非制冷红外技术及应用
- 格式:doc
- 大小:14.94 KB
- 文档页数:5
第50卷第1期 V〇1.50 No.l红外与激光工程Infrared and Laser Engineering2021年1月Jan. 2021非制冷红外探测器研究进展(特邀)余黎静^3,唐利斌杨文运2,郝群”(1.北京理工大学光电学院信息光子技术工信部重点实验室,北京10008卜,2.昆明物理研究所,云南昆明650223;3.云南省先进光电材料与器件重点实验室,云南昆明650223)摘要:非制冷红外探测器由于无需制冷装置,能够工作在室温状态下,具有成本低、体积小、功耗低 等特点,在红外领域得到了广泛的应用。
在军事应用方面,非制冷型探测器的应用逐渐进入了之前制 冷型探测器的应用范围,大量应用在一些低成本的武器系统,甚至在一些应用领域取代了原来的非制 冷型探测器。
在民用领域方面,更表现出了其价格和使用方便的优势,在民用车载夜视、安防监控等应 用领域引起了广泛的兴趣和关注。
文中介绍了 Bolometer、热释电、热电堆等几种典型非制冷红外探测 器的工作原理,列举了目前已实现商业化应用的主要产品在国内外的情况,着重介绍了目前应用最广 泛的Bolometer器件主流产品的像元间距、阵列规格、性能及其封装发展的情况。
除了已实现商业化 应用的Bolometer、热释电、SO I二极管等探测器等产品,还详细介绍了一些非制冷探测新技术或新型 器件:比如超表面在增强某些波段吸收方面的应用,新材料的Bolometer探测器、双材料新型非制冷器 件、石墨烯、量子点、纳米线等光电探测技术的研究进展。
最后文章还对今后非制冷红外探测器的发展 趋势作了预测。
关键词:非制冷;红外探测器;热释电;Bolometer;封装中图分类号:TN215 文献标志码:A D O I:10.3788/IRLA20211013Research progress of uncooled infrared detectors(Invited)Yu Lijing1'2'3,Tang Libin1'2'3*,Yang Wenyun2,Hao Qun1*(1. The Laboratory of Photonics Information Technology, Ministry of Industry and Information Technology,School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;2. Kunming Institute of Physics, Kunming 650223, China;3. Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, Kunming 650223, China)Abstract:Uncooled infrared detectors are widely used in the infrared field due to their low cost,small size,and low power consumption because they do not need the cooling device and can work at room temperature.In military application field,the uncooled detector has gradually entered the application domain of previous refrigerated detector,and has been widely used in some low-cost weapon systems,even replaced the original uncooled detectors in some application fields.In the civil field,it has shown its advantages in price and ease of use,and has aroused widespread interest and attention in civil in-vehicle night