呼吸力学,呼吸机波形监测
- 格式:ppt
- 大小:353.00 KB
- 文档页数:46
呼吸功能监测和呼吸波形分析上海第二医科大学附属仁济医院张小先通气量监测(一)潮气量和通气量正常情况下,潮气量(V T)和每分钟通气量(V E)因性别、年龄和体表面积不同而有差异,男性V T约为7.8ml/kg,女性为6.6ml/kg,V E为5~7L/min。
呼吸抑制(如麻醉、镇痛药、肌松药等)和呼吸衰竭时V T减少,手术刺激和PaCO2升高时,V T增加。
如潮气量减少,频率相应增加(V E=V T×f),若超过25~30bpm,则提示呼吸机械运动已不能满足机体需要,并且可导致呼吸肌疲劳。
机械通气时,成人V T需要8~10ml/kg,小儿为10~12ml/kg,可根据PaCO2或呼气末CO2分压(P ET CO2)进行调节,V T过大时,使气道压力升高,影响循环功能。
V E>10L/min,不能撤离呼吸机。
(二)死腔气和潮气量之比正常成人解剖死腔约150ml,占潮气量的1/3。
肺弹性组织减少和肺容量增加,支气管扩张时,解剖死腔增加。
肺内通气/血流(V/Q)比率增大,则形成肺泡死腔。
例如在肺动脉压下降,肺梗塞,休克和心力衰竭时。
此外,机械通气时的V T过大,气道压力过高也影响肺内血流灌注。
面罩、气管导管、麻醉机、呼吸机的接头和回路等均可使机械死腔增加。
死腔气量/潮气量比率(V D/V T)反映通气功能,正常值为0.3,计算方法根据下列公式:V D/V T=(PaCO2-P E CO2)/PaCO2或V D/V T=(P ET CO2-P E CO2)/P ET CO2(三)肺活量是在用最大力量吸气后,所能呼出的最大气量。
约占肺总量的3/4,和年龄呈反比,男性大于女性,反映呼吸肌的收缩强度和储备力量。
以实际值/预期值的比例表示肺活量的变化,如≥80%则表示正常。
肺活量为30~70ml/kg,若减少至30ml/kg以下,清除呼吸道分泌物的功能将会受到损害;减少至10ml/kg时,将导致PaCO2持续升高,需要用机械通气辅助呼吸。
呼吸功能监测和呼吸波形分析通气量监测(一)潮气量和通气量正常情况下,潮气量(V T)和每分钟通气量(V E)因性别、年龄和体表面积不同而有差异,男性V T约为7.8ml/kg,女性为6.6ml/kg,V E为5~7L/min。
呼吸抑制(如麻醉、镇痛药、肌松药等)和呼吸衰竭时V T减少,手术刺激和PaCO2升高时,V T增加。
如潮气量减少,频率相应增加(V E=V T×f),若超过25~30bpm,则提示呼吸机械运动已不能满足机体需要,并且可导致呼吸肌疲劳。
机械通气时,成人V T需要8~10ml/kg,小儿为10~12ml/kg,可根据PaCO2或呼气末CO2分压(P ET CO2)进行调节,V T过大时,使气道压力升高,影响循环功能。
V E>10L/min,不能撤离呼吸机。
(二)死腔气和潮气量之比正常成人解剖死腔约150ml,占潮气量的1/3。
肺弹性组织减少和肺容量增加,支气管扩张时,解剖死腔增加。
肺内通气/血流(V/Q)比率增大,则形成肺泡死腔。
例如在肺动脉压下降,肺梗塞,休克和心力衰竭时。
此外,机械通气时的V T过大,气道压力过高也影响肺内血流灌注。
面罩、气管导管、麻醉机、呼吸机的接头和回路等均可使机械死腔增加。
