七年级数学下册第九章《三角形》9.2三角形的内角和外角三角形的内角和问题素材(新版)冀教版
- 格式:doc
- 大小:15.50 KB
- 文档页数:2
冀教版数学七年级下册9.2《三角形的内角和外角》教学设计2一. 教材分析冀教版数学七年级下册9.2《三角形的内角和外角》是学生在掌握了三角形的基本概念、性质的基础上,进一步研究三角形的内角和外角的性质。
本节内容通过探究三角形的内角和外角,培养学生的观察、思考、归纳能力,为后续学习三角形的不等式、多变形几何等知识打下基础。
本节课的内容在整体教材中起到承上启下的作用,既是对前面知识点的巩固,又是为后面知识的学习做铺垫。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念、性质,对三角形有了初步的认识。
但学生在学习过程中可能对内角和外角的概念、性质理解不够深入,对内角和外角之间的联系和转化还不够明确。
因此,在教学过程中,教师需要针对学生的实际情况,采用适当的教学方法,引导学生深入理解三角形的内角和外角的性质。
三. 教学目标1.知识与技能:使学生掌握三角形的内角和外角的性质,能够运用内角和外角的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的观察能力、动手能力、归纳能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极向上的学习态度。
四. 教学重难点1.重点:三角形的内角和外角的性质。
2.难点:内角和外角之间的联系和转化。
五. 教学方法1.情境教学法:通过生活实例引入内角和外角的概念,让学生在实际情境中感受数学与生活的联系。
2.启发式教学法:在教学过程中,教师引导学生观察、思考、交流,激发学生的学习兴趣,培养学生自主探究的能力。
3.小组合作学习:通过小组讨论、合作探究,培养学生的团队协作能力,提高学习效果。
六. 教学准备1.教学课件:制作课件,展示三角形的内角和外角的性质。
2.教学素材:准备一些三角形图形,用于引导学生观察、操作。
3.教学视频:寻找相关教学视频,帮助学生更好地理解内角和外角的性质。
七. 教学过程1.导入(5分钟)教师通过生活实例引入三角形内角和外角的概念,激发学生的学习兴趣。
初中数学什么是三角形的内角和外角初中数学中,三角形的内角和外角是几何学中重要的概念。
它们描述了三角形内部和外部角度的关系。
本文将详细介绍三角形的内角和外角的定义、性质和计算方法。
一、三角形的内角三角形的内角是指三角形内部的角度。
对于任意一个三角形ABC,它有三个内角,分别为∠A、∠B和∠C。
三角形的内角性质:1. 内角和等于180度:三角形的三个内角的和等于180度,即∠A + ∠B + ∠C = 180°。
2. 锐角三角形:如果三角形的三个内角都小于90度,则称该三角形为锐角三角形。
3. 直角三角形:如果三角形的一个内角等于90度,则称该三角形为直角三角形。
4. 钝角三角形:如果三角形的一个内角大于90度,则称该三角形为钝角三角形。
二、三角形的外角三角形的外角是指一个三角形的某一个内角的补角。
对于三角形ABC,可以通过延长一条边来形成一个外角。
三角形的外角性质:1. 外角等于两个不相邻内角之和:对于三角形ABC,外角∠D等于不相邻的两个内角之和,即∠D = ∠B + ∠C。
2. 三角形的三个外角的和等于360度:三角形的三个外角的和等于360度,即∠D + ∠E + ∠F = 360°。
三、三角形内角和外角的计算方法1. 已知两个内角求第三个内角:如果已知三角形的两个内角,可以通过内角和等于180度的性质求得第三个内角。
2. 已知一个内角和一个外角求第三个内角:如果已知三角形的一个内角和一个外角,可以通过外角等于两个不相邻内角之和的性质求得第三个内角。
3. 已知一个内角和一个外角求其他两个外角:如果已知三角形的一个内角和一个外角,可以通过外角等于两个不相邻内角之和的性质求得其他两个外角。
总结:本文详细介绍了初中数学中三角形的内角和外角的定义、性质和计算方法。
三角形的内角和为180度,可以用于判断三角形的性质和分类。
三角形的外角是某一个内角的补角,可以用于计算三角形其他角度的信息。
9.2三角形的内角和外角—内角衡水市安平县北郭村农业中学姜俊娜教学目标:1、掌握三角形内角和定理,并初步学会利用辅助线证明。
2、能应用三角形内角和定理解决问题。
3、参与课堂活动,逐步提高动手操作能力,培养合作解决数学问题的意识。
4、通过对几何问题的演绎推理,体会证明的必要性,培养学生的逻辑推理能力。
重点:三角形的内角和定理。
难点:三角形内角和定理的推理过程。
教学方法:1、让学生从丰富的剪拼活动中发展思维的灵活性、创造性,为下一环节“说理”证明做好准备,使学生体会到数学来源于实践,同时对新知识的学习有所期待。
2、利用信息技术手段,在课堂中添加有趣的课堂活动,激发学生的兴趣。
3、实验法、谈论法。
教学流程:一、创设问题情景,导入新课教师:在小学,我们已经学习三角形的内角和了,那么,三角形的内角和是多少呢?学生:180°。
教师:设置背景为“夏季运动会,看谁能第一个到达终点”的热身PK游戏引入本节课题,游戏的内容设为判断对错:1、三角形的内角和是180°。
2、三角形越大,它的内角和就越大。
3、钝角三角形的内角和比锐角三角形的大。
4、一个直角三角形中可以有两个直角。
5、把一个三角形纸片剪成两个小三角形,每个小三角形的内角和都等于180°。
教师:多媒体展示学习目标,并让我们打开回忆大门,在小学是用什么方法来验证的呢?借助多媒体让学生用量角器量一量、看视频折一折、动手剪一剪再拼一拼进行回顾验证。