vision,security monitoring and other application field.The working theory of several typical uncooled infrared detectors such as Bolometer, pyroelectric,thermopile,etc.were introduced,and the status of the main products that have been commercialized at home and abroad was enumerated,the development of pixel pitch,array specifications,performance and收稿日期:2020-1卜24;修订日期:2020-12-08基金项目:国家重点研发计划(2019YFB2203404);云南省创新团队(2018HC020)packaging of mainstream bolometer devices was focused,which were currently the most widely used.In addition to the bolometer,pyroelectric,SOI diode and other products that had been commercialized,some new uncooled detection technologies or new detectors were introduced in detail:such as the application of metasurfaces in enhancing absorption in certain wavebands,the research progress of new materials bolometer,new bi-material uncooled devices,graphene,quantum dots,nanowires and other photoelectric detection technologies.Finally,the future development trend of u ncooled infrared detectors were predicted in the end of t he review. Key words:uncooled;infrared detector;pyroelectric;bolometer;package〇引言在红外系统中,红外探测器作为探测、识别目标 的关键,其主要作用是将人射的红外信号转化为可以 检测的电信号后进行输出。
陶瓷封装非制冷型红外探测器说明书陶瓷封装非制冷型红外探测器是一种新型的红外探测器,它采用陶瓷封装技术,具有高灵敏度、高性能和高稳定性等特点。
陶瓷封装非制冷型红外探测器在图像采集、红外夜视和监控等领域得到了广泛的应用,是一种非常优秀的红外探测器。
本文将围绕“陶瓷封装非制冷型红外探测器说明书”展开阐述,分步骤进行介绍。
第一步:产品概述陶瓷封装非制冷型红外探测器是一种基于红外探测技术的新型探测器,可以实现对红外光信号的高效采集和处理。
该产品采用了先进的陶瓷封装技术,可以有效地保护探测器内部的电路和元件,提供了稳定的工作环境。
该产品具有高灵敏度、高性能和高稳定性等优点,适用于多种领域的应用。
第二步:产品参数陶瓷封装非制冷型红外探测器的参数如下:1、探测范围:8~14um;2、分辨率:≤320×256;3、灵敏度:≤50mK;4、工作温度范围:-40℃~60℃;5、封装方式:陶瓷封装;6、接口类型:USB。
第三步:产品特点陶瓷封装非制冷型红外探测器具有以下特点:1、采用先进的陶瓷封装技术,保护探测器内部元件稳定可靠;2、具有高灵敏度和高分辨率的优点,可以准确地采集和处理红外光信号;3、工作温度范围广,适用于多种环境下的使用需求;4、USB接口方便快速连接,使用简单快捷。
第四步:使用说明使用陶瓷封装非制冷型红外探测器时,请遵循以下步骤:1、打开电源开关并连接USB接口;2、将探测器对准目标区域,确保与目标区域的距离合适;3、启动探测器软件,并进行图像采集和处理;4、操作完毕后,关闭软件并断开USB接口连接。
