(新课标卷)数学文解析版(2012高考)
- 格式:doc
- 大小:1.10 MB
- 文档页数:12
2012高考真题分类汇编:程序框图1.【2012高考真题新课标理6】如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【答案】C【解析】根据程序框图可知,这是一个数据大小比较的程序,其中A 为最大值,B 为最小值,选C.2.【2012高考真题陕西理10】右图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( ) A. 1000NP =B. 41000NP = C. 1000MP =D. 41000MP =【答案】D.【解析】根据第一个条件框易知M 是在圆内的点数,N 是在圆外的点数,而空白处是要填写圆周率的计算公式,由几何概型的概念知10004M P =,所以10004M P =.故选D. 3.【2012高考真题山东理6】执行下面的程序图,如果输入4a =,那么输出的n 的值为(A )2 (B )3 (C )4 (D )5 【答案】B【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.4.【2012高考真题辽宁理9】执行如图所示的程序框图,则输出的S 的值是(A) -1 (B) 23(C)32(D) 4 【答案】D【解析】根据程序框图可计算得24,1;1,2;,3;3s i s i s i ===-=== 3,4;4,5,2s i s i ====由此可知S 的值呈周期出现,其周期为4,输出时9i = 因此输出的值与1i =时相同,故选D【点评】本题主要考查程序框图中的循环结构、数列的周期性以及运算求解能力, 属于中档题。
2012高考真题分类汇编:立体几何一、选择题1.【2012高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B.2.【2012高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。
将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。
A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的.3.【2012高考真题新课标理11】已知三棱锥S A B C -的所有顶点都在球O 的求面上,A B C ∆是边长为1的正三角形,S C 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 6()B6()C3()D 2【答案】A【解析】A B C ∆的外接圆的半径3r =,点O 到面ABC的距离3d ==,S C 为球O 的直径⇒点S 到面ABC的距离为23d =此棱锥的体积为11233436ABC V S d ∆=⨯=⨯=另:1236ABC V S R ∆<⨯=排除,,B C D ,选A.4.【2012高考真题四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】A.两直线可能平行,相交,异面故A 不正确;B.两平面平行或相交;C.正确;D.这两个平面平行或相交.5.【2012高考真题四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径C D 作平面α成45 角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠= ,则A 、P两点间的球面距离为( )A 、arccos 4R B 、4RπC 、arccos 3R D 、3Rπ【答案】A【解析】根据题意,易知平面AOB ⊥平面CBD,BOP AOB AOP ∠⋅∠=∠∴cos cos cos422122=⋅=,42arccos =∠∴AOP ,由弧长公式易得,A 、P 两点间的球面距离为a r c c o s 4R .6.【2012高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12C A C C C B ==,则直线1BC 与直线1A B 夹角的余弦值为( )A.5B.3C.5D.355.【答案】A.【解析】设a CB =||,则a CC CA 2||||1==,),2,0(),0,2,0(),,0,0(),0,0,2(11a a B a C a B a A , ),2,0(),,2,2(11a a BC a a a AB -=-=∴,55,cos 111111=>=<∴BC AB ,故选A.7.【2012高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 8.【2012高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A .8π3B .3πC .10π3D .6π【答案】B【解析】显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.9.【2012高考真题广东理6】某几何体的三视图如图所示,它的体积为A .12π B.45π C.57π D.81π 【答案】C【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得πππ57533-53312222=⨯⨯+⨯⨯⨯=+=圆柱圆锥V V V .故选C .10.【2012高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱【答案】D.【命题立意】本题考查了空间几何体的形状和三视图的概念,以及考生的空间想象能力,难度一般.【解析】球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC ,故选D.11.【2012高考真题重庆理9】设四面体的六条棱的长分别为1,1,1,1和a ,且长为aa 的取值范围是(A ) (B )(0, (C ) (D ) 【答案】A 【解析】因为22211)22(12=-=-=BE 则BE BF <,222=<=BE BF AB ,选A ,12.【2012高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。