【设计意图】从学过的知识引入符合学生的认知规律,且小学已知三角形三个内角和是180°,热身PK游戏不仅复习了旧知,还激发了学生对本节课探究的强烈兴趣。
二、探究新知(一)、学习探究一教师:在刚才剪拼的过程中,同学们给出了自己的方法,一起再回忆一下(屏幕保留刚才剪拼的图形),要证三角形内角和是180°,观察原三角形,三个内角间没有什么关系,但是观察拼后的图形发现,三个内角拼成了什么样子的角呢?从这种剪拼过程中,你能得到什么启示?其中哪两条直线是平行的?学生:与180°有关的角是平角或两条平行线间的同旁内角,所以,把三个内角拼成了平角或两条平行线间的同旁内角,在这种剪拼过程中平移角时出现了平行线。
章节测试题1.【答题】如图所示,在△ABC中,E,F分别在AB,AC上,则下列各式不能成立的是()A. ∠BOC=∠2+∠6+∠A;B. ∠2=∠5-∠A;C. ∠5=∠1+∠4;D. ∠1=∠ABC+∠4【答案】C【分析】根据三角形外角的性质解答即可.【解答】A选项:∵∠5=∠A+∠2,∠BOC=∠5+∠6,∴∠BOC=∠A+∠2+∠6,故本选项错误;B选项:∵∠5=∠A+∠2,∴∠2=∠5-∠A,故本选项错误;C选项:∵∠5=∠2+∠A,∠1>∠2,∴∠5<∠1+∠A,故本选项正确;D选项:∠1=∠ABC+∠4,故本选项错误;选C.2.【答题】已知等腰三角形的一个外角是120°,则它是()A. 等腰直角三角形;B. 一般的等腰三角形;C. 等边三角形;D. 等腰钝角三角形【分析】根据三角形外角的性质解答即可.【解答】①120°的角为顶角的外角,则顶角为180°-120°=60°,底角为(180°-60°)÷2=60°,三角形为等边三角形;②120°的角为底角的外角,则底角为180°-120°=60°,顶角为180°-60°×2=60°,三角形为等边三角形.选C.3.【答题】如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为()A. 30°B. 60°C. 90°D. 120°【答案】C【分析】根据三角形外角的性质解答即可.【解答】如图,∠1+∠B+∠A=180°,∵∠1是△ABC的一个外角,∴∠1=∠A+∠B,∴2∠1=180°,选C.4.【答题】如图,图中x的值为()A. 50°B. 60°C. 70°D. 75°【答案】B【分析】根据三角形外角的性质解答即可.【解答】由外角的性质得,x+70=(x+10)+x解之得x=60°.选B.5.【答题】一副三角板按如图所示的方式叠放在一起,则∠α的度数是()A. 120°B. 135°C. 150°D. 165°【分析】根据三角形外角的性质解答即可.【解答】∠ODE=∠A+∠B=90°+30°=120°,∠α=∠ODE+∠E=120°+45°=165°.选D.6.【答题】如图,已知△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是()A. ∠DCE>∠ADBB. ∠ADB>∠DBCC. ∠ADB>∠ACBD. ∠ADB>∠DEC【答案】A【分析】根据三角形外角的性质解答即可.【解答】解:∵∠ADB是△BDC的外角,∴∠ADB>∠DBC,∠ADB>∠ACB,故B、C正确;∵∠ACB是△CDE的外角,∴∠ACB>∠DEC,∵∠ADB>∠ACB,∴∠ADB>∠DEC,故D正确;∠DCE与∠ADB的大小无法比较.选A.方法总结:三角形的外角大于与之不相邻的任何一个内角.7.【答题】如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A. 40°B. 35°C. 30°D. 25°【答案】A【分析】根据三角形外角的性质解答即可.【解答】∵∠ACB=90°,∠A=25°,∴∠B=180°-90°-25°=65°,∴∠DB′C=65°,∵∠DB′C=∠A+∠ADB′,∴∠ADB′=∠DB′C-∠A=65-25=40°.选A.8.【答题】如图,图中x的值是()A. 30B. 40C. 50D. 60【答案】D【分析】根据三角形外角的性质解答即可.【解答】由三角形外角的性质可得:x+70=x+x+10,解得x=60.选D.9.【答题】如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线CA2是∠A1CD的角平分线,BA3是A2BD∠的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2013为()A. B. C. D.【答案】D【分析】根据三角形外角的性质和角的平分线解答即可.【解答】∵BA1和CA1分别是△ABC的内角平分线和外角平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴∠A1BC+∠A1=(∠A+∠ABC)=∠A+∠ABC=∠A+∠A1BC,∴∠A1=∠A;,同理可得:∠A2=∠A1=,∠A3=∠A2=,,∠A n=∠A n-1=,∴∠A2013=.选D.10.【答题】如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A. 360°B. 250°C. 180°D. 140°【答案】B【分析】根据三角形外角的性质解答即可.【解答】如图,∵∠C=70°,∴∠CEF+∠CFE=180°-∠C=110°,又∵∠1+∠CEF=180°,∠2+∠CFE=180°,∴∠1+∠2=180°+180°-(∠CEF+∠CFE)=360°-110°=250°.