第五步:产品维护为了确保陶瓷封装非制冷型红外探测器的正常使用,应该注意以下维护事项:1、定期清洁探测器外部和接口处的灰尘和杂物;2、避免探测器长时间处于高温或低温环境下;3、避免探测器落地或被碰撞。
总体来说,陶瓷封装非制冷型红外探测器是一种非常优秀的红外探测器,具有高灵敏度、高性能和高稳定性等特点。
非制冷红外焦平面阵列信号处理电路的设计-概述说明以及解释1.引言1.1 概述非制冷红外焦平面阵列是一种重要的红外传感器,具有广泛的应用前景。
与传统冷却红外焦平面阵列相比,非制冷红外焦平面阵列不需要额外的冷却机制,因此具有更小、更轻、更便捷的特点。
由于其在热成像、火情监测、夜视、目标探测、红外光谱等领域具有广泛的应用价值,因此其电路设计成为研究的重点。
本文旨在探讨非制冷红外焦平面阵列信号处理电路的设计,重点是要分析其原理、应用,并提出相应的设计要点。
通过对非制冷红外焦平面阵列的深入研究和分析,可以揭示其内在机制,为信号处理电路的设计提供理论依据和实践指导。
文章的结构主要由引言、正文和结论三个部分构成。
在引言部分,我们将对非制冷红外焦平面阵列进行一个整体的概述,介绍其基本原理、特点和应用范围。
同时,我们还将介绍文章的结构,以便读者能够清晰地了解整篇文章的组织结构,方便查找所需信息。
通过本文的研究,我们期望能够为非制冷红外焦平面阵列信号处理电路的设计提供一些有益的指导,促进其在相关领域的应用与发展。
同时,我们还将展望非制冷红外焦平面阵列信号处理电路在未来的发展方向,为后续研究提供一定的参考依据。
总之,本文将深入探讨非制冷红外焦平面阵列信号处理电路的设计,通过对其原理和应用的研究,提出相应的设计要点,并对其未来的发展进行展望。
希望本文能为相关领域的研究人员和工程师提供一些有益的启示和参考。
1.2文章结构1.2 文章结构本文主要分为以下几个部分进行叙述和分析:第一部分是引言部分,主要对非制冷红外焦平面阵列信号处理电路的设计进行概述和介绍。
其中包括对该领域的背景和意义进行阐述,以及对文章结构和目的进行说明。
第二部分是正文部分,主要包括两个重要内容。
首先,对非制冷红外焦平面阵列的原理和应用进行详细介绍,包括其工作原理、结构组成和相关应用领域。
其次,介绍信号处理电路的设计要点,包括对信号的采集、预处理和解调等环节进行详细分析和设计方案的阐述。
非制冷红外最大焦距全文共四篇示例,供读者参考第一篇示例:非制冷红外最大焦距红外摄像技术是一种通过记录物体发出的热量来生成图像的高科技技术。
而在红外摄像技术中,焦距是一个非常重要的参数。
焦距越大,摄像机所能捕捉到的目标也就越远,这对于一些需要远距离监控的场景来说非常关键。
而在制冷红外摄像技术中,由于设备成本昂贵、能耗高等问题,制冷红外摄像技术并不适用于大规模应用。
而非制冷红外技术的发展为解决这个问题提供了可能。
目前,非制冷红外摄像技术的最大焦距已经有了很大的提升,一些高端的非制冷红外摄像机已经可以实现几十甚至上百倍的光学变焦。
这些高端的非制冷红外摄像机不仅拥有较远的最大焦距,还具有高分辨率、高灵敏度等优点,能够满足各种复杂应用场景的需求。
采用非制冷红外技术的红外摄像机不仅具有较远的最大焦距,而且还具有更广泛的应用范围。
非制冷红外技术可以应用于航空航天、军事安防、环境监测、医疗诊断等多个领域,为人们的生活和工作带来了很大的便利。
在军事领域,非制冷红外摄像技术已经被广泛应用于目标侦察、导航、火控、通信等方面。
一些先进的导弹、战斗机、无人机等装备已经配备了非制冷红外摄像技术,可以实现对敌方目标的远距离监控和精确打击,提高了作战的效果和胜算。
在环境监测领域,非制冷红外摄像技术也可以发挥重要作用。
利用非制冷红外摄像技术可以实现对森林火灾、城市热岛效应、大气污染等问题的监测和分析,可以帮助人们更好地了解和保护环境,减少自然灾害对人类造成的损失。
在医疗领域,非制冷红外摄像技术还被用于医疗诊断。
通过监测病人的体温变化可以实现对患者的早期诊断,从而帮助医生更快地制定治疗方案,提高治疗效果和患者的生存率。
非制冷红外技术在最大焦距方面的发展为一些需要长距离监控的应用场景提供了更多的选择。
随着技术的不断进步,相信非制冷红外技术在未来会有更广泛的应用和更大的发展空间。