2012年高考数学24题评分细则:第一问:(Ⅰ)方法一:⎪⎩⎪⎨⎧≥-<<≤+-=-+-=-=3,.5232.,12,.52|2||3|)(,3x x x x x x x x f a 时 ------1分13523)(2≤≥+-≥≤x x x f x ,解得得时,由当 ------2分,无解得时,由当313)(32≥≥<<x f x ------3分435-23)(3≥≥≥≥x x x f x ,解得得时,由当 -------4分所以3)(≥x f 的解为}41|{≥≤x x x 或 -------5分方法二:当|2||3|)(,3-+-=-=x x x f a 时由3|2||3|3)(≥-+-≥x x x f 得此不等式等价于⎩⎨⎧≥-+-≤3232x x x 或⎩⎨⎧≥-+-<<32332x x x 或⎩⎨⎧≥-+-≥3233x x x ------3分解得1≤x 或无解 或4≥x -----4分(注:求对2个得1分,下步不得分)所以3)(≥x f 的解为}41|{≥≤x x x 或 ------5分方法三:当⎪⎩⎪⎨⎧≥-<<≤+-=-+-=-=3,.5232.,12,.52|2||3|)(,3x x x x x x x x f a 时 ------1分作图如右, ----3分由图像可得,3)(≥x f 的解集是}41|{≥≤x x x 或 -----5分方法四:当|2||3|)(,3-+-=-=x x x f a 时由3|2||3|3)(≥-+-≥x x x f 得根据绝对值的几何意义,2与3的距离为1,故x 对应的点在2的左边或3的右边, ------2分 当x =1或x =4时,其到2和到3的距离之和为3 -----4分 ∴3)(≥x f 的解集是}41|{≥≤x x x 或 ------5分注:1、若用特殊值求得答案完全正确给4分;2、若只给出3|2||3|)(≥-+-=x x x f ,后面不做或全错,给1分;第二问:(Ⅱ)方法一:由|4|)(-≤x x f 得|2||4|||---≤+x x a x -----1分 当]2,1[∈x 时,|2||4|||---≤+x x a x 等价于2)2(4||=---≤+x x a x ------2分 a x a a x -≤≤--⇒≤+≤-∴2222 -------3分 依题意得⎩⎨⎧≥-≤--2212a a 即03≤≤-a -------4分故满足条件的a 的取值范围是]0,3[-。
2012年普通高等学校招生全国统一考试语文新课标卷详解一、现代文阅读(9分,第小题3分)阅读下面的文字,完成l~3题。
“黑箱”是控制论中的概念,意为在认识上主体对其内部情况全然不知的对象。
“科技黑箱“的含义与此有所不同,它是一种特殊的存贮知识、运行知识的设施或过程,使用者如同面对黑箱,不必打开,也不必理解和掌握其中的知识,只需按规则操作即可得到预期的结果。
例如电脑、手机、摄像机、芯片,以及药品等,可以说,几乎技术的全部中间和最终成果都是科技黑箱。
在科技黑箱的生产过程中,科学知识是基础,价值观和伦理道德则对科学知识进行选择。
除此以外,科技黑箱中还整合了大量人文的、社会的知识,并且或多或少渗透了企业文化和理念。
这样,在电脑或手机中就集成了物理学、计算机科学、管理学、经济学、美学,以及对市场的调研和政府的相关政策等知识。
科技黑箱是特殊的传播与共享知识的媒体,具有三大特点。
首先,它使得每一个使用者——不仅牛顿,都能直接“站在巨人的肩上”继续前进。
试想,如果要全世界的电脑使用者都透彻掌握电脑的工作原理,掌握芯片上的电子理论,那需要多少时间?知识正是通过科技黑箱这一途径而达到最大限度的共享。
如今,计算机天才、黑客的年龄越来越小,神童不断出现,他们未必理解计算机的制作过程就能编写软件、破译密码。
每一代新科技黑箱的出现,就为相对“无知识”的年轻一代的崛起与赶超提供了机会。
其次,处在相对低端的科技黑箱往往与语境和主体无关,而处于高端的科技黑箱则需满足特定主体在特定场合乃至心理的需要。
人们很少能对一把锤子做什么改进,而使用一个月后的电脑则已经深深地打上了个人的印记,这就说明,在认识变得简单易行之时,实践变得复杂和重要。
最后,当科技为我们打开一扇又一扇门的时候,我们能拒绝它的诱惑不进去吗?而一旦进去,我们的行为能不受制于房间和走道的形状吗?表面上是使用者在支配科技黑箱,然而科技黑箱却正在使用者“不知情”的情况下,对使用者施加潜移默化的影响,也就是说使用者被生产方对象化了。
2012高考真题分类汇编:圆锥曲线一、选择题1.【2012高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22221x y ab-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.3B2D.【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222bca xbc b c y --=-,令0=y ,得)1(22ba c x +=,所以c ba c 3)1(22=+,所以2222222a c b a -==,即2223c a =,所以26=e 。
故选B2.【2012高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y162=的准线交于,A B两点,A B =C 的实轴长为( )()A ()B ()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-yx,所以2,42==a a,所以实轴长42=a ,选C.3.【2012高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有PF F F 212=,,因为2130=∠F PF ,所以260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=ac ,所以椭圆的离心率为43=e ,选C.4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年普通高等学校招生全国统一考试 (新课标文科数学试卷及参考答案)第Ⅰ卷一、选择题1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )(A )-1 (B )0 (C )12(D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角E 的离心率为( )(A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的7.