高考数学易错易混知识点全解析
- 格式:doc
- 大小:491.55 KB
- 文档页数:8
高考数学易错点及重要知识点归纳高考数学是高中阶段各科中相对较难的一门科目,考试难度也相对较高,很容易让考生犯错,导致分数损失。
本文将总结高考数学易错点及重要知识点,并提供相应的解题技巧,希望考生能够避免犯错,取得好成绩。
一、易错点1.符号混淆这是数学中比较普遍的一个易错点,包括加减号、乘号、除号、左右括号等符号的混淆。
一旦出现符号混淆,就会直接导致答案错误或提高解题难度。
因此,考生在做题时要非常注意符号的正确使用。
2.大意误解有些考生在做题时,阅读理解出现失误,对题目的意思产生误解,从而造成答案错误。
所以一定要认真读题理解,分析问题。
尤其是碰到长篇阅读理解时,要先明确大意。
3.计算错误在数学中,很多题目难度相对较低,但往往因为一些简单的计算错误而导致错误答案。
这种错误需要我们在平时做题中多加注意和练习,对于那些需要计算的题目尤其重要。
4.公式错误在解决复杂问题时,我们往往会用到一些公式,不过使用公式时也有可能写错或理解不正确,导致答案错误。
因此,我们必须学会正确地运用公式。
5.转化错误在一些题目中,需要把题目中的信息转化为数学式子,但转化时有可能出现问题。
转化错误的解题方法很难想,因此,要认真仔细看题,并多加练习。
二、重要知识点1.根式根式是数学中常见的一类表达式,在高考数学中也经常出现。
根式的运算和化简需要考生细心认真对待。
2.平面几何平面几何中涉及到的知识点非常多,包括图形的基本性质、相邻角、对顶角、内角和、外角和、周长与面积等等。
考生需要熟记这些知识点,并掌握相应的解题技巧。
3.立体几何立体几何是高考数学中比较难的部分,需要考生掌握图形的三维空间形态,涉及到的知识点包括图形的表面积、体积、棱长、斜高等。
4.导数导数是高中数学中非常重要的一个概念,在高考数学中占有很大的分值和比重。
考生需要明确掌握导数的定义、运算法则等知识点,能够熟练地运用这些知识解决问题。
5.函数函数在高考数学中出现得非常频繁,考生需要掌握函数的概念、性质和运算法则,将它们应用到相应的问题中,解题思路要清晰、技巧到位。
高考数学最易丢分的20个知识点高考数学是很多学生头疼的问题,尤其是一些易丢分的知识点更是需要我们特别关注。
以下是高考数学中最易丢分的20个知识点:知识点一:函数的定义域和值域在理解函数的定义域和值域时,很多学生容易混淆,导致在选择答案时出现错误。
知识点二:直线与平面的交点在求直线与平面的交点时,很多学生容易出现计算错误或者解方程错误的情况。
知识点三:函数的奇偶性在判断函数的奇偶性时,很多学生容易忽视符号取值规律,从而出现判断错误的情况。
知识点四:平移、旋转和对称变换在进行平移、旋转和对称变换时,很多学生容易出现计算错误的情况,尤其是在计算坐标时容易混淆。
知识点五:函数的极值与最值在求函数的极值和最值时,很多学生容易出现求导错误、计算错误等问题。
知识点六:数列的通项公式在推导数列的通项公式时,很多学生容易出现计算错误或者漏项的情况。
知识点七:平方根和立方根的计算在进行平方根和立方根的计算时,很多学生容易出现计算错误的情况,尤其是多次开根时更容易出错。
知识点八:二次函数的图像在画出二次函数的图像时,很多学生容易忽略平移和缩放的特征,从而导致图像绘制错误。
知识点九:概率与统计在概率与统计中的概念理解和计算中,很多学生容易出现混淆和计算错误的情况。
知识点十:数列与函数的综合应用在数列与函数的综合应用题中,很多学生容易迷失在繁杂的信息中,导致无法理清思路。
知识点十一:复数的运算在进行复数的加减乘除运算时,很多学生容易出现计算错误或者混淆实部与虚部的概念。
知识点十二:立体几何题在解立体几何题时,很多学生容易出现计算错误或者对几何图形的性质理解不透彻的情况。
知识点十三:勾股定理和余弦定理在运用勾股定理和余弦定理解决三角形问题时,很多学生容易出现运算错误或者无法正确应用相应的定理。
知识点十四:解三角函数的方程在解三角函数的方程时,很多学生容易出现计算错误或者解方程错误的情况。
知识点十五:圆与圆的位置关系在判断圆与圆的位置关系时,很多学生容易出现计算错误或者判断错误的情况,尤其是在应用相切和相交的性质时更容易出错。
高考数学出错知识点近年来,随着高考数学难度的增加,考生对于数学出错知识点的关注也越来越高。
本文将详细介绍高考数学中常见的出错知识点,帮助广大考生避免犯错,取得好成绩。
一、函数知识点容易出错1.函数概念混淆:有些考生经常将函数的自变量和因变量搞混,这是一个常见的错误。
函数的自变量是指函数中的变量,而因变量则是由自变量决定的变量。
2.函数运算错误:在进行函数的加、减、乘、除等运算时,考生容易出错。
在进行函数运算时,需要正确对函数进行合并、分解等操作。
3.反函数的理解不准确:有关反函数的相关概念,考生容易混淆。
反函数是指一个函数f的逆函数,记为f的倒数。
考生在使用反函数时,需要注意区分正函数和反函数之间的关系。
