(物理)物理动量定理专项含解析
- 格式:doc
- 大小:495.00 KB
- 文档页数:10
高二物理动量定理试题答案及解析1.对下列物理现象的解释,正确的是()A.击钉时,不用橡皮锤仅仅是因为橡皮锤太轻B.跳远时,在沙坑里填沙,是为了减小冲量C.易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力D.在车内推车推不动,是因为合外力冲量为零【答案】 CD【解析】试题分析: 用橡皮锤敲打钉子将其钉进木头里,力的作用时间长,作用力小,所以击钉时,不用橡皮锤,故A错误;跳远运动员跳在沙坑里,延长了力的作用时间,减小作用力,不是减少冲量,故B错误;搬运玻璃等易碎物品时,在箱子里放些刨花、泡沫塑料等,延长了力的作用时间,减小作用力;故C正确;在车内推车推不动,因为车受合外力为零,所以合外力冲量为零,故D正确。
【考点】动量定理2.如图所示,两个完全相同的小球A、B用等长的细线悬于O点.线长L.若将A由图示位置静止释放,则B球被碰后第一次速度为零时的高度不可能是 ( )A.L/2 B.L/4 C.L/8 D.L/10【答案】D【解析】小球A从释放到最低点,由动能定理可知:,解得:.若A与B发生完全弹性碰撞,由能量守恒定律和动量守恒定律可知两者交换速度,即,B上升过程中由动能定理可知:,解得:;若A与B发生完全非弹性碰撞即AB粘在一起,由动量守恒定律可知:,解得:,在AB上升过程中,由动能定理可知:,解得:,所以B球上升的高度,故选项D错误.【考点】考查动量守恒定律和动能定理在碰撞中的应用,关键在于根据两球碰撞的可能情况解出高度的范围.3.如图所示,质量为2kg的物体A静止在光滑的水平面上,与水平方向成30º角的恒力F=3N作用于该物体,历时10s,则:()A.力的冲量大小为零B.力F对物体的冲量大小为30NsC.力F对物体的冲量大小为15NsD.物体动量的变化量为15Ns【答案】BD【解析】根据公式可得力F对物体的冲量大小为30Ns,AC错误,B正确;物体的动量变化为,故D正确故选BD【考点】考查了动量定理的应用点评:冲量就是力对物体的大小和时间的乘积,与物体运动方向有关。
【物理】物理动量定理练习题及答案一、高考物理精讲专题动量定理1.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。
已知运动员与网接触的时间为1.2s,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。
(g取10m/s2)【答案】1.5xl03N;方向向上【解析】【详解】设运动员从人处下落,刚触网的速度为匕=,2ghi=8m/s运动员反弹到达高度生,,网时速度为v2=q2gh2=10m/s在接触网的过程中,运动员受到向上的弹力F和向下的重力mg,设向上方向为正,由动量定理有(F-)得F=1.5xlO3N方向向上2. 一质量为0.5kg的小物块放在水平地面上的八点,距离八点5m的位置B处是一面墙,如图所示,物块以vo=9m/s的初速度从人点沿方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.为质点)放在的木板左端,物块与木板间的动摩擦因数〃=0.4。
质量m°=0.005kg的子弹以速度%=300m/s沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取3B⑴求物块与地面间的动摩擦因数〃;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)〃=0.32(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:代入数据解得:户032.(2)规定向左为正方向,对碰墙的过程运用动量定理得:Fat=mv—mv,代入数据解得:F=130N.3.如图所示,质量M=l.Okg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视10m/s2。
求:(1)物块的最大速度VI:(2)木板的最大速度(3)物块在木板上滑动的时间t%m【答案】(l)3m/s;(2)lm/s:(3)0.5s o【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:movo=(m+m。
(物理)物理动量定理练习题20篇及解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s【解析】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s3.一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的34.求在碰撞过程中斜面对小球的冲量的大小.【答案】72mv0【解析】【详解】小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知v的方向与竖直线的夹角为30°,且水平分量仍为v0,由此得v=2v0.碰撞过程中,小球速度由v变为反向的34v,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方向,则斜面对小球的冲量为I=m3()4v-m·(-v)解得I=72mv0.4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。
高中物理专题汇编物理动量定理(一)及解析一、高考物理精讲专题动量定理1.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;2.质量为0.2kg的小球竖直向下以6m/s的速度落至水平地面,再以4m/s的速度反向弹回,取竖直向上为正方向,(1)求小球与地面碰撞前后的动量变化;(2)若小球与地面的作用时间为0.2s,则小球受到地面的平均作用力大小?(取g=10m/s2).【答案】(1)2kg•m/s;方向竖直向上;(2)12N;方向竖直向上;【解析】【分析】【详解】(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s小球与地面碰撞后的动量为p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s小球与地面碰撞前后动量的变化量为Δp=p2-p1=2 kg·m/s(2)由动量定理得(F-mg)Δt=Δp所以F=pt∆∆+mg=20.2N+0.2×10N=12N,方向竖直向上.3.如图所示,两个小球A和B质量分别是m A=2.0kg,m B=1.6kg,球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动,假设两球相距L≤18m时存在着恒定的斥力F,L>18m时无相互作用力.当两球相距最近时,它们间的距离为d=2m,此时球B的速度是4m/s.求:(1)球B 的初速度大小; (2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s= ;(2) 2.25F N =;(3) 3.56t s =【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