选B.11.【答题】如图,∥,下列式子中,等于 180°的是()A. α+β+γB. α+β-γC. -α+β+γD. α-β+γ【答案】B【分析】根据三角形外角的性质和平行线的性质解答即可.【解答】解:如图,∵∥,∴∠α=∠1,.∵∠1=∠2+∠γ,∴∠2=∠1-∠γ=∠α-∠γ,∵∠2+∠β=180°,∴∠α-∠γ+∠β=180°.选B.12.【答题】如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数是()A. 30°B. 32.5°C. 35°D. 37.5°【答案】C【分析】根据三角形外角的性质和平行线的性质解答即可.【解答】解:设AB、CE交于点O.∵AB∥CD,∠C=65°,∴∠EOB=∠C=65°,∵∠E=30°,∴∠A=∠EOB-∠E=35°,选C.13.【答题】如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A. 120°B. 115°C. 110°D. 105°【答案】C【分析】根据三角形外角的性质解答即可.【解答】解:因为∠A=27°,∠C=38°,所以∠AEB=∠A+∠C=65°,又因∠B=45°,所以∠DFE=∠B+∠AEB=110°,选C.14.【答题】如图是一副三角尺叠放的示意图,则∠α的度数为()A. 75°B. 45°C. 30°D. 15°【答案】A【分析】根据三角形外角的性质解答即可.【解答】∵∠ACB=90°,∠1=45°,∴∠2=90°﹣45°=45°,∴∠α=45°+30°=75°,选A.15.【答题】若三角形的一个外角等于和它相邻的内角,则这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 都有可能【答案】B【分析】根据三角形外角的性质解答即可.【解答】解:∵三角形的一个外角等于和它相邻的内角,这个外角和它相邻的内角和为180°,∴这个外角和这个内角均为90°,∴这个三角形是直角三角形.选B.16.【答题】如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A. 115°B. 120°C. 125°D. 130°【答案】D【分析】根据三角形外角的性质解答即可.【解答】∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°-50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.选D.17.【答题】如图,∠1,∠2,∠3,∠4的关系为()A. ∠1+∠2=∠4-∠3B. ∠1+∠2=∠3+∠4C. ∠1-∠2=∠4-∠3D. ∠1-∠2=∠3-∠4【答案】A【分析】根据三角形外角的性质解答即可.【解答】如下图,由三角形外角的性质可得:∠5=∠2+∠3,∠4=∠1+∠5,∴∠4=∠1+∠2+∠3,∠1+∠2=∠4-∠3.选A.18.【答题】若三角形的三个外角的度数之比为2∶3∶4,则与之对应的三个内角的度数之比为()A. 4∶3∶2B. 3∶2∶4C. 5∶3∶1D. 3∶1∶5【答案】C【分析】根据三角形外角的性质解答即可.【解答】∵三角形三个外角的度数之比为为2:3:4,而这三个外角的和为360°,∴这三个外角分别为:80°、120°、160°,∴与这三个外角相邻的内角度数分别为:100°、60°、20°,∴对应的三个内角的度数之比为:100:60:20=5:3:1.选C.19.【答题】如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为()A. 110°B. 70°C. 130°D. 不能确定【答案】A【分析】先根据∠1=∠2得出∠2+∠BCP=∠ACB,再由三角形内角和定理即可得出结论.【解答】解:∵在△ABC中,∠ACB=70°,∠1=∠2,∴∠2+∠BCP=∠ACB=70°,∴∠BPC=180°-∠2-∠BCP=180°-70°=110°.故选:C.20.【答题】如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC. 其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据三角形外角的性质和角的平分线解答即可.【解答】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确。
三角形的内角和与外角和总结三角形是几何学中的基本图形之一,研究三角形的性质对我们理解和应用几何学具有重要的作用。
在三角形中,我们经常遇到两个重要的概念,即内角和与外角和。
本文将对三角形的内角和与外角和进行总结和探讨。
一、三角形的内角和在任意一个三角形中,三个内角的和是多少呢?让我们来一起探寻。
假设我们有一个任意三角形,其中的三个内角分别为A、B、C。
我们可以通过以下步骤来计算这三个内角的和:1. 将三个内角的度数相加:A + B + C = S其中,S表示三角形内角和。
顺着这个思路,我们可以得出如下结论:结论一:三角形的内角和等于180度。
对于任意一个三角形,无论这个三角形的形状和大小如何,其内角和始终为180度。
这个结论在几何学中被广泛应用,对于求解三角形相关性质问题具有重要意义。
二、三角形的外角和接下来,让我们一起来研究三角形的外角,以及它们的和是多少。
在一个三角形中,三个内角的补角被称为外角。
我们记三角形的外角为:α、β、γ。
