数列通项公式方法大全
- 格式:doc
- 大小:716.00 KB
- 文档页数:8
数列求通项公式方法大全1.等差数列求通项公式等差数列是指数列中相邻两项之间的差值相同的数列。
设等差数列的首项为a1,公差为d,则其通项公式为an=a1+(n-1)d。
其中,n为该数列的第n项。
2.等比数列求通项公式等比数列是指数列中相邻两项之间的比值相同的数列。
设等比数列的首项为a1,公比为q,则其通项公式为an=a1*q^(n-1)。
其中,n为该数列的第n项。
3.斐波那契数列求通项公式斐波那契数列是指数列中每一项都是前两项之和的数列。
设斐波那契数列的首项为a1,第二项为a2,则其通项公式为an=a1*f1+n*f2,其中,f1和f2分别为斐波那契数列的第一项和第二项。
4.调和数列求通项公式调和数列是指数列中每一项都是它前一项加上一个固定常数的倒数。
设调和数列的首项为a1,差值为d,则其通项公式为an=1/(a1+(n-1)d)。
5.等差几何数列求通项公式等差几何数列是指数列中相邻两项之间既有等差关系又有等比关系的数列。
设等差几何数列的首项为a1,公差为d,公比为q,则其通项公式为an=a1*q^(n-1)+d*(q^(n-1)-1)/(q-1)。
6.垂直数列求通项公式垂直数列是指数列中每一项之间的垂直差别相等,且相邻两项之间的垂直和恒定的数列。
设垂直数列的首项为a1,公差为d,垂直和为S,则其通项公式为an=(2a1+(n-1)d)*S/(2+S(n-1))。
7.几何平均数列求通项公式几何平均数列是指数列中每一项为前一项与下一项的几何平均数的数列。
设几何平均数列的首项为a1,公比为q,则其通项公式为an=a1*q^((n-1)/2)。
8.调和平均数列求通项公式调和平均数列是指数列中每一项为前一项与下一项的调和平均数的数列。
设调和平均数列的首项为a1,公差为d,则其通项公式为an=2/(1/a1+(n-1)d)。
9.阿贝尔数列求通项公式阿贝尔数列是指数列中,对于任意正整数k,从第k项开始,其连续k项的和为常数的数列。
求数列通项公式的十种常用方法一、构造法构造法是最常见的求解数列通项公式的方法,是根据已知的数列的前几项逐步构造出数列的通项公式的过程,主要包括归纳法、设数据项法、递推法等。
1.归纳法归纳法是根据已知数列中前几项,把同一个数列中的每一项视为全体项的一部分,由以已知项为特例,讨论出全体项的总体规律。
2.设数据项法设数据项法是根据数列的某项与它的前面几项的关系来建立通项公式的方法。
设数据项始终指代着形式未知却已给出它跟前几项关系的某一项,而根据设数据项得出的数列形式叫做设数据项形式,其通项公式就是设数据项形式的通项公式。
3.递推法递推法是根据数列中任一项与它的后面几项的关系,从已知项不断向前推出未知项,从而推出数列的通项公式的方法。
二、方程法方程法是利用数列的某一项与此数列的其它项的关系式组成的线性方程组或者非线性方程组,求解通项公式的概念,虽然它给出的通项公式也不易求解,但是它与构造法相比,可能会在某些情况下得到更简洁的通项公式,所以它也成为了求解数列通项公式常用的方法之一。
三、数学归纳法数学归纳法是一种利用一般性原理来更加正规地寻求数列通项公式的方法,它具有比构造法更多的优点,比如说,它可以处理更加复杂的情形(例如次通项不是已知项的一个常数倍)。
四、分析法分析法是指用分析几何和代数几何方法,通过考察数列中某几个项的构成方式,来推导出整个数列的通项公式的抽象方法。
五、导数比导数比是指根据数列的前几项来推算下一项的一种技巧,以项数为横坐标,相邻两项的比值为纵坐标构成一幅函数图象,然后根据曲线图象分析可以推出数列的某种规律,从而推出数列的通项公式。
六、逆序法逆序法是反其道而行之,以数列的最后一项为起点,根据已知的数列的前几项和最后一项的运算关系,得出最后一项的前一项,以此类推,一直到起始项,从而得出数列的通项公式的一种方法。
七、特殊函数解特殊函数解法是指利用特殊函数及其组合函数构成的数列通项公式的解法,在实际问题中,特殊函数有对数函数、指数函数、三角函数等,使用这些函数可以构成一种数列,从而求出数列的通项公式。
求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。
下面将列举十种常见的方法来求解数列的通项公式。
方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。
通项公式可以直接通过公式计算得出。
方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。
可以通过求和公式推导出等差数列的通项公式。
方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。
通项公式可以直接通过公式计算得出。
方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。
可以通过求和公式推导出等比数列的通项公式。
方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。
例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。
方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。
例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。
方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。
例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。
方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。
例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。
方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。
求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。
数列求通项公式方法大全数列是由一系列按特定规律排列的数字组成的序列。
求解数列的通项公式是找出数字之间的规律,从而可以用一个公式表示出数列中第N个数字与N的关系。
这样可以方便地计算数列中的任意项,而不需要逐个计算或列出所有的项。
以下是数列求通项公式的方法大全:1. 等差数列的通项公式:等差数列是指数列中相邻两项之间的差值保持恒定的数列。
根据等差数列的性质,可以得到通项公式为:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。
2. 等比数列的通项公式:等比数列是指数列中相邻两项之间的比值保持恒定的数列。
根据等比数列的性质,可以得到通项公式为:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。
3. 斐波那契数列的通项公式:斐波那契数列是指数列中每一项都等于前两项之和的数列。
斐波那契数列的通项公式为:an = (phi^n - (-phi)^(-n)) / sqrt(5)其中,phi = (1 + sqrt(5)) / 2,an表示第n项。
4. 幂次数列的通项公式:幂次数列是指数列中每一项都是某个常数的指数函数。
幂次数列的通项公式为:an = a1 * (b^(n - 1))其中,an表示第n项,a1表示首项,b表示底数,n表示项数。
请注意,以上是一些常见的数列类型和其通项公式。
但实际上,还存在其他更复杂的数列类型,可能需要使用其他方法求解通项公式。
另外,在某些特定的数列中,可能无法找到通项公式,只能通过递推关系计算每一项。
举例说明:以等差数列为例,假设有一个等差数列的首项为2,公差为3。
现在需要求解数列中第10项的值。
根据等差数列的通项公式,可以得到:a10 = 2 + (10 - 1) * 3= 2 + 27= 29在这个例子中,我们利用等差数列的通项公式直接计算出了第10项的值。
如果没有通项公式,我们可能需要逐个计算前10项,而通项公式可以极大地简化计算过程。
求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
求数列通项公式的8种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
求数列通项公式的13种方法在数学中,数列是一组按照一定规律依次排列的数字集合。
求数列的通项公式是对该数列的每一项都能找到一个通用的公式来描述。
这篇文档将介绍13种求解数列通项公式的方法。
1. 模式观察法通过观察数列中数字的变化模式,尝试找出递推关系,并通过推测整理出数列的通项公式。
2. 公式转化法通过对数列进行一系列数学运算,如加减乘除、取幂次等,将数列转化成已知的常见数列,再推导出通项公式。