二、概率与统计中容易出错的知识点1.概率的计算错误:在计算概率时,考生容易犯错。
计算概率时,需要根据事件的样本空间和样本点进行确定,而不是随意计算。
2.核心概念混淆:在统计学中,考生容易混淆样本均值和总体均值、样本方差和总体方差等概念。
考生需要明确这些概念的含义和计算方法。
3.抽样调查错误:在进行抽样调查时,考生经常犯错。
抽样调查需要满足一定的条件,而不是随意进行,否则会导致结果的不准确。
三、函数与方程中容易出错的知识点1.解方程错误:在解方程时,考生容易漏项、错项或者运算错误。
在解方程的过程中,要仔细检查每一步是否正确,保证解答的准确性。
2.函数的性质混淆:在讨论函数的增减性、单调性和最值等性质时,考生容易混淆。
对于函数的性质要有清晰的理解,并运用正确的方法来推导和分析。
3.函数图像认知错误:在绘制函数图像时,考生容易出错。
对于不同函数类型,考生应该熟悉其图像特点,并正确绘制。
四、几何中常见的出错知识点1.平行线与垂直线的判断错误:在判断平行线和垂直线时,考生容易混淆。
考生需要掌握判断平行线和垂直线的准确方法。
2.图形对称性分析错误:在分析图形的对称性时,考生容易出错。
对于不同类型的对称图形,考生需要准确判断其对称轴和对称点。
数学高考易错知识点数学作为高考的一门必考科目,对于很多学生来说,常常是备考的难点。
在高考数学中,存在着一些易错的知识点,这些知识点往往容易被忽视或者掌握不牢固。
本文将针对数学高考易错的知识点进行一一介绍,帮助同学们更好地备考。
一、函数的性质函数作为高考数学中的重要知识点,其性质是备考中的一个难点。
容易出错的地方主要体现在函数的定义域和值域的确定以及性质的运用上。
1.1 定义域和值域的确定在确定函数的定义域和值域时,需要注意对于分式函数、根式函数以及复合函数等特殊函数的处理。
当函数中含有根式时,需要注意根式内的值域限制。
而对于复合函数,要注意其组成部分的定义域的交集。
1.2 函数性质的运用在解决函数题目时,要善于利用函数的性质,常见的函数性质包括奇偶性、周期性以及单调性等。
在运用这些性质时,需要注意掌握并理解函数性质的定义以及运用的场景。
二、立体几何立体几何是高考数学中的重要考点,易错知识点主要涉及到立体的表面积、体积以及空间几何体的相互关系。
2.1 表面积和体积的计算在计算立体的表面积和体积时,需要注意确定各个面的形状和计算公式的正确运用。
常见的错误包括计算面积时忽略一些面、计算体积时将单位换算错误等。
2.2 几何体的相互关系在解决空间几何体相互关系的题目时,容易出错的地方主要是在于立体的投影、截面的确定以及空间几何体的重叠和包含关系的分析。
在解题过程中,需要运用立体几何的相关定理和公式,确保分析的准确性。
三、数列与数学归纳法数列作为高考数学中的基础知识点,易错的地方主要涉及到数列的递推公式、通项公式的确定以及数学归纳法的运用。
3.1 数列的递推公式与通项公式在求解数列的递推公式与通项公式时,需要注意计算的正确性和准确性。
易错的地方包括计算错误、递推公式的误用以及通项公式的错误推导等。
3.2 数学归纳法的应用数学归纳法在解题时常常被用到,通过归纳给定命题的真假来解决问题。
但在使用数学归纳法时,需要注意归纳假设的正确性和递推的准确性。
高考数学最易混淆知识点归纳高考数学作为高中数学的重要组成部分,在高考中占据着很重要的位置。
一些题目可能会涉及到一些知识点的混淆,因此我们必须要对这些混淆的知识点进行整合和分类,以便于我们更好地理解和掌握。
下面,我们来分析一下高考数学中最易混淆的知识点。
一、函数的分段定义在高考数学中,我们经常涉及到函数的分段定义。
如果我们没有认真地学习和理解分段函数的定义,就很容易在相关的题目中出现混淆。
另外,有些题目需要用到二次函数、三角函数等相关的知识点,如果我们没有对这些函数进行系统化的学习,也很容易出现混淆。
二、导数的概念和应用在高考数学中,导数的概念和应用也是很重要的一个知识点。
例如,在求解变化率、极值等相关的问题时,需要用到导数的概念和应用,如果我们对这些相关的知识点没有进行归纳和整理,就很容易出错。
三、立体图形的计算在高考数学中,我们还需要涉及到立体图形的计算。
例如,在计算长方体、圆柱体、圆锥体以及球体的面积和体积等问题时,如果我们没有将这些相关的知识点进行分类、整理,就很容易出现混淆。
四、复合函数的概念在高考数学中,复合函数的概念也是很重要的一个知识点。
例如,在单项式的运算、幂函数、指数函数和对数函数的运算中都用到了复合函数的概念。
如果我们没有对这些相关知识点进行整理和分类,也很容易出现混淆。
五、统计学问题与数学知识的结合在高考数学中,我们还经常遇到同样涉及到一些统计学问题与数学知识的结合。
例如,我们需要对数据进行分析和统计,同时需要运用到平均值、标准差、方差、概率等知识点。
如果我们没有对这些知识点进行系统化的学习和整理,那么也很容易出现混淆。
综上所述,高考数学中最易混淆的知识点包括函数的分段定义、导数的概念和应用、立体图形的计算、复合函数的概念以及统计学问题与数学知识的结合。