我们可以通过以下步骤来计算这三个外角的和:1. 每个外角等于它相应内角的补角,即α = 180° - A,β = 180° - B,γ = 180° - C。
2. 将三个外角的度数相加:α + β + γ = T其中,T表示三角形的外角和。
根据这个过程,我们可以得出如下结论:结论二:三角形的外角和等于360度。
对于任意一个三角形,无论其形状和大小如何,其外角和始终为360度。
这个结论在解决三角形相关问题时具有重要意义,比如在实际测量和建筑设计中的应用。
结论总结:通过上述分析,我们可以得出如下总结:1. 三角形的内角和等于180度,无论其形状和大小如何。
2. 三角形的外角和等于360度,无论其形状和大小如何。
这两个结论是我们理解和应用三角形性质的基础,对于解决几何学中的相关问题具有重要意义。
结尾:综上所述,三角形的内角和与外角和是几何学中的重要概念。
《三角形的内角和外角》教案教学目标1、证明三角形内角和定理,并能简单应用这些结论.2、理解三角形的外角;3、掌握三角形外角的性质,能利用三角形外角的性质解决问题.教学重点知道作辅助线证明三角形内角和定理,并能简单应用这些结论.掌握三角形的外角和三角形外角的性质.教学难点掌握由猜想到证明的过程,理解三角形的外角.教学设计三角形外角和定理一、情境创设1、三角形三个内角的和等于多少度?2.你是如何知道的?这个结论正确吗?二、探索活动:1.如何证明三角形内角和等于180°?2.你有没有办法在平面图形中把三角形的三个内角“搬”到一起?分析:添加辅助线,实质是构造新图形,由于学生没有接触过辅助线,实际教学中学生可能采用的方法有:(1)拼图中把一个角移动位置的活动,通过画一个角等于这个角来实现.(2)从已有的对图形的平移、旋转的认识出发,通过角的平移、旋转把三角形的3个内角“搬”到一起.3.你能想办法把∠A、∠B“搬”到相应的位置上吗?三、三角形内角和的证明证明,如图,延长BC至D,以C为顶点,CD为一边做∠B=∠2.则CE∥BA.(同位角相等,两直线平行)∴∠A=∠1.(两直线平行,内错角相等)∵B,C,D在一条直线上,(所作)又∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=∠1+∠2+∠ACB=180°.通过证明我们现在对三角形内角和等于180°不再产生怀疑了,于是得到:三角形内角和定理:三角形三个内角的和等于180°.四、课堂练习1.如果三角形的三个内角都相等,那么每一个角的度数等于_______.2.在△ABC中,若∠A=65°,∠B=∠C,则∠B=_______.3.在△ABC中,若∠C=90°,∠A=30°,则∠B=_______.4.在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则∠A=_______,∠B=_______,∠C=__ _____.三角形外角五、导入新课如图,△ABC的三个内角是什么?它们有什么关系?是∠A、∠B、∠C,它们的和是180°.若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?六、三角形外角的概念∠ACD叫做△ABC的外角.也就是三角形一边与另一边的延长线组成的角,叫做三角形的外角.想一想,三角形的外角共有几个?共有六个.注意:每个顶点处有两个外角,它们是对顶角.研究与三角形外角有关的问题时,通常每个顶点处取一个外角.七、三角形外角的性质思考:如图,三角形ABC中,∠A=70°,∠B=60°.∠ACD是三角形ABC的一个外角.能由∠A,∠B求出∠ACD吗?如果能,∠ACD与∠A,∠B有什么关系?。
初中数学知识归纳三角形的内角和外角初中数学知识归纳:三角形的内角和外角三角形是中学数学中重要的几何概念之一,研究三角形的性质对于理解几何学和解决实际问题都具有重要意义。
其中,三角形的内角和外角是我们学习三角形的基础知识之一。
本文将对三角形的内角和外角进行详细的归纳和讨论。
一、三角形的内角和外角定义及特点三角形的内角是指三角形内部的角度,由三条边所夹的角度构成。
三角形的内角和为180度,即三个内角之和等于180度。
这一性质被称为三角形的内角和定理。
三角形的外角是指三角形内某一内角的补角,由三角形的一条边和另外两条边所围成。
三角形的外角和等于360度,即三个外角之和等于360度。
总结三角形的内角和外角的特点如下:1. 三角形的内角和为180度;2. 三角形的外角和为360度;3. 三角形的三个内角和三个外角存在一一对应关系;4. 三角形内角和外角的性质对于解决三角形相关问题非常重要。
二、三角形内角和外角的计算方法1. 计算三角形内角和三角形的内角和等于180度,可以根据已知角度求解未知角度的方法来计算三角形的内角和。
例如,如果我们已知一个三角形的两个内角分别为60度和80度,则可以通过180度减去已知的两个内角的和来计算第三个内角的度数:第三个内角 = 180度 - 60度 - 80度 = 40度。
2. 计算三角形外角和三角形的外角和为360度,可以通过三角形内角来计算三角形的外角。
三角形内角和外角是补角关系,即一个内角和它所对应的外角加起来等于180度。
例如,如果一个三角形的一个内角度数为50度,则其对应的外角的度数为:外角 = 180度 - 50度 = 130度。
三、三角形内角和外角的应用举例1. 应用一:角度求解当我们已知三角形的两个内角度数,可以使用三角形的内角和定理来求解第三个内角度数。
例如,已知一个三角形的两个内角分别为60度和80度,我们可以通过计算三角形的内角和来求解第三个内角度数为40度。
