形的方法,并能够熟练运用到实际问题中。
教学难点是引导学生发现直角三角形的性质,理解解直角三角形的方法。
五. 说教学方法与手段在教学过程中,我会采用问题驱动法、案例教学法和小组合作法等教学方法。
同时,利用多媒体教学手段,如PPT、视频等,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的实际问题,引导学生观察和分析,引出直角三角形的性质和解直角三角形的方法。
湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)的教学内容主要包括解直角三角形的应用、锐角三角函数的概念和应用。
本节课是在学生已经掌握了直角三角形的相关知识的基础上进行教学的,目的是让学生能够运用所学的知识解决实际问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于直角三角形的相关知识也有了一定的了解。
但是,学生在解决实际问题时,往往会因为对概念理解不深、思路不清晰而导致解题困难。
因此,在教学过程中,教师需要引导学生深入理解概念,培养学生的解题思路。
三. 教学目标1.知识与技能:使学生掌握解直角三角形的应用,理解锐角三角函数的概念和应用。
2.过程与方法:培养学生运用所学的知识解决实际问题的能力,提高学生的数学应用能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.教学重点:解直角三角形的应用,锐角三角函数的概念和应用。
2.教学难点:如何引导学生运用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,培养学生的解题思路;通过分析实际案例,使学生理解所学知识的应用价值;通过小组合作学习,提高学生的团队合作意识和交流能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计好教学问题和案例。
2.学生准备:掌握直角三角形的相关知识,预习本节课的内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直角三角形的相关知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师展示案例,让学生观察和分析案例中的直角三角形,引导学生发现实际问题中的数学规律。
3.操练(20分钟)教师设置问题,引导学生运用所学的知识解决实际问题。
学生在解决问题的过程中,教师给予指导和点拨,帮助学生理清解题思路。
湘教版数学九年级上册4.3《解直角三角形》教学设计1一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。
通过本节课的学习,学生能了解直角三角形的性质,掌握解直角三角形的方法,并能运用所学知识解决实际问题。
本节课的内容为后续学习勾股定理和三角函数等知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角形和钝角三角形的性质,了解了三角形的分类。
在此基础上,学生需要进一步掌握直角三角形的性质,并学会解直角三角形。
此外,学生需要具备一定的观察能力、动手操作能力和逻辑思维能力,以便在学习过程中更好地理解和掌握所学知识。
三. 教学目标1.知识与技能目标:学生能掌握直角三角形的性质,了解解直角三角形的方法,并能运用所学知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生动手操作能力、观察能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:直角三角形的性质,解直角三角形的方法。
2.教学难点:解直角三角形的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过设置情境,引导学生观察、操作、思考,激发学生学习兴趣。
2.合作学习法:学生进行小组讨论、合作探究,培养学生团队合作精神。
3.启发式教学法:教师引导学生发现问题、分析问题、解决问题,培养学生的逻辑思维能力。
4.实践操作法:让学生动手操作,加深对知识的理解和记忆。
六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画、例题等。
2.教学道具:准备直角三角形模型、三角板等道具,以便进行实物演示。
3.练习题:挑选一些有关直角三角形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如教室的黑板、楼梯的扶手等,引导学生关注直角三角形。
第4节解直角三角形1.了解解直角三角形的概念,使学生理解直角三角形中五个元素的关系.2.经历解直角三角形的过程,掌握运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形的方法.1.在研究问题的过程中思考如何把实际问题转化为数学问题,进而把数学问题具体化.2.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和解决问题能力.1.在解决问题的过程中引导学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.2.通过获取成功的体验和克服困难的经历,增进学生学习数学的信心,养成学生良好的学习习惯.【重点】理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形中的未知元素.【难点】从已知条件出发,正确选用适当的边角关系或三角函数解题.【教师准备】多媒体课件.【学生准备】复习三角函数和勾股定理的相关知识.导入一:课件出示:在日常生活中,我们常常遇到与直角三角形有关的问题,知道直角三角形的边可以求出角,知道角也可以求出相应的边.如图所示,在Rt△ABC中共有几个元素?我们如何利用已知元素求出其他的元素呢?