2020年高考数学专题三 第3讲
- 格式:doc
- 大小:923.00 KB
- 文档页数:29
专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。
封闭的旋转面围成的几何体叫做旋转体。
这条定直线叫做旋转体的轴。
3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。
棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。
一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。
4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。
棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。
5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。
在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。
6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。
旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。
第3讲 利用导数研究函数的性质【题型精练】一、单选题1.(2021·北京交通大学附属中学高三开学考试)已知()f x 是定义在R 上的偶函数,当0x >时,'2()()0xf x f x x ->,且()20f -=,则不等式()0f x x >的解集是( ) A .()()2,00,2- B .()(),22,-∞-+∞ C .()()2,02,-+∞D .()(),20,2-∞-【答案】C 【详解】解:∵()f x 是定义在R 上的偶函数,当0x >时,'2()()0xf x f x x ->, ∴()f x x 为增函数,()f x 为偶函数,()f x x 为奇函数, ∴()f x x在(),0-∞上为增函数, ∵()()220f f -==, 若0x >,()202f =,所以2x >; 若0x <,()202f -=-,()f x x 在(),0-∞上为增函数,可得20x -<<, 综上得,不等式()0f x x>的解集是()()2,02,-+∞.故选:C.2.(2021·河南·高三月考(文))函数()2e 21xf x x x x =---的极大值为( )A .1-B .1e- C .ln 2 D .()2ln 21--【答案】B 【详解】由()2e 21xf x x x x =---可得()()()()1e 221e 2x x f x x x x '=+--=+-,由()0f x '>可得:ln 2x >或1x <-, 由()0f x '<可得1ln 2x -<<,所以()f x 在(),1-∞-单调递增,在()1,ln 2-单调递减,在()ln 2,+∞单调递增,所以1x =-时,()f x 取得极大值为()111121e ef -=--+-=-,故选:B.3.(2021·全国·高三月考(文))函数321()3f x x ax =-在(2,1)--上单调递减则实数a 的取值范围为( )A .(,1)-∞-B .(,1]-∞-C .(1,)+∞D .[1,)-+∞【答案】B 【详解】2()2(2)f x x ax x x a '=-=-,∵()f x 在(2,1)--上单调递减,∴()0f x '≤在(2,1)--上恒成立,由二次函数()(2)f x x x a '=-的图象可知22a ≤-,即1a ≤-. 故选:B4.(2021·北京·潞河中学高三月考)函数()ln f x kx x =-在[1,)+∞单调递增的一个必要不充分条件是( ) A .2k > B .1k C .1k > D .0k >【答案】D 【详解】由题得1()f x k x'=-,函数()ln f x kx x =-在区间(1,)+∞单调递增,()0f x ∴'在区间(1,)+∞上恒成立. 1kx ∴, 而1y x=在区间(1,)+∞上单调递减,1k ∴.选项中只有0k >是1k 的必要不充分条件. 选项AC 是1k 的充分不必要条件,选项B 是充要条件. 故选:D5.(2021·甘肃·嘉峪关市第一中学模拟预测(文))已知函数2()ln 22x f x m x x =+-,()0,x ∈+∞有两个极值点,则实数m 的取值范围是( ) A .(],0-∞ B .(],1-∞C .[)1,-+∞D .