物理动量守恒定律专题练习(及答案)含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)dr r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N2F +==故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得 32639F x =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
高二物理动量定理试题答案及解析1.如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以A.减小球的动量的变化量B.减小球对手作用力的冲量C.减小球的动量变化率D.延长接球过程的时间来减小动量的变化量【答案】C【解析】由动量定理,而接球时先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前为了延长时间,减小受力,即,也就是减小了球的动量变化率,故C正确。
【考点】动量定理2.在光滑的水平桌面上有等大的质量分别为M="0.6" kg,m="0.2" kg的两个小球,中间夹着一个被压缩的具有E="10.8" J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然p释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R="0.425" m的竖直放置的光滑半圆形轨道,如图所示.g取10 m/s2.则下列说法正确的是:A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4 N·sB.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8 N·s【答案】AD【解析】据题意,由动量守恒定律可知:,即,又据能量守恒定律有:,求得,则弹簧对小球冲量为:,故选项B错误而选项D正确;球从A到B速度为:,计算得到:,则从A到B过程合外力冲量为:,故选项A正确;半径越大,飞行时间越长,而小球的速度越小,水平距离不一定越小,故选项C错误。
【考点】本题考查动量守恒定律、能量守恒定律和动量定理。
距离的B处放有一3.(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:(1)释放小物体,第一次与滑板A壁碰前小物体的速度v多大?1(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?【答案】(1) (2) (3)【解析】(1)对物体,根据动能定理,有,得′;滑板的速度为v,(2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1则.若,则,因为,不符合实际,故应取,则.(3)在物体第一次与A壁碰后到第二次与A壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.∴即.对整个过程运用动能定理得;电场力做功.【考点】考查动量守恒定律和动能定理在碰撞问题中的综合应用.4.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹。
动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。
高三物理动量定理试题答案及解析1.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务。
某时刻乙以大小为v0=2m/s的速度远离空间站向乙“飘”去,甲、乙和空间站在同一直线上且可当成质点。
甲和他的装备总质量共为M1=90kg,乙和他的装备总质量共为M2=135kg,为了避免直接相撞,乙从自己的装备中取出一质量为m=45kg的物体A推向甲,甲迅速接住后即不再松开,此后甲乙两宇航员在空间站外做相对距离不变通向运动,一线以后安全“飘”入太空舱。
(设甲乙距离太空站足够远,本题中的速度均指相对空间站的速度)①求乙要以多大的速度(相对空间站)将物体A推出②设甲与物体A作用时间为,求甲与A的相互作用力F的大小【答案】①②【解析】①甲、乙两宇航员在空间站外做相对距离不变的同向运动,说明甲乙的速度相等,以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的速度方向为正方向,由动量守恒定律得:,以乙和A组成的系统为研究对象,以乙的速度方向为正方向,由动量守恒定律得:,解得:;②以甲为研究对象,以乙的初速度方向为正方向,由动量定理得:,解得:;【考点】考查了动量守恒定律,动量定理2.如图所示,在光滑的水平面上宽度为L的区域内,有一竖直向下的匀强磁场.现有一个边长为向右滑动,穿过磁场后速度减为v,a (a<L)的正方形闭合线圈以垂直于磁场边界的初速度v那么当线圈完全处于磁场中时,其速度大小()A.大于B.等于C.小于D.以上均有可能【答案】B【解析】对线框进入或穿出磁场的过程,由动量定理可知,即,解得线框的速度变化量为;同时由可知,进入和穿出磁场过程中,因磁通量的变化量相等,故电荷量相等,由上可以看出,进入和穿出磁场过程中的速度变化量是相等的,即,解得,所以只有选项B正确;【考点】法拉第电磁感应定律3.如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B 质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.【答案】【解析】设小球的质量为m,运动到最低点与物块碰撞前的速度大小为v1,取小球运动到最低点重力势能为零,根据机械能守恒定律,有得v设碰撞后小球反弹的速度大小为v1′,同理有②得设碰后物块的速度大小为v2,取水平向右为正方向,根据动量守恒定律,有mv1=-mv1′+5mv2③得④物块在水平面上滑行所受摩擦力的大小F=5μmg⑤设物块在水平面上滑行的时间为t,根据动量定理,有-Ft=0-5mv2⑥得【考点】动量定理、动量守恒定律及其应用4.(20分)下图是放置在竖直平面内游戏滑轨的模拟装置的示意图。