如果我们没有对这些相关的知识点进行整理和分类,那么在做相关的题目时就很容易出现混淆。
因此,在备考高考数学时,我们需要认真复习和整理这些知识点,以便于我们更好地掌握和理解。
高三数学最容易出错的知识点高三数学是所有高中生必须面对的一门课程,无论对于理科还是文科生来说,都具有重要的意义。
然而,由于难度较大,很多学生在学习过程中经常容易出现错误。
下面就来探讨高三数学最容易出错的知识点。
一、函数方程求解在高三数学中,函数方程求解是一个难点,也是容易出错的地方。
在这个部分中,学生经常会遇到的问题是没有正确地理解什么是函数和方程。
函数是一种映射关系,而方程是函数等式的表达形式。
因此,学生要明确整个解题过程的目标是找到使方程成立的变量的值。
例如,对于一个一次函数方程y=ax+b,有的学生会错误地理解成求解y的取值范围,而不是求解x的值。
这样的错误会导致学生在解题过程中迷失方向,最终得出错误的答案。
二、导数与极值导数是高三数学中的重要概念,与函数的变化趋势密切相关。
在求导过程中,学生容易疏忽导数的定义和求解规则,从而产生错误的结果。
常见的错误包括对函数求导时未进行连续求导、未正确运用导数的运算性质和规则等。
另外,极值也是一个容易出错的知识点。
在求极值的过程中,学生往往存在以下问题:未注意判断驻点的一阶和二阶导数变化的关系、未对极大值和极小值的定义和判断准则有清晰的认识等。
这些小细节的疏忽会导致最终答案的错误。
三、概率统计概率统计是高三数学中的另一个易错知识点。
学生在计算概率时容易忽略事件间的关系、未理解概率的加法和乘法定理、使用错排列组合等。
此外,在解答概率问题时,学生还容易将条件概率与联合概率混淆,导致最终结果的不准确。
在统计部分,学生常常未能正确理解总体和样本的概念,以及如何通过样本推断总体。
此外,学生在进行数据分析时,也容易将平均值、方差和标准差等相关概念混淆,导致数据处理结果的错误。
四、向量与坐标系向量和坐标系是高三数学中的基础知识,学生在这方面容易出错。
在解题过程中,学生经常会将向量的顺序弄错,导致向量的计算结果错误。
此外,学生在进行向量的分解和合成时,容易忽略向量共线的判断条件,从而导致错误的计算结果。
2024年历年高考数学易错知识点总结1.函数与方程组的解法:在解函数与方程组的问题时,容易发生以下错误:- 求解过程的中间步骤错误:在计算过程中,容易出现计算错误、代入错误等,导致最终结果错误。
- 对特殊情况的处理错误:对于特殊情况需要进行特殊处理的问题,容易忽略或处理错误,导致最终结果错误。
- 求解思路错误:在解题思路上出现偏差或错误,导致最终结果错误。
2.立体几何的计算:在处理立体几何计算问题时,容易发生以下错误:- 图形的属性判断错误:在判断图形属性时,容易忽略或判断错误,导致最终结果错误。
- 参数的计算错误:在计算过程中,容易忽略或计算错误,导致最终结果错误。
- 提取关键信息错误:在题目中提取关键信息时,容易忽略或提取错误,导致最终结果错误。
3.概率与统计的计算:在处理概率与统计计算问题时,容易发生以下错误:- 事件之间的关系判断错误:在判断事件之间的关系时,容易忽略或判断错误,导致最终结果错误。
- 计算过程中的逻辑错误:在计算过程中,容易出现逻辑错误,导致最终结果错误。
- 概率计算的精度问题:在计算概率时,容易忽略或计算精度不够,导致最终结果错误。
4.平面几何的计算:在处理平面几何计算问题时,容易发生以下错误:- 图形的性质判断错误:在判断图形的性质时,容易忽略或判断错误,导致最终结果错误。
- 计算过程中的精度问题:在计算过程中,容易忽略或计算精度不够,导致最终结果错误。
- 坐标系的选择错误:在选择坐标系时,容易选择错误,导致最终结果错误。
5.数列与数学归纳法:在处理数列与数学归纳法问题时,容易发生以下错误:- 数列的性质判断错误:在判断数列的性质时,容易忽略或判断错误,导致最终结果错误。
- 数列的递推关系错误:在求解数列的递推关系时,容易忽略或求解错误,导致最终结果错误。
- 数学归纳法的应用错误:在应用数学归纳法时,容易出现推导或应用错误,导致最终结果错误。
6.导数与微分:在处理导数与微分问题时,容易发生以下错误:- 函数的求导错误:在求解函数的导数时,容易忽略或求解错误,导致最终结果错误。
高考数学常考的易错知识点归纳高考数学易错知识点函数与导数1.易错点求函数定义域忽视细节致误错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。
对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
2.易错点带有绝对值的函数单调性判断错误错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。
研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