如图,网格纸上小正方形的边长为1,粗线画出的何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x 条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )811.当0<x ≤12时,4x<log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) (A )3690 (B )3660 (C )1845 (D )1830 第Ⅱ卷二.填空题13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=16.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =____三、解答题17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求A(2) 若a =2,△ABC 的面积为3,求b ,c 18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
数学试卷 第1页(共24页)数学试卷 第2页(共24页)数学试卷 第3页(共24页)绝密★启用前2012年普通高等学校招生全国统一考试(全国新课标卷1)数学(文科)适用地区:海南、宁夏、黑龙江、吉林、山西、河南、新疆、云南、河北、内蒙古注息事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4. 考试结束后,将本试卷和答且卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .A ⫋B B . AB φ=C . A B =D . B ⫋A 2. 复数3i2iz -+=+的共轭复数是 ( )A . 2i +B . 1i --C . 1i -+D . 2i -3. 在一组样本数据11(,)x y ,22(,)x y ,,(,)n n x y (122,,,,n n x x x ≥不全相等)的散点图中,若所有样本点(,)i i x y (1,2,,)i n =都在直线112y x =+上,则这组样本数据的样本相关系数为( )A . 1-B . 0C . 12D . 14. 设1F 、2F 是椭圆E :22221(0)x y a b a b +=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30°的等腰三角形,则E 的离心率为( )A . 12B . 23C . 34D . 455. 已知正三角形ABC 的顶点(1,1)A ,(1,3)B ,顶点C 在第一象限,若点(,)x y 在ABC △内部,则z x y =-+的取值范围是( )A . (13,2)-B . (0,13)+C . (31,2)-D . (0,2)6. 如果执行右边的程序框图,输入正整数(2)N N ≥和实数1a ,2a ,,N a ,输出A ,B ,则( )A . AB +为1a ,2a ,,N a 的和B .2A B+为1a ,2a ,,N a 的算术平均数C . A 和B 分别是1a ,2a ,,N a 中最大的数和最小的数D . A 和B 分别是1a ,2a ,,N a 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A . 6B . 9C . 12D . 188. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB . 43πC . 46πD . 63π9. 已知0ω>,0πϕ<<,直线π4x =和5π4x =是函数()sin()f x x ωϕ=+图象的两条相邻的对称轴,则ϕ=( )A .π4B .π3C .π2D .3π410. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||43AB =,则C 的实轴长为( )A .2 B . 22 C . 4D . 8 11. 当102x <≤时,4log xa x <,则a 的取值范围是( )A . 2(0,)2B . 2(,1)2C . (1,2)D . (2,2) 12. 数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为( )A . 3 690B . 1 830C . 1 845D . 3 660第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13. 曲线(3ln 1)y x x =+在点(1,1)处的切线方程为_________.14. 等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_________. 15. 已知向量a ,b 夹角为45,且||1=a ,2|10-=|a b ,则|=|b _________.16. 设函数22(1)sin ()1x xf x x ++=+的最大值为M ,最小值为m ,则M m +=_________.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共24页)数学试卷 第5页(共24页)数学试卷 第6页(共24页)三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,3sin cos c a C c A =-. (Ⅰ)求A ;(Ⅱ)若2a =,ABC △的面积为3,求b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310(ⅰ)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ⅱ)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=,112AC BC AA ==,D 是棱1AA 的中点.