死腔气量/潮气量比率(V D/V T)反映通气功能,正常值为0.3,计算方法根据下列公式:V D/V T=(PaCO2-P E CO2)/PaCO2或V D/V T=(P ET CO2-P E CO2)/P ET CO2(三)肺活量是在用最大力量吸气后,所能呼出的最大气量。
约占肺总量的3/4,和年龄呈反比,男性大于女性,反映呼吸肌的收缩强度和储备力量。
以实际值/预期值的比例表示肺活量的变化,如≥80%则表示正常。
肺活量为30~70ml/kg,若减少至30ml/kg以下,清除呼吸道分泌物的功能将会受到损害;减少至10ml/kg时,将导致PaCO2持续升高,需要用机械通气辅助呼吸。
呼吸机呼吸力学测定呼吸系统的阻力分为非弹性阻力和弹性阻力。
非弹性阻力包括气道阻力(RAW)、惯性阻力、重力和肺组织与胸廓的变形阻力,气道阻力是非弹性阻力最主要的组成部分。
弹性阻力指的是肺和胸壁可扩张性,以顺应性(C)来表示。
临床对于呼吸力学的监测主要包括顺应性(C)和气道阻力(RAW)以及克服上述阻力要做的呼吸功。
(一)气道阻力气道阻力是指气流通过气道进出肺泡所受到的阻力,即气流通过气道进入肺泡过程中,气道会对气流产生阻力,阻力的大小和气流的快慢是成正比的,即气流越快,所受的阻力越大,所以用单位流量所需的压力差来表示。
支气管痉挛、黏膜水肿、局部气道阻塞(如分泌物堵塞、异物、肿瘤等)等气道内径的下降会增加气道阻力,因此RAW的监测可用于发现气道的病变。
计算气道阻力时需要测定的参数主要为气道开口处压力、肺泡压及流量。
气道开口处压力及流量相对容易获得,计算气道阻力的关键在于肺泡压的获取。
气道阻力测定的方法可大致分为体积描记法、脉冲振荡法、气道阻断法、食道压测量法、气道压力检测法和吸气末暂停法。
吸气末暂停法是机械通气时运用最多,也是最为简单的方法(见图8-15)。
该方法下应先排除自主呼吸对测量准确性的影响,选择容量控制通气并使用方形流量波,通过设置足够长的平台时间或使用吸气末暂停功能键用于确保吸气末气流最终降为0,此时气道压力也从气道峰压力同步降低至平台压力(即肺泡压),降低的压力值为克服气道阻力所需的压力。
吸气阻力可通过下列公式计算:吸气阻力(RI)=(气道峰压-平台压)/吸气流量由于呼气过程是胸肺弹性势能的释放过程,气流速度并不恒定,而是呈现先快后慢的特点,呼吸机描记的流量时间曲线通常呈指数递减样变化,因此,在机械通气过程中,通常是结合气道阻断法计算呼气开始瞬间的气道阻力,此时肺泡内压力为平台压,气道开口处压力为PEEP,气体流量为呼气相峰流量:呼气阻力(RE)=(平台压-PEEP)/呼气峰流量但目前临床上多数呼吸机流量传感器位于呼吸机回路远端,呼气开始时流量受回路顺应性及阻力影响较大,因此测定的呼气阻力准确性较低,仅具参考意义。
呼吸力学监测操作方法
呼吸力学监测是一种通过监测呼吸系统的力学参数来评估呼吸功能的方法。
下面是一种常见的呼吸力学监测操作方法:
1. 检查设备:确保呼吸力学监测设备的正常工作。
包括确认传感器、监测仪器、连接线等是否完好,并且已正确安装和连接。
2. 准备患者:将患者放置在适当的体位,通常是半卧位或直立位。
确保患者舒适,并准备好所需的辅助设备,例如口罩或鼻子夹等。
3. 连接传感器:根据设备说明书的指导,将传感器正确连接到患者的呼吸系统。
通常,传感器可以通过插入呼吸机管道、测压管道、面罩或鼻管等方式与呼吸系统连接。