3. 递推法通过已知的前几项数值,推导出当前项和下一项之间的关系,进而获得数列的通项公式。
4. 二项展开法借助二项展开公式,将数列展开成多项式形式,从而得到数列的通项公式。
5. 求解差分方程法将数列转化为差分方程,通过求解差分方程得到数列的通项公式。
6. 系数法利用多项式系数之间的关系,通过观察系数之间的规律,推导出数列的通项公式。
7. 利用等差数列和等比数列性质对于满足等差数列或等比数列性质的部分数列,可以直接应用等差数列或等比数列的通项公式。
8. 利用级数展开对于部分数列,可以将其展开成级数形式,从而得到数列的通项公式。
9. 奇偶性分析法通过分析数列中数字的奇偶性规律,推导出数列的通项公式。
10. 利用生成函数通过构造数列的生成函数,将数列转化成幂级数形式,再求解得到数列的通项公式。
11. 递归关系法对于一些特殊的数列,可以通过递归关系推导出数列的通项公式。
12. 利用数学归纳法利用数学归纳法证明数列的通项公式的正确性。
13. 利用数值计算方法拟合通过计算机软件等数值计算方法,根据数列的前几项数值进行拟合,得到数列的通项公式。
以上是13种常用的求解数列通项公式的方法。
根据具体的数列情况和求解需要,选择合适的方法进行计算和推导。
> 注意:此文档中的内容仅供参考。
在确定数列的通项公式时,请务必进行独立决策,不要直接引用未经验证的内容。
---以上是对「求数列通项公式的13种方法」的介绍文档。
求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。
在下面,我将介绍十种常用的方法来求解数列的通项公式。
方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。
常见的递推公式有线性递推和非线性递推两种形式。
方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。
常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。
方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。
常见的指数递推法包括指数增长、指数递减和二阶指数递增等。
方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。
通过构造级数和求导积分等操作,可以得到数列的通项公式。
方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。
常见的生成函数包括普通生成函数和指数型生成函数。
方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。
常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。
方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。
通过构造矩阵和矩阵的运算,可以得到数列的通项公式。
方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。
方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。
常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。
方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
变式:已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
(3)累乘法例3已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。
变式:已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
(4)待定系数法例4已知数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式。
解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}nn a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+。
评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n nn n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}nn a -的通项公式,最后再求出数列{}n a 的通项公式。
变式:①已知数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
②已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。
(5)对数变换法例5已知数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式。
解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,。
在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++ ⑩ 设1lg (1)5(lg )n n a x n y a xn y ++++=++○11 将⑩式代入○11式,得5lg lg3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,则lg35lg 25x x x y y +=⎧⎨++=⎩,故lg34lg3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩代入○11式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++ ○12由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及○12式, 得lg3lg3lg 2lg 04164n a n +++≠, 则1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯。
评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式。
(6)数学归纳法例6已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式。
解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181a a a a a a +⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论。
(1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立。
(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 1228(1)(21)(23)k k k a a k k ++=+++222222222222222222222(21)18(1)(21)(21)(23)[(21)1](23)8(1)(21)(23)(21)(23)(23)8(1)(21)(23)(21)(23)(21)(21)(23)(23)1(23)[2(1)1]1[2(1)1]k k k k k k k k k k k k k k k k k k k k k k k k k +-+=+++++-+++=++++-+++=++++-+=+++-=+++-=++2由此可知,当1n k =+时等式也成立。
根据(1),(2)可知,等式对任何*n N ∈都成立。
评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。
(7)换元法例7已知数列{}n a满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式。
解:令n b =21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=++得 221111(1)[14(1)]241624n n n b b b +-=+-+ 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-, 所以{3}n b -是以13332b -==为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+21()32n -=+,得2111()()3423n n n a =++。