()0,1【答案】D 【详解】22()2m x x mf x x x x-+'=+-=,因为()f x 有两个极值点,故()f x '有两个变号零点,故2x 2x m 0-+=在()0,∞+上有两个不同的解,故0440m m >⎧⎨∆=->⎩,所以01m <<, 故选:D.6.(2021·山东·嘉祥县第一中学高三期中)已知函数()x x f x e e -=+(其中e 是自然对数的底数),若 1.5(2)a f =,0.8(4)b f =,21log 5c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .b a c <<【答案】B 【详解】函数()x x f x e e -=+是偶函数,()x x f x e e -=-',当0,()0;0,()0x f x x f x ''<<>>, 即函数()f x 在(,0)-∞上单调递减,(0,)+∞上单调递增,因为2222log 5log 25log 325=<=, 2.5 1.55222<==⨯,所以 1.522log 5522<<⨯,则 1.51.60.82log 5224<<=,1.50.82221(log )(log 5)(log 5)(2)(4)5f f f f f =-=<<,即c a b <<. 故选:B .7.(2021·陕西·泾阳县教育局教学研究室高三期中(文))已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是( ) A .(),1-∞ B .(),2-∞ C .()1,+∞ D .()2,+∞【答案】A 【详解】设()()g x xf x =,则()()()0g x f x xf x =+'<' 所以()g x 在R 上单调递减,又()()2222g f == 由()()112x f x ++>,即()()12g x g +>,所以12x +< 所以1x < 故选:A8.(2021·广东深圳·高三月考)已知函数2ln ,0(),1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤B .11k e-<<C .e 0k -<<D .10ek -<<【答案】D 【详解】要使函数()f x k =有三个解,则()y f x =与y k =有三个交点,当0x >时,()ln f x x x =,则()ln 1f x x '=+,可得()f x 在10,e ⎛⎫⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭递增,∴0x >时,()ln f x x x =有最小值11f e e ⎛⎫=- ⎪⎝⎭,且10x e <<时,ln 0x x <;当0x +→时,()0f x →;当x →+∞时,()f x →+∞; 当0x ≤时,2()1f x x =-+单调递增;∴()f x 图象如下,要使函数()g x 有三个零点,则10e k -<<,故选:D .二、多选题9.(2021·湖北·高三月考)已知函数()xf x xe ax =+.则下列说法正确的是( )A .当0a =时,()min 1f x e=-B .当1a =时,直线2y x =与函数()f x 的图象相切C .若函数()f x 在区间[)0,+∞上单调递增,则0a ≥D .若在区间[]0,1上()2f x x ≤恒成立,则1a e ≤-【答案】ABD 【详解】解:对于A :当0a =时,()xf x xe =,则()()'+1+x x x f x xe e e x ==,令'0f x,得1x =-,所以当1x <-时,()'0f x <,函数()f x 单调递减,当>1x -时,()'>0f x ,函数()f x 单调递增,所以()()1111f x f e e-≥-=-=-,所以()min 1f x e =-,故A 正确;对于B :当1a =时,()+x f x xe x =,则()'++1xx f x xe e =,设切点为()00,x y ,则过切点的切线方程为:()()()0000000+++1x xx y x e x e x e x x -=-,因为切线过原点,所以()()()00000000+++01x x x x e x x e x e -=-,解得00x =,此时()'000+0+12f e e =⨯=,所以直线2y x =与函数()f x 的图像相切,故B 正确;对于C :由函数()xf x xe ax =+得()()1+x f x x e a '=+,因为函数()f x 在区间[)0,+∞上单调递增,所以()()1+0xf x x e a '=+≥在区间[)0,+∞上恒成立,即()1x a x e ≥--在区间[)0,+∞上恒成立,令()()1x g x x e =--,则()()'+2x g x x e =-,又令[)0,x ∈+∞,所以,()'0g x <,函数()g x 单调递减, 所以()()000+21g x g e e ≤=-=,所以1a ≥,故C 不正确;对于D :在区间[]0,1上()2f x x ≤恒成立,等价于2x xe ax x +≤在区间[]0,1上恒成立,当0x =时,不等式恒成立;当01x <≤时,x a x e ≤-恒成立,令()xh x x e =-,则()'1x h x e =-,令()'0h x =,得0x =,因为01x <≤,()'0h x <,函数()h x 单调递减,所以()()1111h x h e e ≥=-=-,所以1a e -≤,故D 正确;故选:ABD.10.