章节测试题1.【题文】若∠C=α,∠EAC+∠FBC=β(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是______.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=______.(用α、β表示)【答案】∠APB=α-β∠P5=α-β【分析】(1)根据角平分线的定义表示出∠MAC+∠NCB,再根据两直线平行,内错角相等可得∠C=∠MAC+∠NBC;(2)根据角平分线的定义表示出∠PAC+∠PBC,利用三角形的一个外角等于与它不相邻的两个内角的和列式整理即可得解;(3)根据(2)的结论分别表示出∠P1、∠P2…,从而得解.【解答】解:(1)∵AM是∠EAC的平分线,BN是∠FBC的平分线,∴∠MAC+∠NCB=∠EAC+∠FBC=β,∵AM∥BN,∴∠C=∠MAC+∠NCB,即α=β;(2)∵∠EAC的平分线与∠FBC平分线相交于P,∴∠PAC+∠PBC=∠EAC+∠FBC=β,∴∠C=∠APB+(∠PAC+∠PBC),∴α=∠APB+β,即∠APB=α-β;(3)由(2)得,∠P1=∠C-(∠PAC+∠PBC)=α-β,∠P2=∠P1-(∠P2AP1+∠P2BP1),=α-β-β=α-β,∠P3=α-β-β=α-β,∠P4=α-β-β=α-β,∠P5=α-β-β=α-β.2.【题文】如图,在△ABC中,∠B=50°,∠AEC=80°,CE平分∠ACB,求∠A 和∠BCE的度数.【答案】70°,30°【分析】根据三角形外角的性质得出∠BCE=∠AEC-∠B,由CE平分∠ACB,求得∠BCA的度数,根据三角形内角和定理就可以求出∠A.【解答】解:∵∠B=50°,∠AEC=80°,∴∠BCE=∠AEC-∠B=30°,∵CE平分∠ACB,∴∠BCA=2∠BCE=60°,∴∠A=180°-∠B-∠BCA=70°.3.【题文】如图,在中,平分,且,求的度数.【答案】72°【分析】先根据角平分线定义得到∠BAD=∠BAC,再利用三角形内角和定理得到∠BAC+∠B+∠C=180°,加上∠B=3∠BAD,所以2∠BAD+3∠BAD+90°=180°,解得∠BAD=18°,则∠B=54°,然后根据三角形外角性质计算∠ADC的度数.【解答】解:∵AD平分∠BAC,∴∠BAD=∠BAC.∵∠BAC+∠B+∠C=180°,而∠B=3∠BAD,∴2∠BAD+3∠BAD+90°=180°,∴∠BAD=18°,∴∠B=3∠BAD=54°,∴∠ADC=∠BAD+∠B=18°+54°=72°.4.【题文】认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题. 探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.【答案】∠BOC=∠A.【分析】根据提供的信息,由三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC 与∠A的关系;【解答】解:结论:∠BOC=∠A.理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD.又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1.∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A,即∠BOC=∠A.5.【题文】如图,△ABC中,∠A=50°,∠ABC的平分线与∠C的外角∠ACE平分线交于D,求∠D的度数.【答案】25°.【分析】根据角平分线的性质可得∠4=∠ACE,∠2=∠ABC,利用三角形外角的性质,找出∠D和∠A的关系,即可求∠D的度数.【解答】解:∵∠ABC的平分线BD与△ACB的外角∠ACE的平分线CD相交于点D,∴∠4=∠ACE,∠2=∠ABC,∵∠DCE是△BCD的外角,∴∠D=∠4﹣∠2,=∠ACE﹣∠ABC,=(∠A+∠ABC)﹣∠ABC,=∠A+∠ABC﹣∠ABC=∠A,∵∠A=50°,∴∠D=25°.6.【题文】某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求:(1)此时轮船与小岛P的距离BP是多少海里;(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行使,请问轮船有没有触焦的危险?请说明理由.【答案】(1)BP=7海里;(2)没有危险,理由见解析.【分析】(1)由方向角求出∠PAB和∠PBD,再根据外角的性质求出∠APB,可证明△APB是等腰三角形,即可求解.(2)过P作AB的垂线PD,在直角△BPD中可以求出∠PBD的度数是30°,从而根据30°角的性质求出PD的长,再把PD的长与3海里比较大小.【解答】解:(1)∵∠PAB=90﹣75=15°,∠PBD=90°﹣60°=30°∴∠APB=∠PBD-∠PAB=30°-15°=15°,∴∠PAB=∠APB∴BP=AB=7(海里)(2)过点P作PD垂直AC,则∠PDB=90°∴PD=PB=3.5>3∴没有危险7.【题文】如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠AEC的度数.【答案】66.5°【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=66.5°;故答案是:66.5°.8.