3.易错点求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
4.易错点抽象函数中推理不严密致误错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
2024年高考数学最易失分知识点总结随着高考科目数学的改革,考试内容和考试形式都在不断变化,但是总体来说,高考数学的出题思路和考查点并未发生太大变化。
根据近年高考数学试题的分析,我们可以总结出一些容易导致失分的知识点。
下面是2024年高考数学最易失分的知识点总结:一、函数与方程1. 函数的定义和性质在考试中,常常会涉及到对函数的定义、函数的性质、函数图像的绘制等问题,这是学生容易出错的一个知识点。
一些常见的错误包括对函数的定义不够准确、不理解函数的性质、绘制函数图像时不符合函数的定义域等。
2. 一次函数与二次函数的性质一次函数和二次函数是高考数学中最常见的函数类型,对于这两类函数的性质要熟悉掌握。
一次函数涉及到直线的斜率和截距,二次函数涉及到抛物线的顶点、焦点、对称轴等概念。
不理解这些性质会导致在解题过程中出现偏差。
3. 求解方程求解方程是高考数学中的基本题型,要掌握各种方法和技巧。
一些常见的错误包括未注意解析解的存在性、对方程的变形不熟练、未注意特殊解的存在等。
二、几何与向量1. 平面几何基本定理和性质平面几何基本定理和性质是高考数学中的重点,要牢记各种定理和性质,并能熟练应用到解题中。
一些常见的错误包括对基本定理的不理解、应用错误的定理、判断条件不准确等。
2. 向量的运算求向量数量积、向量叉积等是高考数学中的重要内容,要熟练掌握向量运算的定义和性质。
一些常见的错误包括计算错误、向量的表示方法不准确等。
3. 圆与圆的位置关系圆与圆的位置关系是高考数学中的难点,涉及到圆的切线、切点、相交、内切、外切等问题。
一些常见的错误包括判断不准确、对位置关系的认识不准确等。
三、数列与数学归纳法1. 数列的概念和性质数列是高考数学中的重点内容,要掌握数列的概念、数列的通项公式、数列的性质等。
一些常见的错误包括对数列的概念不理解、对数列的通项公式使用不熟练等。
2. 数列的求和数列的求和是高考数学中的常见问题,要熟练掌握各种求和方法和技巧。
高考数学易错知识大全2020高考数学易错知识大全一混淆导数与单调性的关系致误错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
规避绝招:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
2020高考数学易错知识大全二易错点:用错基本公式致误错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。
在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
2020高考数学易错知识大全三an,Sn关系不清致误错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
规避绝招:当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。
2020高考数学易错知识大全四对等差、等比数列的性质理解错误错因分析:等差数列的前n项和在公差不为0时是关于n 的常数项为0的二次函数。
一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_是等差数列。
高中数学易错、易混、易忘问题备忘录1.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况. 2 求解与函数有关的问题易忽略定义域优先的原则3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.4.求反函数时,易忽略求反函数的定义域.5.函数与其反函数之间的一个有用的结论:1()()f b a f a b -=⇔=6.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数1()y f x -=也单调递增;但一个函数存在反函数,此函数不一定单调.例如:1y x=. 7.根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.) 8. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.9. 用均值定理求最值(或值域)时,易忽略验证“一正二定三等”这一条件.10. 你知道函数(0,0)b y ax a b x =+>>的单调区间吗?(该函数在(,],)ab -∞+∞和[ab 或上单调递增;在[,0)]ab -和(0,ab 上单调递减)这可是一个应用广泛的函数!11. 