(Ⅰ)证明:平面1BDC ⊥平面BDC ;(Ⅱ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C :22(0)x py p =>的焦点为F ,准线为l .A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若90BFD ∠=,ABD △的面积为42,求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)设函数()e 2xf x ax =--.(Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的外接圆于F ,G 两点.若CF AB ∥,证明: (Ⅰ)CD BC =; (Ⅱ)BCD GBD △∽△.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π(2,)3. (Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PA PB PC PD +++的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-.(Ⅰ)当3a =-时,求不等式()3f x ≥的解集;(Ⅱ)若()4|f x x -≤|的解集包含[1,2],求a 的取值范围.(1,2]A B=,集合BA B。
2024年普通高等学校招生全国统一考试(新课标I 卷)数学本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}-B.{2,3}C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.,则圆锥的体积为()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()2021e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7.当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx∈上函数π2sin36y x⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x <C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于B24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d ,则1255d ==,则将直线AP 沿着与AP 垂直的方向平移5单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,1255=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B到直线AP 的距离5d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,1255=,解得32k =,此时33,2B ⎛⎫--⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD 的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
绝密*启用前2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅【解析】集合}21{}02{2<<-=<--=x x x x x A ,又}11{<<-=x x B ,所以B 是A 的真子集,选B.【答案】B2.复数z =-3+i2+i的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i 【解析】i i i i i i ii z +-=+--+-+-=++-=1555)2)(2()2)(3(23,所以其共轭复数为i z --=1,选D.【答案】D3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12+1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12(D )1【解析】根据样子相关系数的定义可知,当所有样本点都在直线上时,相关系数为1,选D. 【答案】D4.设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】因为12PF F ∆是底角为30的等腰三角形,则有PF F F 212=,,因为2130=∠F PF ,所以260=∠D PF ,0230=∠DPF,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=ac ,所以椭圆的离心率为43=e ,选C.【答案】C5、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)【解析】 做出三角形的区域如图,由图象可知当直线z x y +=经过点B 时,截距最大,此时231=+-=z ,当直线经过点C 时,直线截距最小.因为x AB ⊥轴,所以2231=+=C y ,三角形的边长为2,设)2,(x C ,则2)12()1(22=-+-=x AC ,解得3)1(2=-x ,31±=x ,因为顶点C 在第一象限,所以31+=x ,即)2,31(+代入直线y x z +-=得312)31(-=++-=z ,所以z 的取值范围是231<<-z ,选A.【答案】A6.如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则 (A )A+B 为a 1,a 2,…,a N 的和 (B )A +B2为a 1,a 2,…,a N 的算术平均数 (C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数【解析】根据程序框图可知,这是一个数据大小比较的程序,其中A为最大值,B为最小值,选C.