4. 校准设备:在监测开始之前,需要校准呼吸力学监测设备。
这通常包括将设备的零点校准到大气压力,并校准其测量范围。
校准的具体方法可以参考设备说明书。
5. 开始监测:打开呼吸力学监测仪器,并开始记录数据。
监测可以连续进行,也可以根据需要进行定时抽样。
6. 记录数据:根据设备的要求,将监测到的呼吸力学参数记录下来。
常见的呼
吸力学参数包括呼气末正压(PEEP)、潮气量(VT)、呼吸频率(RR)、吸气时间(TI)等。
7. 分析数据:通过分析监测到的呼吸力学数据,评估呼吸系统的功能。
可以根据需要计算一些相关的指数,例如肺顺应性、阻力、吸气末正压-肺容积曲线等。
8. 采取措施:根据分析结果,采取相应的措施。
例如,调整呼吸机参数、更换或调整呼吸辅助器具、改变患者体位等,以改善呼吸功能。
9. 监测完毕:完成呼吸力学监测后,及时关闭设备并清理传感器。
将记录的数据保存和整理,并及时报告相关医疗人员。
、呼吸机波形--(1)呼吸机波形是指在呼吸机治疗时,显示在呼吸机的显示屏上的呼吸波形图像。
呼吸机波形的形态和变化能够反映病人的呼吸情况,对临床医生进行肺机械通气治疗监测至关重要。
以下是呼吸机波形的相关内容。
一、呼气末正压波形呼气末正压(PEEP)是指在呼气结束时,气道压力保持正值,为肺泡提供持续的正压,有效维持肺泡的开放性,并防止肺塌陷。
呼气末正压波形是指呼吸机在PEEP状态下所显示的波形图像。
呼气末正压波形为一个平滑的水平基线,波形的跳动越小,说明呼吸机的雾化效果越好,PEEP的设置越合适。
二、呼吸机压力波形呼吸机压力波形是指呼吸机将气体注入病人气道内时的压力波形,包括吸气压力波形和呼气压力波形。
呼吸机压力波形的高度和宽度也反映了肺的通气情况。
低的呼吸机压力表示肺容量不足,高的值表示肺活量过大。
优秀的肺机械通气治疗需要医生对呼吸机压力波形的变化有敏锐的感知和正确的处理。
三、呼吸机流量波形呼吸机流量波形是指呼吸机向病人提供气体时的气体流速图像,流速的变化应该与时间成正比例关系。
流量波形的陡峭表示气体流速大,缓慢表示气体流速小。
如果气体流速变化太小,可能会导致患者呼吸时间不足,通气量不足。
四、呼吸机容积波形呼吸机容积波形是指呼吸机向病人提供气体时的每次吸入气体的容积。
患者通气次数高,但吸气时间短,可以增加容积。
呼吸机容积波形的峰值应该在一定范围内,否则会对病人造成一定的损害。
五、呼吸机频率波形呼吸机频率波形是指呼吸机向病人提供气体时,病人每分钟通气的次数。
呼吸机频率波形的变化和呼吸机容积波形同步显示,这种显示方式能够更好地反映患者的通气情况。
以上是呼吸机波形的相关内容,呼吸机波形是临床医生进行肺机械通气治疗监测时的重要依据,同时对于肺机械通气治疗过程的安全和有效起到了重要作用。
呼吸力学监测第六节呼吸力学监测呼吸力学监测在临床上的应用是应用呼吸生理学指导临床诊断和治疗的重要环节。
呼吸力学监测的参数包括有与呼吸相关的压力、容量、流量、顺应性、阻力和呼吸做功等。
严格掌握这些参数的测定条件,结合临床分析其结果,有利于认识疾病的发病机制、诊断和指导治疗。
在进行机械通气时,密切监测这些参数,有利于发现病情变化和指导呼吸机的合理应用。
一、压力(一)呼吸相关的压力指标呼吸运动过程中必须克服压力的变化。
总的呼吸系统压力称作经呼吸系统压(Prs),包括经肺压(PL)和经胸壁压(PW)。