第二篇示例:非制冷红外最大焦距随着科技的不断发展,红外摄像技术在军事、安防和工业领域等得到了广泛的应用。
第 44 卷第 2 期2024 年 4 月振动、测试与诊断Vol. 44 No. 2Apr.2024Journal of Vibration ,Measurement & Diagnosis非制冷红外热成像测温关键技术研究*曹彦鹏1,2, 张圆圆1,2, 杨将新1,2(1.浙江大学流体动力与机电系统国家重点实验室 杭州,310027)(2.浙江大学浙江省先进制造技术重点研究实验室 杭州,310027)摘要 非制冷红外热成像测温过程受环境温度、测温距离和大气湿度等诸多因素影响,因此在复杂环境中实现高精度测温颇具挑战。
为了满足复杂环境中精确测温的需求,分析并研究了非制冷红外热成像测温误差的主要影响因素和关键补偿技术。
首先,针对非制冷红外探测器输出辐射温度易受环境影响的问题,设计了基于粒子群算法优化反向传播神经网络的非制冷红外探测器辐射温度预测算法,实现了不同工作温度下辐射温度的精确预测;其次,针对测温过程中的红外辐射大气衰减现象,设计了基于大气传输软件的近地红外辐射大气透射率计算方法,实现了大气透射率的准确、快速、便捷计算;最后,整合关键误差补偿技术形成了完整的非制冷红外热成像测温方法,并实验验证了以上关键技术对于提高红外测温精度和环境适应性的有效性。
关键词 非制冷红外热成像;温度测量;大气透射率;辐射温度中图分类号 TN219;TH8111 问题的引出红外热成像将可见光视觉拓展至人眼不可见的红外光谱波段,在军事、工业及民生等领域得到广泛应用,如导弹制导[1]、电气设备检测[2]、气体泄漏无损检测[3]、火灾探测与预防[4]以及生物学诊断[5]等,该技术应用实例如图1所示。
近年来,随着新型红外材料和信息处理技术的不断发展,红外热成像技术可进一步提高精度、可靠性和应用范围,向高性能、智能化、低成本的方向发展。
温度测量是红外热成像技术的重要应用之一。
红外热成像测温技术根据物体的辐射能量计算被测物体的表面温度,具有远距离、大面积、非接触性及高实时性等诸多优势,在温度测量领域发挥了重要作用。
非制冷红外成像技术及其应用蔡毅昆明物理研究所,云南,昆明,650223摘要:红外成像技术与微光图像增强技术是夜视技术的主要组成部分。
非制冷红外成像技术包括量子型和热探测型成像技术两种,都是红外热成像技术的最新成就之一。
在本文中,比较了这两种技术的特点,讨论了非制冷红外成像技术的优点、发展趋势和应用。
关键词:非制冷,红外成像,应用Uncooled Infrared Imaging Technology and It’s ApplicationCAI YiKunming Insitute of Physics, Kunming, Yunnan, P.R.China, 650223Abstract: Night vision technology includes low-light-level image intensifier technology and infrared image technology. Uncooled infrared imaging technology is one of the newest achievements of infrared thermal imaging technology. Characterizations of the low-light-level image intensifier and Uncooled infrared imaging technologies are compared, then advantage, development and application of Uncooled infrared imaging technology is discussed in the paper.Keywords: Infrared Imaging,Uncooled Infrared Imaging,Application1.红外成像技术与微光图像增强技术的比较用于夜间观察的微光和热成像装置一般由信号接收、转换、处理和显示等四大部分组成。
1 用于军事和科研领域的制冷型红外探测器发展情况适用于制冷型红外单色探测器的主流材料是InSb和碲镉汞。