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀.12. 用换元法解题时,易忽略换元前后的等价性.13. 用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0.尤其是直线与圆锥曲线相交时更易忽略.14. 等差数列中的重要性质:若m+n=p+q ,则m n p q a a a a +=+; 等比数列中的重要性质:若m+n=p+q,则m n p q a a a a =.15. 用等比数列求和公式求和时,易忽略公比q=1的情况. 16. 已知n S 求n a 时, 易忽略n =1的情况.17.等差数列的一个性质:设n S 是数列{n a }的前n 项和, {n a }为等差数列的充要条件是2n S an bn =+(a, b 为常数)其公差是2a.18.你知道怎样的数列求和时要用“错位相减”法吗?(若n n n c a b =其中{n a }是等差数列,{n b }是等比数列,求{n c }的前n 项的和)19. 你还记得裂项求和吗?(如111(1)1n n n n =-++) 20. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?21. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次) 22. 你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2l r S lr α==扇形) 23. 在三角中,你知道1等于什么吗?2222(1sin cos sec tan αααα=+=-tan cot αα=tan sin cos042ππ===这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用.24. 反正弦、反余弦、反正切函数的取值范围分别是[,],[0,],(,)2222πππππ-- 25.0与实数0有区别,0的模为数0,它不是没有方向,而是方向不定。
0可以看成与任意向量平行,但与任意向量都不垂直。
26.0a =,则 0,0,00a b a b a b ====但是由不能得到或。
0a b a b ⊥=时,。
27.,,a c a b c b a c ===时,不能得到即消去律不成立。
28.()(),a b c a b c ≠因为()()a b c c a b c 与平行,与a平行,一般a,c 不共线,故 ()()a b c a b c ≠29.在ABC ∆中,sin sin A B A B >⇔>30.使用正弦定理时易忘比值还等于2R .31. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.32. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11a b⇒<,a<b<o11a b ⇒>. 33. 分式不等式的一般解题思路是什么?(移项通分) 34. 解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.)35. 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…….36.常用放缩技巧:211111111(1)(1)1n n n n n n n n n -=<<=-++-- 11111121k k k k k k k k k+-=<<=-+++-+ 37.解析几何的主要思想:用代数的方法研究图形的性质。
主要方法:坐标法。
38.用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况.39.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒.40.直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,]2πππ。
41.函数的图象的平移、方程的平移以及点的平移公式易混: (1)函数的图象的平移为“左+右-,上+下-”;如函数y =2x+4的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x +2)+4-3.即y=2x+5.(2)方程表示的图形的平移为“左+右-,上-下+”; 如直线2x -y+4=0左移2个单位且下移3个单位得到的图象的解析式为2(x +2)-(y +3)+4=0.即y=2x+5.(3)点的平移公式:点P(x,y)按向量=(h ,k)平移到点P / (x /,y /),则x /=x+ h ,y / =y+ k .42. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)43. 对不重合的两条直线,,有; . 44. 直线在坐标轴上的截矩可正,可负,也可为0.45. 