【题文】如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.【答案】45°.【分析】先利用三角形外角性质求出∠EAB+∠FBA=270°,DA,DB是角平分线,所以∠DAB+∠DBA=135°,易得∠D度数.【解答】解:根据三角形的外角性质,∠EAB=∠ABC+∠C,∠ABF=∠BAC+∠C,∵AD、BD分别是∠EAB,∠ABF的平分线,∴∠DAB+∠DBA=(∠ABC+∠C+∠BAC+∠C)=(∠ABC+∠BAC)+∠C,∵∠C=90°,∴∠ABC+∠BAC=180°﹣90°=90°,∴∠DAB+∠DBA=×90°+90°=135°,在△ABD中,∠D=180°﹣135°=45°.9.【题文】如图所示,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.【答案】(1) (2) (3)【分析】如图所示,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.【解答】解:在图(1)中,根据三角形内角和定理可得:∠ABC+∠ACB=180°-∠A.∵BP与CP是△ABC的角平分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=90°-α.在△PBC中,∠BPC=180°-(∠PCB+∠PCB)=180°-(90°-α)=90°+α.∴β=90°+α.故答案为:β=90°+α.如图(2),结论:∠BPC=∠A.证明如下:∠P=∠1-∠2=(∠ACD-∠ABC)=∠A.∴β=α;故答案为:β=α;如图(3)∵BP、CP分别是△ABC两个外角∠CBD和∠BCE的平分线,∴∠CBP=(∠A+∠ACB),∠BCP=(∠A+∠ABC),∴∠BPC=180°-∠CBP-∠BCP=180°-∠A-(∠ABC+∠ACB),∴∠P与∠A的关系是:∠P=180°-∠A-(∠ABC+∠ACB)=90°-α,即β=90°-α.故答案为:β=90°-α.10.【题文】已知∠A=60°,∠B=30°,∠C=20°,求∠BDC的度数.【答案】110°.【分析】连接AD并延长,利用三角形外角的性质:“三角形的一个外角等于与它不相邻的两个内角的和”即可证得:∠BDC=∠BAC+∠B+∠C=110°.【解答】解:连接AD,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C,∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C,∵∠A=60°,∠B=30°,∠C=20°,∴∠BDC=110°.11.【题文】如图,点D,E分别在AB,AC上,DE∥BC,F是AD上一点,FE 的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形的外角性质得出∠EGH>∠B,再根据平行线的性质得出∠B=∠ADE,即可得出答案;(2)根据三角形的外角性质得出∠BFE=∠A+∠AEF,∠EGH=∠B+∠BFE,根据平行线的性质得出∠B=∠ADE,即可得出答案.【解答】证明:(1)因为∠EGH是△FBG的外角,所以∠EGH>∠B.又因为DE∥BC,所以∠B=∠ADE.所以∠EGH>∠ADE.(2)因为∠BFE是△AFE的外角,所以∠BFE=∠A+∠AEF.因为∠EGH是△BFG的外角,所以∠EGH=∠B+∠BFE.所以∠EGH=∠B+∠A+∠AEF.又因为DE∥BC,所以∠B=∠ADE,所以∠EGH=∠ADE+∠A+∠AEF.12.【题文】如图,∠B=60°,∠BAC=80°,AD⊥BC,AE平分∠BAC,求∠DAE 的度数.【答案】10°.【分析】由∠BAC=80°,AE平分∠BAC,可得:∠BAE=40°,结合∠AEC=∠B+∠BAE及∠B=60°,可得∠AEC=100°;由AD⊥BC可得∠ADE=90°,再由∠AEC=∠DAE+∠ADE,就可计算出∠DAE的度数.【解答】解:∵∠BAC=80°,AE平分∠BAC,∴∠BAE=40°,∴∠AEC=∠B+∠BAE=60°+40°=100°.∵AD⊥BC,∴∠ADE=90°.∵∠AEC=∠DAE+∠ADE,∴∠DAE=∠AEC-∠ADE=100°-90°=10°.13.【题文】一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.【答案】50°,理由见解析.【分析】根据邻补角定义求出∠1的邻补角的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和求出∠3-∠2等于∠1的邻补角的度数.【解答】解:小刚的答案为50°.理由如下:如图,设∠1的邻补角为∠4,∵∠1=130°,∴∠4=180°-130°=50°,∵∠3是人字架三角形的外角,∴∠3=∠2+∠4,∴∠4=∠3-∠2=50°,∴∠3比∠2大50°.14.【题文】如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠AEC的度数.【答案】66.5°【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=66.5°;故答案是:66.5°.15.【题文】如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F. (1)探求:∠F与∠B、∠D有何等量关系?