(2021·辽宁沈阳·高三月考)已知函数()()[)ln ,0,1e44,1,x x f x x x⎧-∈⎪⎪=⎨-⎪+∈+∞⎪⎩(其中e 是自然对数的底数),函数()()g x f x kx =-有三个零点()123123,,x x x x x x <<,则( ) A .实数k 的取值范围为()0,1 B .实数k 的取值范围为()0,e C .123x x x 的取值范围为4,e ⎛+∞⎫⎪⎝⎭D .123x x x 的取值范围为()e,+∞ 【答案】AC 【详解】由图可知,0,k >则方程44kx x-=+,即2440kx x -+=有两个正实数解, 所以16160,k =->解得)1(0k ∈,; 由图可知,12301,x x x <<<<所以234x x k⋅=,且11ln x k ex =-因为11ln 1x k ex =-<,则111x e ⎛⎫∈ ⎪⎝⎭,,所以21112311441,1ln x ex x x x x k x e ⎛⎫⎛⎫⋅⋅==-∈ ⎪ ⎪⎝⎭⎝⎭. 设1)0(1lnx t =∈-,,则()24te e g t t⋅=-, 所以()()22421'0t g tt e e t ⋅-=->,即()g t 单调递增, 又4()1g e -=,且0t ⇒时,()g t →+∞,所以()4,g t e ∈+∞⎛⎫ ⎪⎝⎭. 故选:AC11.(2021·重庆·高三月考)定义域在R 上函数()f x 的导函数为f x ,满足()()2'2f x f x <-,()211f e =-,则下列正确的是( ) A .()00f >B .()421f e >-C .()()()2021202021f ef e ->-D .()()22202120201f e f e ->-【答案】BCD 【详解】由题意,构造函数2()1()x f x g x e +=,则2()2(()1)()xf x f xg x e '-+'=,由()()2'2f x f x <-可知()0g x '>, 所以2()1()x f x g x e +=在R 上单调递增,且2(1)1(1)1f g e +==, 故(0)(1)1g g <=,即(0)11f +<,(0)0f <,A 错误;由(2)(1)1g g >=可得()421f e >-,故B 正确;当1x >时,()(1)1g x g >=,所以2()11xf x e +>,()0f x >, 所以()()()22f x f x f x '<<-,()()02f x f x '-->, 令()()2,1x f x h x x e +=>,则()()()20xf x f x h x e ''--=>, 所以()h x 单调递增,()()20212020h h >,即()()202120202202122020f f e e >++,所以()()2220212020f ef e >++,()()()2021202021f ef e ->-, 故C 正确;由(2021)(2020)g g >可得()()22202120201f e f e ->-,故D 正确;故选:BCD12.(2021·全国·高三专题练习)已知函数()y f x =,0,2x π⎛⎫∈ ⎪⎝⎭,()f x '是其导函数,恒有()()sin cos f x f x x x '>,则( )A .34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .46f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .()2cos116f f π⎛⎫<⋅ ⎪⎝⎭D .()cos 13f f π⎛⎫>21⋅ ⎪⎝⎭【答案】AD 【详解】因为0,2x π⎛⎫∈ ⎪⎝⎭,所以sin 0x >,cos 0x >,又()()sin cos f x f x x x'>,所以()()cos sin f x x f x x '>. 