【答案】C7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()()A 6 ()B 9 ()C 12 ()D 18【解析】选B 由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B.【答案】B8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π 【解析】球半径3)2(12=+=r ,所以球的体积为ππ34)3(343=⨯,选B.【答案】B9.已知ω>0,πϕ<<0,直线4π=x 和45π=x 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4【解析】因为4π=x 和45π=x 是函数图象中相邻的对称轴,所以2445T =-ππ,即ππ2,2==T T .又πωπ22==T ,所以1=ω,所以)sin()(ϕ+=x x f ,因为4π=x 是函数的对称轴所以ππϕπk +=+24,所以ππϕk +=4,因为πϕ<<0,所以4πϕ=,检验知此时45π=x 也为对称轴,所以选A.【答案】A10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-yx,所以2,42==a a,所以实轴长42=a ,选C.【答案】C11.当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)【解析】当1>a 时,显然不成立.若10<<a 时当21=x 时,24421==,此时对数221log =a,解得22=a ,根据对数的图象和性质可知,要使x a xlog 4<在210≤<x 时恒成立,则有122<<a ,如图选B.【答案】B12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830【解析】由12)1(1-=-++n a a n nn 得,12]12)1[()1(12)1(112++-+--=++-=-++n n a n a a n n n n n n 12)12()1(++--+-=n n a nn ,即1212)1(2++--=++n n a a n n n )(,也有3212)1(13+++--=+++n n a a nn n )(,两式相加得44)1(2321++--=++++++n a a a a nn n n n ,设k 为整数,则10`164)14(4)1(21444342414+=+++--=++++++++k k a a a a k k k k k , 于是1830)10`16()(144434241414060=+=+++=∑∑=++++=k a a a aS K k k k k K【答案】D第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答. 二.填空题:本大题共4小题,每小题5分.(13)曲线y =x (3ln x +1)在点)1,1(处的切线方程为________ 【解析】函数的导数为4ln 331ln 3)('+=⨯++=x xx x x f ,所以在)1,1(的切线斜率为4=k ,所以切线方程为)1(41-=-x y ,即34-=x y .【答案】34-=x y(14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 【解析】显然公比1≠q ,设首项为1a ,则由0323=+S S ,得qq a qq a --⨯-=--1)1(31)1(2131,即4323=-+q q ,即)1(4)1(4422223=-+-=-+-q q q q q q ,即0)44)(1(2=++-q q q ,所以0)2(4422=+=++q q q ,解得2-=q .【答案】2-(15)已知向量,a b夹角为45︒,且1,2a a b =-=_____b =【解析】因为102=-a ,所以10)2(2=-b a ,即104=+∙-b a ,所以104540=-+,06=--,23=2-=(舍去).【答案】 (16)设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =____【解析】1sin 211sin 211sin )1()(22222+++=++++=+++=x x x x xx x x xx x f ,令1s i n 2)(2++=x xx x g ,则)(x g 为奇函数,对于一个奇函数来说,其最大值与最小值之和为0,即0)()(m i n m a x =+x g x g ,而mama x )(1)(x g x f +=,minmin )(1)(x g x f +=,所以2)()(min ma x =+x f x f .【答案】2三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求A(2) 若a =2,△ABC 的面积为3,求b ,c18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:(单位:元)的平均数;(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.(20)(本小题满分12分)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.B 1 CBADC 1A 1(21)(本小题满分12分)设函数f(x)= e x-ax-2(Ⅰ)求f(x)的单调区间(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.(22)(本小题满分10分)选修4-1:几何证明选讲 如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF//AB ,证明:FG(Ⅰ)CD=BC ; (Ⅱ)△BCD ∽△GBD(23)(本小题满分10分)选修4—4;坐标系与参数方程 已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围.(24)(本小题满分10分)选修4—5:不等式选讲 已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.。