(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?【答案】【答案:(1)∠F=(∠B+∠D);(2)3.【分析】(1)由三角形内角和外角的关系可知∠D+∠1=∠3+∠F,∠2+∠F=∠B+∠4,由角平分线的性质可知∠1=∠2,∠3=∠4,故∠F=(∠B+∠D).(2)设∠B=2α,则∠D=4α.利用(1)中的结论和已知条件来求x的值.【解答】解: 1)∠F=(∠B+∠D);理由如下:∵∠DHF是△DEH的外角,∠EHC是△FCH的外角,∠DHF=∠EHC,∴∠D+∠1=∠3+∠F①同理,∠2+∠F=∠B+∠4 ②又∵∠DEA,∠BCA的平分线相交于F,∴∠1=∠2,∠3=∠4;∴①﹣②得:∠B+∠D=2∠F,即∠F=(∠B+∠D).(2)∵∠B:∠D:∠F=2:4:x,∴设∠B=2α,则∠D=4α,∴∠F=(∠B+∠D)=3α,又∠B:∠D:∠F=2:4:x,∴x=3.16.【题文】如图,在△ABC中,∠1 是它的一个外角,点E为边AC上一点,延长BC到点H,连接EH.求证:∠1>∠2.【答案】证明见解析.【分析】根据三角形外角的性质解答即可.【解答】证明:如图,在△ABC中,∠1>∠3,在△DCE中,∠3>∠2,所以∠1>∠2.17.【题文】证明“三角形的外角和等于360°”.如图,∠BAE,∠CBF,∠ACD 是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.【答案】证明见解析.【分析】根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论.【解答】∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.18.【题文】如图,在△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA 中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.【答案】∠B=60°.【分析】∠A=20°,DE是CA边上的高,所以∠EDA=∠CDB=90°-20°=70°,根据外角的性质得∠CDB=∠A+∠DCE=70°,所以∠DCE=∠BCD=50°,所以∠B=180°-∠BCD-∠CDB=60°.【解答】∵DE是CA边上的高,∴∠DEA=∠DEC=90°.∵∠A=20°,∴∠EDA=90°-20°=70°.∵∠EDA=∠CDB,∴∠CDE=180°-70°×2=40°.在Rt△CDE中,∠DCE=90°-40°=50°.∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×50°=100°.∴∠B=180°-∠BCA-∠A=60°.19.【题文】如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC.求∠4的度数.【答案】45度【分析】由三角形外角的性质易得∠3的度数,再由已知条件可得∠2的度数,这样就可求得∠ABC的度数,由BE平分∠ABC可得∠EBA的度数,最后由∠4=∠2+∠EBA 可得∠4的度数.【解答】解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°.∴∠2=∠3=10°.∴∠BAC=∠2+∠3=30° .∴∠CBA=180°-∠C-∠BAC=70°∵BE平分∠CBA,∴∠EBA=∠CBA=35° .∴∠4=∠EBA+∠2=45°.20.【题文】如图,D是AB上的一点,E是AC上的一点,BE、CD相交于一点F,∠A=63°,∠ACD=34°∠ABE=20°,求∠BDC和∠BFC的度数。
初中数学知识点三角形的内角和与外角和初中数学知识点——三角形的内角和与外角和三角形是初中数学中最基础且重要的几何图形之一。
在学习三角形的知识时,了解三角形的内角和与外角和是必不可少的。
本文将详细介绍三角形的内角和与外角和的概念、性质以及相关的定理和公式。
一、三角形的内角和三角形的内角和指的是三角形内部三个角的度数之和。
对于任意一个三角形ABC,其内角和为180度,即∠A + ∠B + ∠C = 180°。
这个性质是初中数学中最基本的三角形知识之一。
利用三角形内角和的性质,我们可以解决一系列与三角形有关的问题。
例如,已知两个角度,可以利用三角形内角和的性质求解第三个角的度数;已知三个角度,可以判断三角形的类型(锐角三角形、直角三角形、钝角三角形)等。
二、三角形的外角和三角形的外角和指的是三角形内部一个角的补角的度数之和。
对于任意一个三角形ABC,以角A为例,其外角和为360度,即∠D + ∠E + ∠F = 360°。
其中∠D,∠E,∠F 为角A的三个补角。
三角形的外角和是基于三角形内角和的概念进行推导得出的,它的计算方法非常简单。
我们只需利用补角的性质,将三个外角与其对应的内角相加即可得到外角和。
三、三角形内角和与外角和的定理和公式除了基本定义外,三角形的内角和与外角和还有一些重要的定理和公式。
1. 定理1:等腰三角形的内角和为180度若一个三角形两边的长度相等,则该三角形称为等腰三角形。
由等腰三角形的性质可知,等腰三角形的两个底角度数相等。
因此,一个等腰三角形的内角和可以表示为2x + y = 180°。
其中,x为等腰三角形的两个底角的度数,y为顶角的度数。
2. 定理2:直角三角形的内角和为180度直角三角形是指一个角为90度的三角形。
由直角三角形的性质可知,其直角角度固定为90度,而其余两个锐角的和为90度。