构造函数()()cos g x f x x =,0,2x π⎛⎫∈ ⎪⎝⎭,则()()()cos sin 0g x f x x f x x -''=>,所以()g x 在0,2π⎛⎫⎪⎝⎭上为增函数,因为34ππ>,所以34g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以cos cos 3344f f ππππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故A 正确;因为46ππ>,所以46g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以cos cos 4466f f ππππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即46f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,故B 错误; 因为16π<,所以()16g g π⎛⎫< ⎪⎝⎭,所以()cos 1cos166f f ππ⎛⎫< ⎪⎝⎭,即()1cos16f f π⎛⎫< ⎪⎝⎭,故C 错误; 因为13π>,所以()13g g π⎛⎫> ⎪⎝⎭,所以()cos 1cos133f f ππ⎛⎫> ⎪⎝⎭,即()21cos13f f π⎛⎫> ⎪⎝⎭,故D 正确, 故选:AD. 三、填空题13.(2021·江西赣州·高三期中(理))已如函数3()5,(2,2)f x x x x =+∈-,若()2()20f t f t +->.则t 的取值范围为___________. 【答案】(1,0)(0,2)- 【详解】3()5f x x x =+,()3()5f x x x f x -==---,函数为奇函数.2()350f x x '=+>,函数单调递增,()2()20f t f t +->,即()2(2)f t f t ->,故22222222t t t t -<<⎧⎪-<-<⎨⎪>-⎩,解得(1,0)(0,2)t ∈-⋃. 故答案为:(1,0)(0,2)-.14.(2021·陕西·西安中学高三月考(理))已知函数()3()x f x e ax a R =+-∈,若对于任意的12,[1,)x x ∈+∞且12x x <,都有211212()()()x f x x f x a x x -<-成立,则a 的取值范围是________. 【答案】(,3]-∞ 【详解】对于任意的1x ,2[1x ∈,)+∞,且12x x <,都有211212()()()x f x x f x a x x -<-成立, ∴不等式等价为1212()()f x a f x ax x ++<恒成立, 令()()f x ah x x+=,则不等式等价为当12x x <时,12()()h x h x <恒成立, 即函数()h x 在(1,)+∞上为增函数; 3()x e ax a h x x+-+=,则23()0x x xe e ah x x -+-'=在[1,)+∞上恒成立; 30x x xe e a ∴-+-;即3x x a xe e --恒成立,令()x x g x xe e =-,()0x g x xe ∴'=>;()g x ∴在[1,)+∞上为增函数; ()g x g ∴(1)0=; 30a ∴-;3a ∴.a ∴的取值范围是(,3]-∞.故答案:(,3]-∞.15.(2021·宁夏·固原一中高三期中(文))已知函数()f x 是定义在R 上的偶函数,()20f =,()()()0xf x f x x '<>,则不等式()0xf x <的解集为______.【答案】(2,0)(2,)-+∞ 【详解】 令()()f x g x x=,则()2()()xf x f x g x x '-'=,当0x >时.由()()xf x f x '<,得()0g x '<, 所以函数()()f xg x x=在(0,)+∞上是减函数, 函数()f x 是定义在R 上的偶函数,∴()()f x f x -=, ∴()()()f x g x g x x--==--, ∴()g x 是定义在(,0)(0,)-∞+∞上的奇函数, ∴()g x 在(,0)-∞上递减,又(2)0f =,∴(2)(2)02f g ==, 则()g x 的大致图象如图所示:∴02x <<时,()0>g x ,2x >时,()0<g x ,根据函数的奇偶性知,20x -<<时,()0<g x ,2x <-时,()0>g x , 当0x ≠时,()0xf x <等价于()0<g x ,当0x =时,()0xf x <不成立, ∴不等式()0xf x <的解集为(2,0)(2,)-+∞,所以不等式()0xf x <的解集是(2,0)(2,)-+∞. 故答案为:(2,0)(2,)-+∞.16.(2021·陕西·千阳县中学二模(理))已知函数9()(),[1,9]g x x a a R x x=+-∈∈,则()g x 的值域是___________.