InSb中波红外探测器技术相对成熟,比较容易做成低成本、大面积、均匀性好、高性能的探测器阵列。
但它也存在如工作温度不能提高等一些缺点。
适用于多波长探测的低温红外探测器的材料一般有三种,包括碲镉汞(HgCdTe)、量子阱(QWIPs)和Ⅱ类超晶格。
表6:制冷型红外探测器敏感材料对比敏感材料技术特点锑化铟技术成熟,成本较低,只能用于单色制冷红外探测器,军民大量应用,尤其以红外空空导弹为多。
碲镉汞通过改变镉的组份,可以精确的控制碲镉汞材料的禁带宽度,覆盖短波、中波和长波红外。
但是由于微小的组分偏差就会引起很大的带隙变化,其材料的稳定性、抗辐射特性和均匀性都相对较差,所以成品率较低,成本非常高。
量子阱生长技术成熟,并且生长面型均匀,受控性好;价格低廉、产量大、热稳定性高。
但其结构特殊性使得正入射光无法很好地被探测器吸收,致使量子阱探测器的量子效率并不理想。
Ⅱ类超晶格拥有较高的探测灵敏度,几乎可以与碲镉汞相媲美。
隧穿电流和暗电流均较小,对工作温度的要求相对宽松。
提高性能、缩小体积和降低成本是目前碲镉汞探测器的三大研究方向。
国内研究碲镉汞红外探测器的单位主要包括昆明物理研究所、高德红外。
昆明物理所从2006年就开始着手碲镉汞中波红外探测器的研发工作,并于2010年实现了量产。
2015年,昆明物理研究所量产的640×512中波红外探测器实现了在温度为110K,NETD为19.7mK,有效像元率为99.33%的技术指标,标志着我国中波探测器性能指标基本达到同一时期发达国家的技术水平。
据高德红外子公司高芯科技官网显示,该公司研制了国内最新款制冷型碲镉汞中波红外探测器CB12M MWIR,其面阵规格为1280×1024,像元尺寸为12μm,NETD小于20Mk(F2/F4)。
技术指标达到国内外顶尖水平。
制冷和非制冷红外探测器区别配备制冷型探测器的红外热像仪比配备非制冷型探测器的红外热像仪具有更多优势。
然而,这类热像仪价格更昂贵。
新款的制冷型红外热像仪带有集成冷却器的成像传感器,该冷却器可将传感器温度降至低温。
通过降低传感器温度可将热感应噪声降至低于成像场景信号的噪声等级,这是十分必要的。
冷却器中的运动部件具有极其精密的机械公差,它们会随着时间的推移而磨损,而且氦气也会慢慢地渗过气体密封件。
最终,冷却器在运行了10,000-13,000小时后必须进行返修。
非制冷型红外热像仪存在以下问题:研发应用中,何时更应该使用制冷型红外热像仪?答案是:取决于用途。
如果您想掌握细微的温差,需要最佳的图像质量,或应用于快捷/高速的场合,如果您想看清极小目标的热特征或测量其温度,如果您想对电磁波谱中一个非常具体部分的热现象进行可视化,或如果您想将热像仪和其它测量设备同步使用等,制冷型红外热像仪无疑是您的理想选择。
实例对比高速这些红外图像对比了以20 mph速度旋转的轮胎的拍摄效果。
左边这张是用制冷型红外热像仪拍摄的。
您可能会觉得轮胎并未在转动,但这是制冷型红外热像仪在极其高速条件下的拍摄结果,它会“定格”轮胎的转动。
非制冷型红外热像仪的拍摄速度太慢,无法捕捉到轮胎旋转时使得轮辐显得透明的瞬间。
空间分辨率上述热图像对比了采用制冷型和非制冷型热像仪系统可实现的最佳特写放大效果。
左边的红外图像是用带4倍近焦镜头和像元间距13μm制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为3.5μm。
右边的红外图像是用带1倍近焦镜头和像元间距25μm非制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为25μm。
由于传感红外波长较短,制冷型红外热像仪通常具有比非制冷型红外热像仪更强的放大功能。
由于制冷型红外热像仪的灵敏度更高,因此可使用带更多光学元件或更厚元件的镜头而不降低信号噪声比,从而提升了放大功能。
灵敏度制冷型红外热像仪灵敏度改善带来的价值往往并不显而易见。
非制冷红外热成像系统研究非制冷红外热成像系统研究一、引言近年来,红外热成像技术在军事、安防、医学、工业等领域得到了广泛的应用。
传统的红外热成像系统主要基于制冷红外探测器,这些探测器需要高昂的成本、复杂的维护和制冷设备。
然而,随着红外技术的不断发展,非制冷红外热成像系统逐渐成为了研究的热点。