高中物理动量定理解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小.【答案】(1)C 与A 碰撞前的速度大小是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】【分析】【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负. 考点:动量守恒定律【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ;v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;4.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。
高考物理复习冲刺压轴题专项突破—动量定理(含解析)一、单选题1.如图所示,在光滑的水平面上有两物体A 、B ,它们的质量均为m.在物体B 上固定一个轻弹簧处于静止状态.物体A 以速度v 0沿水平方向向右运动,通过弹簧与物体B 发生作用.下列说法正确的是A.当弹簧获得的弹性势能最大时,物体A 的速度为零B.当弹簧获得的弹性势能最大时,物体B 的速度为零C.在弹簧的弹性势能逐渐增大的过程中,弹簧对物体B 所做的功为2012mv D.在弹簧的弹性势能逐渐增大的过程中,弹簧对物体A 和物体B 的冲量大小相等,方向相反【答案】D【解析】AB.由题意可知,物体A 在压缩弹簧时,做减速运动,物体B 受到弹簧的弹力作用做加速运动,某时刻二者的速度相等,此时弹簧的压缩量最大,弹性势能最大,故在弹簧被压缩并获得的弹性势能最大时,物体A 、B 的速度并不为零,选项AB 错误;C.在弹簧的弹性势能逐渐增大的过程中,物体A 的速度并不为零,物体B 的速度也并是最大值v 0,故弹簧对物体B 所做的功不是2012mv ,选项C 错误;D.在弹簧的弹性势能逐渐增大的过程中,弹簧对物体A 和物体B 的作用力大小相等、方向相反,故二力的冲量大小相等,方向相反,选项D 正确;故选D 。
2.质量为m =0.10kg 的小钢球以v 0=10m/s 的水平速度抛出,下落h =5.0m 时撞击一钢板,如图所示,碰撞后速度恰好反向,且速度大小不变,已知小钢球与钢板作用时间极短,取g =10m/s 2,则()A.钢板与水平面的夹角θ=30°B.小钢球与钢板碰撞前后的动量变化量大小为C.小钢球从水平抛出到刚要撞击钢板的过程中重力的冲量大小为2N·sD.小钢球刚要撞击钢板时小球动量的大小为2kg·m/s【答案】B 【解析】根据平抛运动公式212h gt =y gt=v 解得1st =10m/sy v =A.因为tan 1yx v v α==有几何关系可知,钢板与水平面的夹角为45θ=︒故A 错误;B.小钢球与钢板碰撞时的速度大小为t v ==小钢球与钢板碰撞前后的动量变化量大小为t 2m/sp mv ∆==⋅故B 正确;C.小钢球从水平抛出到刚要撞击钢板的过程中重力的冲量大小为1N sI Gt ==⋅故C 错误;D.小钢球刚要撞击钢板时小球动量的大小为t m/sp mv ==⋅故D 错误。
高考物理动量定理常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。
现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g 。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
请通过计算,说明你的观点。
【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L -当2HL =时小球抛的最远3.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力多大?(2)考虑铁锤的重力,铁锤钉钉子的平均作用力又是多大?【答案】(1)200N,方向竖直向下;(2)205N,方向竖直向下【解析】【详解】(1)不计铁锤受的重力时,设铁锤受到钉子竖直向上的平均作用力为1F,取铁锤的速度v的方向为正方向,以铁锤为研究对象,由动量定理得10F t mv-=-则10.5 4.0N200N0.01mvFt ⨯===由牛顿第三定律可知,铁锤钉钉子的平均作用力1F'的大小也为200N,方向竖直向下。
高中物理动量定理真题汇编(含答案)一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。
(1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。
(2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。
请运用所学物理知识分析说明这样做的道理。
【答案】详情见解析 【解析】 【详解】(1)根据牛顿第二定律F ma =,加速度定义0i v v a t-=解得 0=-i Ft mv mv即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理0=-i Ft mv mv在动量变化相等的情况下,作用时间越长,作用力越小。
充满气体的塑料袋富有弹性,在碰撞时,容易发生形变,延缓作用过程,延长作用时间,减小作用力,从而能更好的保护快递物品。
3.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 【答案】(1)0.32μ=(2)130F N =(3)9W J = 【解析】(1)由动能定理,有:2201122mgs mv mv μ-=-可得0.32μ=. (2)由动量定理,有'F t mv mv ∆=-可得130F N =. (3)'2192W mv J ==. 【考点定位】本题考查动能定理、动量定理、做功等知识4.如图所示,真空中有平行正对金属板A 、B ,它们分别接在输出电压恒为U =91V 的电源两端,金属板长L =10cm 、两金属板间的距离d =3.2cm ,A 、B 两板间的电场可以视为匀强电场。