设函数()|()|f x g x =,若对于任意实数a ,总存在0[1,9]x ∈,使得()0f x t ≥成立,则实数t 的取值范围是___________【答案】[]6,10a a -- (],2-∞ 【详解】 (1)()()()223391x x g x x x +-'=-=, 当[]1,3x ∈,()0g x '<,()g x 单调递减;当[]3,9x ∈,()0g x '>,()g x 单调递增;()()min 36g x g a ∴==-,又()()110,910g a g a =-=-,()max 10g x a ∴=-, 故()g x 的值域是[]6,10a a --; (2)()|()|f x g x =,当610a a -≥-,即8a ≥时,()max 66f x a a t =-=-≥恒成立,则2t ≤, 当610a a -<-,即8a <时,()max 1010f x a a t =-=-≥恒成立,则2t ≤, 综上,实数t 的取值范围是(],2-∞. 故答案为:[]6,10a a --;(],2-∞。
第 3讲平面向量1. (2016 课·标全国丙改编→1,3→31,则∠ ABC= ________. )已知向量 BA=22, BC=,22答案30°分析→→∵ |BA|= 1, |BC|= 1,→ →3BA·BC=,∴∠ ABC = 30°.cos∠ ABC=→→2|BA|·|BC|12. (2016 ·东改编山 )已知非零向量m,n 知足 4|m|= 3|n|,cos〈 m, n〉=3.若 n⊥ (tm+ n),则实数 t 的值为 ______.答案- 4分析∵ n⊥ (tm+ n),∴ n·(tm+n)=0,即 t·m·n+ n2= 0,∴ t|m||n|cos〈 m, n〉+ |n|2=0,由3212已知得 t×|n| ×+ |n| = 0,解得 t=- 4.433. (2016 天·津改编 )已知△ABC 是边长为 1 的等边三角形,点 D, E 分别是边 AB, BC 的中点,连接 DE 并延伸到点F,使得 DE=→ →2EF ,则 AF ·BC的值为 ________.答案1 8分析→→→如下图, AF =AD +DF .又 D, E 分别为 AB, BC 的中点,→1→且 DE= 2EF,因此 AD=2AB,→=→+→=→+1→DF DE EF DE2DE3→ 3→=2DE =4AC,→1→ 3 →→→ →因此 AF=2AB+4AC.又 BC= AC-AB,→ →1→3→→ →则 AF·BC=AB+AC ·(AC- AB)241→ →1→ 2 3 →2 3 → →=AB·AC-AB+AC - AC·AB 2244→ 2 1→21→→= 4AC - 2AB -4AC ·AB.3→ →又 |AB|= |AC|= 1,∠ BAC = 60°,→ → 3 1 1 1 1故AF ·BC = - - ×1×1× = .4 2 4 2 84. (2016 ·江浙 )已知向量a ,b , |a|= 1,|b|= 2.若对随意单位向量 e ,均有 |a ·e|+ |b ·e| ≤6,则a ·b 的最大值是 ________.答案12分析 由已知可得:6≥|a ·e|+ |b ·e| ≥|a ·e + b ·e|= |(a + b) ·e|,因为上式对随意单位向量e 都成立.∴ 6≥|a + b|成立.∴ 6≥(a + b) 2= a 2+ b 2+ 2a ·b = 12+ 22+ 2a ·b.1即 6≥5+ 2a ·b ,∴ a ·b ≤2.1.考察平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考察, 多为填空题,难度中低档 .2.考察平面向量的数目积,以填空题为主,难度低;向量作为工具,还常与三角函数、解三角形、不等式、分析几何联合,以解答题形式出现.热门一平面向量的线性运算1.在平面向量的化简或运算中,要依据平面向量基本定理选好基底,变形要有方向不可以盲目转变.2.在用三角形加法法例时,要保证 “首尾相接 ”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法例时,要保证 “同起点 ”,结果向量的方向是指向被减向量.例 1π(1) 设 0<θ< ,向量 a = (sin 2θ, cos θ), b = (cos θ, 1),若 a ∥ b ,则 tan θ= ______.2→ → → →(2) 如图,在 △ ABC 中,已知 BD = 2DC ,以向量 AB ,向量 AC 作为基底,→则向量 AD 可表示为 ____________.答案 (1)1 (2)1 →+ 2 →2 3AB 3AC 分析(1)因为 a ∥ b ,因此 sin 2θ= cos 2θ,即 2sin θcos θ=cos 2θ.π 因为 0<θ< ,因此 cos θ>0,21得 2sin θ= cos θ,tan θ= 2.