二、非制冷红外热成像系统原理非制冷红外热成像系统基于热辐射现象,通过探测目标物体发出的红外辐射,将其转化为图像信号,实现对目标物体表面温度的测量与显示。
与制冷红外探测器不同,非制冷红外热成像系统采用了无需制冷的探测器,大大降低了设备的成本和维护的复杂性。
三、非制冷红外热成像系统的关键技术1. 探测器技术非制冷红外热成像系统的关键技术之一是探测器技术。
当前非制冷红外探测器主要包括未冷却红外探测器和热电偶阵列探测器。
未冷却红外探测器是利用红外辐射热量改变电阻、电容或电压等特性的材料进行测量,具有工作温度较高、成本较低等特点;热电偶阵列探测器则是利用热电效应,在一定温度范围内实现红外辐射的探测。
2. 图像处理技术非制冷红外热成像系统中图像处理技术的重要性不言而喻。
图像处理技术包括图像增强、辐射校正、噪声处理等。
图像增强技术主要用于增强图像的对比度、细节和边缘;辐射校正技术主要用于获得准确的目标表面温度;噪声处理技术主要用于抑制图像中的噪声。
3. 热画面分析技术非制冷红外热成像系统的最终目标是对目标物体的热画面进行分析。
热画面分析技术主要包括目标检测、目标识别以及温度测量等。
目标检测技术主要用于在图像中自动检测目标物体;目标识别技术主要用于识别目标物体的类别;温度测量技术主要用于测量目标物体的表面温度。
四、非制冷红外热成像系统的应用领域1. 军事应用非制冷红外热成像系统在军事领域有着广泛的应用。
它可以用于军事目标的侦查与追踪、目标的识别与瞄准、夜视装备等方面,提高了战场的情报获取和打击能力。
2. 安防应用非制冷红外热成像系统在安防领域也有着重要的应用。
非制冷式红外探测器原理研究摘要:随着信息技术的发展,红外探测技术已经被广泛应用于军事、民用、科研等众多领域。
其中,非制冷红外焦平面探测器具有无需制冷、成本低、功耗小、重量轻、小型化、使用灵活方便等特点,是当前非制冷红外探测技术研究和应用的热点和重点。
自然界所有温度在绝对零度(-273℃)以上的物体都会发出红外辐射,红外图像传感器则将探测到的红外辐射转变为人眼可见的图像信息。
红外成像技术涵盖了红外光学、材料科学、电子学、机械工程技术、集成电路技术、图像处理算法等诸多技术,红外成像装置的核心为红外焦平面探测器。
非制冷红外焦平面探测器的工作原理是利用红外辐射的热效应,由红外吸收材料将红外辐射能转换成热能,引起敏感元件温度上升。
敏感元件的某个物理参数随之发生变化,再通过所设计的某种转换机制转换为电信号或可见光信号,以实现对物体的探测。
非制冷红外焦平面探测器分为五大类:热释电型、热电堆型、二极管型、热敏电阻型热电容型。
本文对前四种红外探测器的工作原理进行了详细阐述,并且对每种红外焦平面探测器的关键技术例如读出电路IC技术进行了详细探究,总结了不同类型探测器的优缺点。
关键词:红外探测技术;非制冷红外焦平面探测器;读出电路;敏感元件第一章绪论1.1研究背景及课题意义随着科学技术的飞速发展以及信息社会的到来,各行各业甚至人类日常生活对信息的获取需求与日俱增。
与制冷红外成像系统相比,非制冷红外成像系统可在室温工作,省掉了昂贵且笨重的制冷设备,从而大大减小了系统的体积、成本和功耗;此外还可提供更宽的地频谱响应和更长的工作时间。
国外机构已经为军事用户提供了大量成本低、可靠性更高的高灵敏非制冷红外成像仪。
同众多高新技术一样,红外技术也是由于军事的强烈需求牵引而得以迅速发展的。
红外成像系统可装备各类战术和战略武器,常用于红外预警、侦查、跟踪、导航、夜视、大地测绘和精确制导,是电子战、信息战中获取信息的主要技术之一。
与其他探测方式不同的是,红外探测属于被动探测系统,探测系统并不主动向目标发射探测信号,相反只是通过接受目标红外辐射来完成识别任务。
制冷型和非制冷型的红外成像仪原理Infrared imaging cameras, also known as thermal imaging cameras, are an important tool in various industries. They are used to detect and visualize the temperature of objects and materials by capturing the infrared radiation emitted by them. The two main types of infrared imaging cameras are refrigerated (cryogenic) and uncooled.红外成像仪,也称为热成像仪,在各行各业中都是重要的工具。