【师生活动】复习直角三角形的性质(两锐角互余和勾股定理)和三角函数的概念.【学生活动】通过独立思考和与同伴交流,分析出Rt△ABC中的6个元素,并尝试利用已知元素求未知元素.[设计意图]在学生分析直角三角形6个元素的过程中,学生自然而然地会想到直角三角形的相关性质,在复习旧知的同时,又为学习新知奠定了良好的基础.导入二:课件出示:如图所示,AC是电线杆AB的一根拉线,测得拉线AC=12m,AB=6m,你能求出拉线底端到电线杆底端的长度BC吗?能求出拉线AC与地面BC所成角的度数和拉线AC与电线杆AB所成角的度数吗?学生分析:可以利用勾股定理求拉线AC的长度,易知拉线与地面所成角为∠BCA,拉线与电线杆所成角为∠BAC,利用三角函数知识和计算器即可求出∠BCA和∠BAC的度数.【引入】这节课我们就综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数的知识探究直角三角形中的边和角的求解方法.[设计意图]通过生活中实际情境的引入,使学生对本节课的学习任务一目了然,学生在探究的过程中就可以抓住重点和难点.[过渡语]我们已经了解了直角三角形中6个元素分别是三条边和三个角,那么至少要知道几个元素,才可以求出其他元素呢?下面我们进行分类探究.【做一做】在Rt△ABC中,如果已知其中两边的长,你能求出这个三角形的其他元素吗?课件出示:(教材例1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=,b=,求这个三角形的其他元素.思路一教师引导学生分析:1.直角三角形中已知两边可以利用定理求出第三条边.2.直角三角形中,已知两边可以利用求∠A(或∠B)的度数.3.再利用求∠B(或∠A)的度数.【师生活动】教师引导学生分析,得出解直角三角形的方法,理清解题思路.【学生活动】得出结论:1.勾股定理2.三角函数2.两锐角互余解:在Rt△ABC中,a2+b2=c2,a=,b=,∴c===2.在Rt△ABC中,sin B===,∴∠B=30°,∴∠A=60°.思路二分组探究,思考下面的问题:1.由两个已知条件a=,b=能不能求出其中的一个锐角?2.如何再求出另外一个锐角的度数?3.如何再求出第三条边的长【师生活动】学生先独立思考,然后小组讨论.教师巡视,及时发现问题,予以纠正.完成后各小组展示解题的方法和步骤,师生共同验证.解:在Rt△ABC中,a=,b=,∴tan A===,∴∠A=60°,∴∠B=30°.在Rt△ABC中,sin B=sin30°=,即=,∴c=2.【教师小结】解直角三角形的概念:由直角三角形中已知的元素,求出所有的未知元素的过程,叫做解直角三角形.[设计意图]通过对直角三角形6个元素的分析及对猜测的探究活动,自然而然地引出解直角三角形的概念,并让学生及时总结解题方法,加深对概念的理解.[知识拓展]已知直角三角形两条边求其他元素的方法:方法1:已知两条边的长度,可以先利用勾股定理求出第三边,然后利用锐角三角函数求出其中一个锐角,再根据直角三角形两锐角互余求出另外一个锐角.方法2:已知两条边的长度,可以先利用锐角三角函数求出其中一个锐角,然后根据直角三角形中两锐角互余求出另外一个锐角,再利用锐角三角函数求出第三条边.解:在Rt△ABC中,AC=12,AB=6,由勾股定理得BC=6.在Rt△ABC中,tan∠BCA===,∴∠BCA=60°,∴∠BAC=30°.∴拉线底端到电线杆底端的长度BC是6m,∠BCA和∠BAC的度数分别是60°和30°.[设计意图]通过对导入题的解答,加深学生对解直角三角形概念的理解,提高解题的综合能力.三角形的其他元素(边长精确到1).〔解析〕在直角三角形中可以利用两锐角互余求另外一个锐角的度数,然后利用与锐角∠B 和边b有关的三角函数先求出其中一条边a或c,再利用三角函数或勾股定理求出第三条边c或a.解:在Rt△ABC中,∠C=90°,∠B=25°,∴∠A=65°.∵sin B=,b=30,∴c==≈71.∵tan B=,b=30,∴a==≈64.【教师设疑】此题还有其他解法吗?【学生活动】学生相互交流他们的解法.[设计意图]通过对学习活动的探究,学生逐步掌握了解直角三角形所要具备的条件,并在探究的过程中及时总结归纳出解直角三角形的思路和方法,为后面的练习和应用打下了良好的基础.[知识拓展]已知直角三角形一条边和一个锐角求其他元素的方法:已知一个锐角的度数,先根据直角三角形两锐角互余求出另外一个锐角的度数;又知道一条边的长度,根据三角函数的定义可以求出另外两条边的长度;也可以先利用三角函数的定义求出其中一条边的长度,再利用三角函数或勾股定理求出第三条边的长度.在Rt△ABC中,如果已知两个锐角,可以解直角三角形吗?【学生活动】学生先独立判断,再分组讨论.学生小结:只知道角度是无法求出直角三角形的边长的.问题2只给出一条边长这一个条件,可以解直角三角形吗?学生小结:只给出一条边长,不能解直角三角形.【教师点评】解直角三角形必须满足的一个条件是已知“一条边”.【师生总结】解直角三角形需要满足的条件:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么这个三角形的所有元素就都可以确定下来.【教师提示】第三个元素既可以是角也可以是边.[知识拓展]解直角三角形的思路和方法:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则有:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.(4)面积的不同表示法:S△ABC=ab=ch(h为斜边上的高).1.解直角三角形的概念:由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形的类型:(1)已知直角三角形两条边求其他元素.(2)已知直角三角形一条边和一个锐角求其他元素.3.解直角三角形需要满足的条件:除直角外,再知道一条边和第三个元素,就可以解直角三角形.1.