(2) 依据平面向量的运算法例及已知图形可知→2 →AB +3AC .→→→→ 2 → → 2 → → 1AD =AB + BD = AB + BC =AB + (BA + AC)=333思想升华(1) 关于平面向量的线性运算,要先选择一组基底;同时注意共线向量定理的灵活运用. (2)运算过程中重视数形联合,联合图形剖析向量间的关系. 追踪操练 1(1)如图,正方形 ABCD 中,点 E 是 DC 的中点,点 F 是 BC的一个三平分点,那么以向量 → → →AB 和向量 AD 为基底,向量 EF 可表示为__________ .→→ →(2) 如图,在正方形 ABCD 中, E 为 DC 的中点,若 AE = λAB + μAC ,则 λ + μ的值为 ________. 答案(1)1→ - 2 →(2)12AB 3AD2分析→ → → (1)在 △ CEF 中,有 EF = EC +CF .→ 1 →因为点 E 为 DC 的中点,因此 EC = DC .2因为点 F 为 BC 的一个三平分点,因此→ 2 →CF =CB.3→ 1→ 2→ 1→ 2→ 1→2→因此 EF = 2DC +3CB =2AB +3DA = 2AB - 3AD.(2)→ → → 1 →1 → → 1 → →→ 1 → 因为 E 为 DC 的中点,因此 AC = AB + AD = AB +AB + AD =AB + AE ,即 AE =-AB +2222→ AC ,1 1因此 λ=- , μ=1,因此 λ+ μ= .22热门二平面向量的数目积1.数目积的定义: a ·b = |a||b|cos θ.2.三个结论(1) 若 a = (x , y),则 |a|= a ·a = x 2+ y 2.(2) 若 A(x 1,y 1), B( x 2, y 2),则→ 2 2 .|AB|= (x 2- x 1 ) + (y 2- y 1 )(3)若 a= (x1,y1), b= ( x2,y2 ),θ为 a 与 b 的夹角,则 cos θ=a·b=x1x2+ y1y2|a||b|x12+ y12x22+ y22.例 2(1)如图,在矩形ABCD 中, AB=2, BC= 2,点 E 为 BC 的中点,点 F在边→ →=→ →CD 上,若 AB·AF2,则 AE ·BF的值是 ________.(2) 若 b=cos π, cos5π,|a|= 2|b|,且 (3a+b) ·b=- 2,则向量 a,b 的夹角1212为 ________.答案(1) 2 (2)5π6分析(1)以 A 为原点,成立如下图的坐标系,可得 A(0,0),B(2, 0), E(2, 1), F(x,2),→→∴ AB= ( 2,0) ,AF= (x,2),→ →2x=2,∴ AB·AF=解得 x= 1,∴ F(1,2).→→∴ AE= ( 2,1),BF= (1- 2, 2),→ →∴ AE·BF= 2×(1- 2)+ 1×2= 2.22π25π 2 π 2 π(2) b= cos+cos12=cos+ sin= 1,121212因此 |b|= 1,|a|= 2.由 (3a+b) ·b=- 2,可得3a·b+ b2=- 2,故 a·b=-3,故 cos〈 a, b〉=a·b=- 33=-|a||b|2×1 2.5π又〈 a, b〉∈ [0,π],因此〈 a, b〉=6 .思想升华(1) 数目积的计算往常有三种方法:数目积的定义,坐标运算,数目积的几何意义;(2) 能够利用数目积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.追踪操练 2 (1)已知点 A,B,C,D 在边长为 1 的方格点图的地点如下图,→ →则向量 AD在AB方向上的投影为 ________.(2) 如图,在△ ABC 中,AB= AC= 3,cos∠ BAC=1→→→ →3,DC= 2BD,则 AD·BC的值为 ________.答案(1)-5(2)- 2 5分析(1)不如以点 A 为坐标原点,成立如下图的平面直角坐标系,易得→→AD = (- 2,3),AB→ →→ →- 25 AD ·AB= (4,2) ,因此向量 AD 在 AB方向上的投影为→=2 5=- 5.|AB |→→→→→→2→ →(2) AD·BC= (AC+ CD ) ·BC= (AC+CB) ·BC3→2→→→2→1→→→=[AC+3(AB -AC)] BC·= ( 3AB +3AC) ·(AC- AB)2 →2 1 → → 1 →2=-3|AB|+3AB·AC+3|AC|=-6+ 1+3=- 2.热门三平面向量与三角函数平面向量作为解决问题的工具,拥有代数形式和几何形式的“两重型”,高考常在平面向量与三角函数的交汇处命题,经过向量运算作为题目条件.例 3已知函数 f(x)= 2cos2x+ 23sin xcos x(x∈ R).