因此,直角三角形的内角和可以表示为90° + x + y = 180°。
中考考点三角形的内角和外角和角平分线等性质中考考点:三角形的内角和、外角和、角平分线等性质三角形是初中数学中的重要概念之一,而其中与三角形的内角和、外角和、角平分线等性质相关的知识点往往是考试中经常出现的考点。
本文将围绕这几个知识点展开,为大家详细介绍相关定义和性质,以帮助大家更好地掌握这一部分内容。
一、三角形的内角和首先我们来认识一下三角形的内角和。
将一个三角形的三个内角相加,得到的和被称为该三角形的内角和。
对于任意一个三角形ABC来说,它的内角和可以表示为∠A+∠B+∠C,其中∠A、∠B、∠C分别代表三角形ABC的三个内角。
根据三角形的性质可知,三角形内角和等于180°,即∠A+∠B+∠C=180°。
这是因为三角形的两边之和必须大于第三边,所以三角形的内角和不能大于180°。
而当三角形是一条直线时,即三个角相加为180°时,我们称之为退化三角形。
二、三角形的外角和接下来我们来了解三角形的外角和。
对于三角形ABC来说,将其一个内角的补角与另外两个内角相加,所得的和被称为该三角形的外角和。
以∠A为例,∠A的补角为180°-∠A,而三角形的外角和可以表示为(180°-∠A)+∠B+∠C。
同样根据三角形的性质,我们可以得出外角和等于360°的结论,即(180°-∠A)+∠B+∠C=360°,这是因为补角与原角的和为180°,而三角形的外角和就是三个外角的总和,所以等于360°。
三、角平分线角平分线是指从一个角的顶点出发,将这个角平分成两个相等的角的线段。
在三角形中,角平分线还有一个重要性质,即角平分线和对边上的两个角相等。
以三角形ABC为例,角平分线从顶点A出发,将∠BAC分成两个相等的角∠BAD和∠CAD。
这时可以得出∠BAD=∠CAD的结论。
角平分线还有一个有趣的性质,即三角形的内心、外心和重心都位于三角形的角平分线的交点上。
七年级数学下册第九章《三角形》素材:
三角形“五心歌”
三角形有五颗心;重、垂、内、外和旁心,五心性质很重要,认真掌握莫记混.
重心
三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.
垂心
三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,
四点共圆图中有,细心分析可找清,
(H为垂心,点A.F、H、E共圆,
点E.H、D.C共圆,
点F、B.D.H共圆)
内心
三角对应三顶点,角角都有平分线,
三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,
此圆圆心称“内心”如此定义理当然.
外心
三角形有六元素,三个内角有三边.
作三边的中垂线,三线相交共一点.
此点定义为“外心”,用它可作外接圆.
“内心”“外心”莫记混,“内切”“外接”是关键.
0为三角形外心
旁心
三角形有三内角,尚有外角两个三,
三对外角平分线,两两相交有一点,
点点命名曰“旁心”,只因能作旁切圆.。
七年级数学下册第九章《三角形》素材:
三角形的内角和问题
利用欧几里得的平行公理及其等价定理即可证明『三角形三内角之和为180o定理及其证明记载于欧氏《几何原本》第一卷的命题32,证明如下:
第一卷命题32
在任意三角形中,如果延长一边。
则外角等于二内对角的和,而且三角形的三个内角的和等于二直角。
设ABC是一个三角形,延长其一边BC至D。
则可证外角ACD等于两个内对角CAB,ABC的和且三角形的三个内角 ABC.BCA.CAB的和等于二直角。
事实上,过点C作平行于直线AB的直线CE。
﹝I. 31﹞
这样,由于AB平行于CD,且AC和它们同时相交,其错角BAC,ACE彼此相等﹝I. 29﹞
又因为,AB平行于CE,且直线BD同时和它们相交,同位角ECD 与角ABC相等。
﹝I. 29﹞
但是已经证明了角ACE也等于角BAC;
故整体角ACD等于两内对角BAC.ABC的和。
给以上各角加上ACB。
于是角ACD.ACB的和等于三个角ABC.BCA.CAB的和。
但角ACD.ACB的和等于二直角。
﹝I. 13﹞
所以,角ABC.BCA.CAB的和也等于二直角。
证完
﹝取材自蓝纪正,朱恩宽﹝1992﹞。
《欧几里得‧几何原本》,页27。
台北:九章出版社﹞
但若不用这条公理,又何以证明呢?
法国著名数学家勒让德﹝1752─1833﹞为此作出研究,并于1794年出版了被世界各国广泛采用为初等几何教材的《几何原理》。
书中他重新排列欧几里得的几何命题,把定理与一般命题分列,简化证明之余,仍保持逻辑上的严密性。
书中亦提及『三角形三内角和不大于180°』这著名的命题,其证明步骤如下:于直线上取
AC=CC1=...=Cn-2Cn-1,作全等三角形△ABC≌△CB1C1≌...≌△
Cn-2Bn-1Cn-1,连BB1,B1B2,...,Bn-2Bn-1,得全等三角形△BCB1≌△B1C1B2≌... ≌△Bn-1Bn-2Cn-1 。
拼作△B0AB≌△BCB1﹝此时认为B0,B,B1,...,Bn-1在一条直线上并无根据的﹞。
若△ABC的三内角和大于180°,必使角α大于角β,故AC>BB1,但AB0 + B0B +...+ Bn-1Cn-1>AC + CC1 +...+ Cn-2Cn-1,故2AB0 + nBB1>nAC,即n(AC-BB1)<2AB0=2BC,并一切自然数n都合符上式,这与阿基米德公理﹝对于任意二个正实数a与b,必存在正整数n,使na ≧ b成立﹞矛盾,故此,三角形三内角和不大于180°。