如图所示的是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()A.5cmB.10cmC.20cmD.30cm解析:在直角三角形ABC中,根据三角函数定义可知tan∠BAC=,∵AC=30cm,tan∠BAC=,∴BC=AC·tan∠BAC=30×=10(cm).故选B.2.如图所示,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°·sin54°D.点A到OC的距离为cos36°·sin54°解析:根据图形得出点B到AO的距离是指BO的长,根据锐角三角函数定义得出BO=AB sin36°,即可判断A,B错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角函数定义得出AD=AO sin36°,AO=AB·sin54°,所以AD=sin36°·sin54°,即可判断C正确,D错误.故选C.3.如图所示,已知在Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC=.解析:∵在Rt△ABC中,cos B==,∴sin B==,tan B==.∵在Rt△ABD中,AD=4,∴AB===.∵tan B==,∴AC=AB tan B=×=5.故填5.4.如图所示,在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.解析:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=2BD=6.故填6.5.如图所示,在Rt△ABC中,∠C=90°,AB=10,cos A=,求BC的长和tan B的值.解:在Rt△ABC中,∠C=90°,AB=10,cos A===,∴AC=4,根据勾股定理,得BC==6,∴tan B===.4解直角三角形解直角三角形:一、教材作业【必做题】教材第17页习题1.5第1,2题.【选做题】教材第18页习题1.5第3,4题.二、课后作业【基础巩固】1.在直角三角形ABC中,已知∠C=90°,∠A=50°,BC=5,则AC等于()A.3sin50°B.3sin40°C.3tan50°D.3tan40°2.如图所示,已知在Rt△ABC中,∠C=90°,AC=4,tan A=,则AB的长是()A.2B.8C.2D.43.(2015·桂林中考)如图所示,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.4.要用8m长的梯子爬到4m高的墙上,则梯子与地面的夹角为度.【能力提升】5.如图所示的是一张简易活动餐桌,测得OA=OB=30cm,OC=OD=50cm,B点和O点是固定的.为了调节餐桌高矮,A点有3处固定点,分别使∠OAB为30°,45°,60°,则这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)()A.40cmB.40cmC.30cmD.30cm6.如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是.7.(2015·湖北中考)如图所示,AD是△ABC的中线,tan B=,cos C=,AC=,求:(1)BC的长;(2)sin∠ADC的值.8.张大爷家有一块三角形土地如图所示,测得∠A=30°,∠B=45°,BC=20m.请你帮助张大爷计算这块土地有多少平方米.9.如图所示,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使A,C,E成一条直线(结果保留整数)?(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°≈0.60,cos 37°≈0.80,tan37°≈0.75)【拓展探究】10.(2014·宁波中考)如图所示,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A,B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【答案与解析】1.D(解析:∵在直角三角形ABC中,∠C=90°,∠A=50°,∴∠B=90°-∠A=90°-50°=40°.∵tanB=,∴AC=BC·tan B=3tan40°.故选D.)2.C(解析:在Rt△ABC中,∵∠C=90°,∴tan A=.∵AC=4,tan A=,∴BC=AC·tan A=2,∴AB===2.故选C.)3.(解析:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tan∠BCD=tanA===.故填.)4.60(解析:要用8m长的梯子爬到4m高的墙上,梯子、地面和墙正好构成直角三角形,∴梯子与地面的夹角的正弦值为=.∵sin60°=,∴梯子与地面的夹角为60°.故填60.)5.B(解析:过点D作DE⊥AB于点E,易知∠OAB=30°时,桌面离地面最低,∴DE的长即为最低长度.∵OA=OB=30cm,OC=OD=50cm,∴AD=OA+OD=80cm.在Rt△ADE中,∵∠OAB=30°,AD=80cm,∴DE=AD=40cm.故选B.)6.(解析:过点A作AD⊥BC,∵在△ABC中,cos B=,sin C=,AC=5,∴cos B==,∴∠B=45°.∵sinC===,∴AD=3,∴在Rt△ADC中,CD==4,∴在等腰直角三角形ADB中,BD=AD=3,则△ABC的面积是×BC×AD=×(3+4)×3=.故填.)7.解:过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°.在Rt△ACE中,CE=AC·cos C=1,∴AE=CE=1.在Rt△ABE中,tan B=,即=,∴BE=3AE=3,∴BC=BE+CE=4.