它们通过捕获物体和材料发射的红外辐射来检测和可视化它们的温度。
红外成像仪主要有两种类型,即制冷型(冷却型)和非制冷型。
Refrigerated infrared cameras, also known as cryogenic cameras, use a cooling system to maintain the detector at a very low temperature, typically around -320°F (-196°C). This cooling process allows the detector to be more sensitive to the infrared radiation and produce higher resolution images. The cryogenic cooling system usually involves using a mechanical refrigeration system or a Stirling cooler to achieve the low temperatures required for optimal performance.制冷型红外相机,也称为冷却型相机,采用冷却系统将探测器保持在非常低的温度,通常约为-320°F(-196°C)。
非制冷型红外探测器原理非制冷型红外探测器是一种用于探测红外辐射的设备,它利用红外辐射与物体的热量之间的关系来测量物体的温度。
与传统的制冷型红外探测器相比,非制冷型红外探测器具有更大的优势,如更低的成本、更小的尺寸、更长的使用寿命等。
非制冷型红外探测器的工作原理基于一个重要的物理现象,即红外辐射是物体在室温下释放的热量。
任何物体都会发出一定波长的红外辐射,而这些辐射的强度与物体的温度密切相关。
非制冷型红外探测器利用这个特性来测量物体的温度。
非制冷型红外探测器通常由红外探测器、光学系统和信号处理电路组成。
红外探测器是器件的核心部件,它负责将红外辐射转换为电信号。
常见的红外探测器有热电偶和热释电型。
热电偶是最早被使用的红外探测器之一,它基于热电效应。
当红外辐射照射到热电偶上时,偶极子材料会因温差产生电压信号。
这个信号随着红外辐射的强度变化而变化,从而实现红外辐射的探测。
热电偶的优点是简单、灵敏度高,但其响应时间较长。
热释电型红外探测器则是利用热释电效应来工作的。
它通常由一块热敏材料和一对电极组成。
当红外辐射照射到热敏材料上时,材料的温度会上升,导致电极之间的电荷变化。
这个电荷变化被转换为电压信号并进行放大处理,从而实现红外辐射的探测。
热释电型红外探测器的优点是快速响应和高灵敏度,但其相对复杂,制造工艺要求较高。
除了红外探测器,光学系统也是非制冷型红外探测器不可或缺的部分。
它负责将红外辐射聚焦到探测器上。
光学系统通常由透镜和反射镜组成,它们能够对红外辐射进行聚焦和反射,使探测器能够接收到更多的红外辐射,从而提高探测器的灵敏度和性能。
信号处理电路是非制冷型红外探测器另一个重要的组成部分。
它负责接收、放大和处理探测器输出的电信号,并将其转换为可用的红外温度信息。
信号处理电路通常包括滤波器、放大器和模数转换器等,可根据需求进行设计和组合。
非制冷型红外探测器在许多领域中得到广泛应用。
例如,在工业领域,它可以用于检测设备运行状况、监测热量分布等。
非制冷红外技术及应用
蓝海光学招募:镜头装配主管,镜头销售人员光学人生,你的精彩人生!一、红外热成像技术简介自然界所有温度在绝对零度(-273℃)以上的物体都会发出红外辐射,红外图像传感器则将探测到的红外辐射转变为人眼可见的图像信息。
红外成像技术涵盖了红外光学、材料科学、电子学、机械工程技术、集成电路技术、图像处理算法等诸多技术,红外成像装置的核心为红外焦平面探测器。
二、非制冷红外技术概述2.1 非制冷红外技术原理非制冷红外探测器利用红外辐射的热效应,由红外吸收材料将红外辐射能转换成热能,引起敏感元件温度上升。
敏感元件的某个物理参数随之发生变化,再通过所设计的某种转换机制转换为电信号或可见光信号,以实现对物体的探测。