1.经肺压(PL) PL是指气道开口压(Pao)与胸膜腔压(Ppl)之间的差值,即PL= Pao-Ppl。
它反映在相应的肺容量时需要克服肺的阻力,也是产生相应的肺容量变化消耗于肺的驱动压力。
通常采用食道囊管法检测食道中下三分之一交界处附近的压力(Peso)来反映Ppl,即PL= Pao-Peso。
静态下PL反映肺的弹性回缩力,动态时也包括气道阻力(RAW)。
所以,检测肺的弹性回缩力时,应该在呼吸气流为零时测定PL。
2.经胸壁压(PW) PW是指胸膜腔压(Ppl或Peso)与体表压力(Pb)的差值,即PW=Ppl-Pb,它反映在相应的容量时胸廓的阻力,也是产生相应的胸廓容量变化所消耗的驱动压力。
Pb为大气压,所以,PW=Ppl。
由于呼吸肌肉直接附着并作用在胸壁上,呼吸肌肉的活动会直接导致胸廓的运动,从而影响PW的测定。
因此,只有在呼吸肌肉完全放松,气道阻断的条件下,Ppl才能反映PW。
3.经呼吸系统压(Prs)Prs是指呼吸运动过程中所需要克服的整个呼吸系统的总体压力,为经肺压(PL)和经胸壁压(PW)的总和Prs=PL+PW(1)呼吸运动过程中,这些压力不是固定的,而是动态变化的,随着肺容量和呼吸流量的改变而变化。
引起肺膨胀的动力(Pinf)来源于呼吸机的外加(Pext)和/或患者肌肉收缩产生的压力(Pmus)。
呼吸力学曲线与呼吸环【适应证】适用于机械通气患者,尤其适用于以下患者。
1.呼吸衰竭诊断未明的患者。
2.急性呼吸窘迫综合征患者。
3.慢性阻塞性肺疾病患者。
4.急性心源性肺水肿患者。
5。
呼吸机依赖患者。
6.困难脱机的患者。
7.行心肺手术或移植的患者。
8.有肺损伤的高危患者。
9.有严重心肺疾患的患者。
10.老年患者。
一、流速、压力、容积波形的监测(一)流速-时间波形【操作方法及程序】可通过调整呼吸机的波形监测为流速-时间波形或应用床边呼吸功能监测仪器监测。
1.自主呼吸时为正弦波,呼吸机控制通气时可有方波、减速波或加速波。
2.呼气气流波形反映呼吸系统的机械特性、通气机管路和患者气管阻力的变化。
3.当存在呼气气流限制,呼气气流不能到达基线时,提示肺过度肺膨胀和PEER 的存在。
4.波形的异常可提示通气管路有阻抗或阻塞。
(1)呼气时间延长,吸气气流-时间波形正常,呼气阻力增加。
(2)吸气气流减小,吸气时问延长,呼气气流波形正常,表明吸气阻力增加。
(二)压力-时间波形【操作方法及程序】可通过调整呼吸机的波形监测为压力-时间波形或应用床边呼吸功能监测仪器监测。
(三)容积-时间波形【操作方法及程序】可通过调整呼吸机的波形监测为容积一时间波形或应用床边呼吸功能监测仪器监测。
二、呼吸环的监测(一)流速-容积环(F-V环)【操作方法及程序】1.目前大部分呼吸机可监测F-V环,其吸气部分是由通气机设定的,呼气部分由患者呼吸系统弹性回缩力、气道和气管导管的阻力等因素决定。
2.当存在呼出气流限制,呼气潮气量曲线显示特征性的曲线形状(凸向容量轴),并在下一次机械吸气开始吸气气流突然终止,提示存在PEEPi及动态肺过度膨胀。
3.连续最大F-V环可用于评价对治疗(支气管扩张药)的反应。
4.F-V环外形突然变化说明急性临床状况恶化(即急性支气管痉挛、大气道黏液栓、气管导管扭结增加上气道阻力)。
5.存有大量分泌物患者F-V环呼气部分呈特征性锯齿样外形,经过吸痰后可以恢复正常。