(2)由(1)知BC=4,∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.8.解:如图所示,过点C作CD⊥AB于D.易知CD=BD=BC·sin=AB·CD=×10(+)×10≈273.2(m2).答:这块土地约45°=20×=10,∴AD===10,∴AB=AD+BD=10(+),∴S△ABC有273.2m2.9.解:(1)若使A,C,E成一条直线,则需∠ABD是△BDE的外角,∴∠BED=∠ABD-∠D=127°-37°=90°,∴DE=BD·cos37°≈520×0.80=416(m),∴施工点E离D距离约为416m时,正好能使A,C,E成一条直线.(2)由(1)得在Rt△BED中,∠BED=90°,∵∠D=37°,∴BE=BD·sin37°≈520×0.60=312(m).∵BC=80m,∴CE=BE-BC≈312-80=232(m),∴公路段CE的长约为232m.10.解:(1)如图所示,过点C作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈10×0.42=4.2(km),AH=AC·cos∠CAB=AC·cos25°≈10×0.91=9.1(km),在Rt△BCH中,BH=CH÷tan ∠CBA≈4.2÷tan37°≈4.2÷0.75=5.6(km),∴AB=AH+BH≈9.1+5.6=14.7(km).故改直的公路AB的长约为14.7km.(2)在Rt△BCH中,BC=CH÷sin∠CBA≈4.2÷sin37°≈4.2÷0.60=7(km),则AC+BC-AB≈10+7-14.7=2.3(km).答:公路改直后比原来缩短了约2.3km.为使学生迅速掌握本节课的知识,上课开始就对解直角三角形所用到的知识点:直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系等知识点进行了复习回顾,因为合理选用这些关系是正确、迅速解直角三角形的关键.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,在处理例题时,首先,应让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合思想.本节课力求给学生更多自主探索的时间,让其在宽松和谐的氛围中学习,使他们学得更主动、更轻松,力求在探索知识的过程中培养学生探索能力、创新精神、合作精神,激发学生学习数学的积极性、主动性.同时,在学生选择解直角三角形的诸多方法的过程中,鼓励学生通过多种解法去解答.在选用合适的三角函数解决问题时,要引导学生总结出分析问题的方法,巧妙联系已知和未知之间的函数关系,选取合适的三角函数求解.再教时,增加解实际问题中直角三角形的例题的练习,因为学生对把实际问题转化成数学问题的能力还不太强.随堂练习(教材第17页)(1)c=4,∠A≈27°,∠B≈63°.(2)a=,c=,∠A=30°.(3)a=10,b=10,∠B=30°.习题1.5(教材第17页)1.(1)b=19,∠A=45°,∠B=45°.(2)c=12,∠A=30°,∠B=60°.2.(1)a=10,b=10,∠B=45°.(2)b=12,c=24,∠A=60°.3.解:tan∠ACD==,∴∠ACD≈27.5°,∠ACB=2∠ACD≈2×27.5°=55°.4.解:(1)墙高=6sin75°≈6×0.966≈5.8(m).(2)cosα=,解得α≈66°.∵50°<66°<75°,∴此时人能够安全使用这个梯子.本节课学生学习的重点是解直角三角形的方法,所以理解解直角三角形的概念是掌握解直角三角形方法的前提,而熟练运用勾股定理、两锐角互余以及锐角三角函数的定义则是解直角三角形的关键,学生要做好复习和预习工作,把握好各个元素之间的关系.此外,在没有直角三角形的图形中,通过作垂线或其他辅助线构造直角三角形也是学生要重点掌握的能力和技巧.解非直角三角形时,构造直角三角形的方法:(1)利用作高构造直角三角形,如下图所示.(2)利用勾股定理或逆定理构造直角三角形,如下图所示.(3)利用已知角构造直角三角形,如下图所示.。
中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。
二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。
2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。
3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。
4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。
解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。
下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。
一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。
一般题型为:已知一个锐角,求其它锐角的三角函数值。
例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。
解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。
二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。
一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。
例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。
解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。