非制冷红外焦平面探测器分类2.2 非制冷红外探测器的关
键技术
热释电型红外辐射使材料温度改变,引起材料的自发极化强度变化,在垂直于自发极化方向的两个晶面出现感应电荷。
通过测量感应电荷量或电压的大小来探测辐射的强弱。
热释电红外探测器与其他探测器不同,它只有在温度升降的过程中才有信号输出,所以利用热释电探测器时红外辐射必须经过调制。
探测材料:硫酸三甘肽、钽酸锂、钽铌酸钾、钛(铁
电)酸铅、钛酸锶铅、钽钪酸铅、钛酸钡热电堆由逸出功不同的两种导体材料所组成的闭合回路,当两接触点处的温度不同时,由于温度梯度使得材料内部的载流子向温度低的一端移动,在温度低的一端形成电荷积累,回路中就会产生热电势。
(塞贝克效应Seebeck)而这种结构称之为热电偶。
一系列的热电偶串联称为热电堆。
因而,可以通过测量热电堆两端的电压变化,探测红外辐射的强弱。
二极管型利用半导体PN结具有良好的温度特性。
与其他类型的非制冷红外探测器不同,这种红外探测器的温度探测单元为单晶或多晶PN结,与CMOS工艺完全兼容,易于单片集成,非常适合大批量生产。
热敏电阻型(微测辐射热计)利用热敏电阻的阻值随温度变化来探测辐射的强弱。
一般探测器采用悬臂梁结构,光敏元吸收红外热辐射,由读出电路测量热敏材料电阻变化而引起的电流变化,通过读出电路对电信号采集分析并读出。
探测器一般采用真空封装以保证绝热性好。
探测材料:氧化钒、非晶硅、钛、钇钡铜氧等氧化钒VOx的TCR 一般为2%~3%,特殊方法制备的单晶态VO2和V2O5可达4%。
VOx具有电阻温度系数大,噪声小的特点,被广泛用作非制冷式红外焦平面传感器的热敏材料。
全球的非制冷红外热像仪市场中,使用VOx非制冷红外探测器的占80%以上。
氧化钒VOx的制备方法:溅射法、溶胶-凝胶法、脉冲激光沉积法、蒸发法。
读出电路IC技术ROIC对微弱的红
外辐射信号产生的电信号进行提取、积分、放大、模数转换。
甚至完成片上非均匀性矫正、片上数模转换功能。
ROIC是模混合电路系统模拟部分:单元偏置电路、积分电路、采样/保持电路等。
数字部分:中央时序控制、行选控制、列选控制等。
低成本真空封装技术为了保证探测器光敏元在接收微弱的辐射后,其接收到热能不与其他介质发生热交换,需要把探测器芯片封装在真空中,并保证良好的气密性。
封装体的具体要求是:优异且可靠的密闭性;具有高透过率的红外窗口;高成品率;低成本。
目前的封装技术可分为芯片级、晶圆级、像元级等,其中芯片级封装技术按照封装外壳的不同又可分为金属管壳封装和陶瓷管壳封装。
金属管壳封装是最早开始采用的封装技术,技术已非常成熟,由于采用了金属管壳、TEC 和吸气剂等成本较高的部件,导致金属管壳封装的成本一直居高不下,使其在低成本器件上的应用受到限制。
陶瓷管壳封装是近年来逐渐普及的红外探测器封装技术,可显著减小封装后探测器的体积和重量,且从原材料成本和制造成本上都比传统的金属管壳封装大为降低,适合大批量电子元器件的生产。
2.3 探测器的技术指标X响应率RIRvX噪声等效功率NEPX探测率D*X非均匀性UNX噪声等效温差NETDX最小可分辨温差MRTD
三、非制冷红外探测器应用X消防应用X驾驶员视觉辅助系统X边海防、城市安防、港口监视系统X车载、舰载、机载光电舱X武器热瞄具X医疗诊断X电力检测X工业过程控
制X……
应用案例介绍穿透烟雾、克服雨雾能力强当火灾发生后,尤其是森林火灾的情况下,火焰产生的烟雾很大,往往遮盖了真正的着火点,以及火灾的蔓延趋势。
红外热像仪有很强的穿透烟雾的能力,可有效地发现真正的着火点,以及火灾的蔓延趋势,因此,可用于指挥救火,尽量减少经济、人员的损失。
森林景区监测通过红外热像仪对景区文物、建筑及整体环境的防火监测,包括对景区内游客、工作人员抽烟或其他点火行为的监控。
现场救援在浓烟雾的火灾现场,利用红外热像仪快速搜救被困人员和动物。
四、国内外厂商主要产品
五、非制冷探测器技术机遇与挑战高性能的非制冷红外探测器的实现,关键在于探测器结构的设计以及读出电路的设计。
低成本的关键因素取决于探测器结构的加工方式,以及探测器的封装方式。
像元尺寸不断的减小阵列规模持续增加晶圆级封装及低成本封装工程化应用包含数字化、非均匀性矫正的片上处理系统的读出电路设计
小型化低功耗低成本光学人生= lm_optical = END。