π(1)当 x∈[0,2)时,求函数 f( x)的单一递加区间;(2)设△ABC 的内角 A,B, C 的对边分别为 a, b,c,且 c=3, f( C)= 2,若向量 m= (1, sin A)与向量 n= (2, sin B)共线,求 a, b 的值.解π (1)f(x)= 2cos 2x + 3sin 2x = cos 2x + 3sin 2x + 1=2sin(2 x + ) +1,6π π π 令- + 2k π≤2x +≤ + 2k π, k ∈ Z ,26 2π π解得 k π-≤x ≤k π+ , k ∈ Z ,36π因为 x ∈ [0, 2) ,π因此 f( x)的单一递加区间为 [0,6] .π(2) 由 f(C)= 2sin(2C +6)+ 1= 2,π 1得 sin(2C + 6)= 2,π π 13 π而 C ∈(0 ,π),因此 2C + 6∈( 6, 6 ), π 5 π因此 2C + =6π,解得 C = 3.6因为向量 m = (1,sin A)与向量 n =(2 ,sin B)共线,因此sin A 1sin B= .2由正弦定理得 a = 1,①b 2由余弦定理得π c 2= a 2+ b 2- 2abcos,3即 a 2+ b 2- ab =9.②联立①②,解得 a = 3,b = 2 3.思想升华 在平面向量与三角函数的综合问题中, 一方面用平面向量的语言表述三角函数中的问题, 如利用向量平行、 垂直的条件表述三角函数式之间的关系, 利用向量模表述三角函数之间的关系等; 另一方面能够利用三角函数的知识解决平面向量问题,在解决此类问题的 过程中, 只需依据题目的详细要求, 在向量和三角函数之间成立起联系, 就能够依据向量或者三角函数的知识解决问题.追踪操练 3已知 △ABC 是锐角三角形,向量m = cos A + π,3π, n = cos B , sin B ,且 m ⊥ n.sin A +3 ( )(1) 求 A -B 的值;3(2) 若 cos B = 5,AC =8,求 BC 的长.解(1)因为 m ⊥ n ,π π因此 m ·n = coscos B +sin A + 3 sin BA + 3 π= cos A +3- B =0,π又 A ,B ∈ 0,2 ,因此ππ 5πA + -B ∈ - , ,3 6 6 因此 π ππA + -B = ,即 A - B = .3 263π4(2) 因为 cos B =5, B ∈ 0,2 ,因此 sin B = 5,因此 sin A = sin π ππ = sin Bcos + cos Bsin 6B +664 3 3 1 4 3+ 3= · + ·= ,52 5 2104 3+3由正弦定理,得BC = sin A10 ×8= 4 3+ 3.4sin B·AC =5→ 1 →1.如图,在 △ ABC 中, AD = 3AB , DE ∥ BC 交AC 于E , BC边上的中线AM交DE于,设 → = , → = ,用ABaACb N, 表示向量ab→ →AN ,则 AN= ____________.押题依照平面向量基本定理是向量表示的基本依照,而向量表示 (用基底或坐标 )是向量应用的基础.1答案6(a + b)分析因为 DE ∥ BC ,因此 DN ∥ BM ,则 △ AND ∽△ AMB ,因此 AM AN = ADAB .→1 →→1 →因为 AD = 3AB ,因此 AN = 3AM . 因为 M 为 BC 的中点,→ 1 → → 1 因此 AM = (AB +AC)=(a + b),22→ 1 →1因此 AN =AM = (a + b).362.如图,BC 、DE 是半径为 →→ → →1 的圆 O 的两条直径, BF = 2FO ,则 FD ·FE= ________.押题依照数目积是平面向量最重要的观点,平面向量数目积的运算是高考的必考内容,和平面几何知识的联合是向量考察的常有形式.答案-89分析→→→1,∵BF =2FO ,圆 O 的半径为 1,∴ |FO |=3→→→→→→→2→→→→→1 2 8 ∴ FD ·FE = (FO + OD) ·(FO + OE)= FO + FO ·(OE + OD)+ OD ·OE = ( ) + 0- 1=- .39→ →120°sin 208 )°,则 △ABC3.在 △ABC 中,AB =(cos 32 °,cos 58 °),BC = (sin 60 sin ° 118 ,°sin 的面积为 ________.押题依照平面向量作为数学解题工具, 经过向量的运算给出条件解决三角函数问题已成为近几年高考的热门.