处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式. 一般来说,前者更简捷.46. 处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系.47. 在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形.48.还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义?49.还记得圆锥曲线方程中的a,b,c,p,c a a c 2,的意义吗?50. 在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?51.离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?52. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).53. 椭圆中,注意焦点、中心、短轴端点所组成的直角三角形.(a ,b ,c )54. 通径是抛物线的所有焦点弦中最短的弦. 55. 点P 在椭圆(或双曲线)上,椭圆中△PF 1F 2的面积2tan 2b α与双曲线中△PF 1F 2的面积2cot 2b α易混(其中点F 1\F 2是焦点). 56.如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点.此时两个方程联立,消元后为一次方程.57.经纬度定义易混. 经度为二面角,纬度为线面角.58.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.59. 线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大.60. 作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见.61. 求点到面的距离的常规方法是什么?(直接法、等体积法、换点法)62. 求多面体体积的常规方法是什么?(割补法、等积变换法)63. 两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180°64.二项式()n a b +展开式的通项公式中a与b的顺序不变.65.二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为.66. 二项式系数最大项与展开式中系数最大项易混.二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112r r r r T T T T +++≥⎧⎨≥⎩来确定r. 67. 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.68.解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.69. 二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混.通项公式: (它是第r+1项而不是第r项). 事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-.分布列: 其中k=0,1,2,3,…,n,且0<p<1,p+q=1.70. 正态总体N(μ,σ2)的概率密度函数与标准正态总体N(0,1)的概率密度函数为;.71. 如下两个极限的条件易记混:成立的条件为;成立的条件为.72.常用导数公式:① C'=0(C为常数);② (x n)'=nx n-1 (n∈Q);③ (sinx)'=cosx;④ (cosx)'=-sinx;⑤ (e x)'=e x;⑥ (a x)'=a x lna ⑦;⑧73. 如果两个复数不全是实数,那么就不能比较大小.如果两个复数能比较大小,那么这两个复数全是实数.74. 解答选择题的特殊方法是什么?(顺推法,估算法,特例法,特征分析法,直观选择法,逆推验证法等等)75. 解答开放型问题时,需要思维广阔全面,知识纵横联系.76. 解答信息型问题时,透彻理解问题中的新信息,这是准确解题的前提.77. 解答多参型问题时,关键在于恰当地引出参变量, 想方设法摆脱参变量的困绕.这当中,参变量的分离、集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性通法.78. 在分类讨论时,分类要做到“不重不漏、层次分明,最后要进行总结.79. 在做应用题时, 运算后的单位要弄准,不要忘了“答”及变量的取值范围;在填写填空题中的应用题的答案时, 不要忘了单位.80.在解答题中,如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明。