答案38分析→ 2 2°|AB|= cos 32 °+ cos 58= cos 232°+ sin 232°=1,→33,BC =2 cos 28 ,°- 2 sin 28°→323 23 因此 |BC|=+ -2 sin 28 =2.2 cos 28 °°→ →33 °则 AB ·BC = cos 32 °×2cos 28-°sin 32 ×° sin 2823=2 (cos 32 cos ° 28 -°sin 32 sin ° 28 ) °=333,2 cos(32 +°28°)= 2cos 60 =° 4→ →3 → →4 1AB ·BC = . 故 cos 〈 AB , BC 〉= →→ = 3 2 |AB| ×|BC| 1×2→ → °, 180°],因此〈 → →又〈 AB , BC 〉∈ [0 AB , BC 〉= 60°,→ →故 B = 180°-〈 AB , BC 〉= 180°- 60°= 120°.故 △ ABC 的面积为1 →S = 2×|AB|→×|BC|sin B1 3 = ×1××sin221203 =° .84.如图,在半径为1 的扇形 AOB中,∠ AOB =60°,C为弧上的动点, AB 与OC交于点P ,→ →则 OP ·BP 的最小值是 _______________________________________ .押题依照 此题将向量与平面几何、 最值问题等有机联合,表现了高考在知识交汇点命题的方向,此题解法灵巧,难度适中.答案-116分析→ → →→→→→→→→→2 = 60 °,因为 OP = OB + BP ,因此 OP ·BP = (OB + BP) ·BP =OB ·BP + BP .又因为∠ AOB OA = OB ,因此∠ OBA = 60°, OB = → → →1 → →→1→→21.因此 OB ·BP = |BP |cos 120=°-|BP|,因此 OP ·BP =- |BP|+ |BP|22→1 2 11→1 → →1= (|BP|- )-≥-,当且仅当 |BP|= 时, OP ·BP 获得最小值-.4 16 16416A 组 专题通关1.在 △ ABC 中,已知 D 是 AB 边上一点,若→ →→ 1 →→AD = 2DB, CD = CA + λCB ,则 λ= ________.3答案23分析 在 △ABC 中,已知 D 是 AB 边上一点,→→ →1→→→→→→ 2 → → 2 → → 1 → 2 → ∵ AD = 2DB ,CD = CA + λCB ,∴ CD = CA + AD = CA + AB = CA +3 (CB - CA)= CA + CB ,3333∴ λ= 2.32. △ ABC 是边长为 2 的等边三角形,已知向量→ →a ,b 知足 AB = 2a , AC = 2a + b ,则以下结论正确的选项是 ________.① |b|= 1; ② a ⊥ b ;→③ a ·b = 1; ④ (4a + b)⊥BC.答案 ④分析→ → →在 △ABC 中,由 BC = AC - AB = 2a + b - 2a = b ,得 |b|= 2.又 |a|= 1,因此 a ·b = |a||b|cos 120 =°- 1,→ 2因此 (4a + b) ·BC = (4a + b) ·b = 4a ·b + |b|= 4×(- 1)+ 4= 0,→因此 (4a + b)⊥ BC.→ → → → → →3.在等腰 △ ABC 中,∠ BAC =90°,AB = AC = 2,BC = 2BD ,AC = 3AE ,则 AD ·BE = ________.答案-43分析由已知获得→ → 1→→→1 →1 →2 1 → → 1 → → 1 → 2,AD ·BE =(AB + AC) ·(BA + AC) =-2AB + AB ·AC +2 AC ·BA + AC2366→ → 1212△ ABC 是等腰直角三角形,∠ BAC = 90 °, AB = AC =2,因此 AD ·BE =- 2×2 + 0+0+ 6×24=- 3.4. (2016 ·津蓟县期中天 )已知向量 a , b 知足 (a + 2b) ·(a - b)=- 6,且 |a|= 1, |b|= 2,则 a与 b 的夹角为 ________.答案π 3分析 设 a 与 b 的夹角为θ,∵ (a + 2b) ·(a - b)=- 6,且 |a|= 1,|b|= 2,∴ 1+a ·b - 8=- 6,∴ a ·b = 1=|a||b |cos θ,∴ cos θ= 1,2π又∵ θ∈ [0,π],∴ θ=3.5. (2016 安·徽江淮十校第二次联考 )已知平面向量 a 、b(a ≠0, a ≠b)知足 |a|= 3,且 b 与 b - a 的夹角为 30°,则 |b|的最大值为 ________.答案 6分析→ → → → →令OA = a , OB = b ,则 b - a = OB -OA =AB ,如图,∵ b 与 b - a 的夹角为 30°,∴∠ OBA =30°,→→→→,∴由正弦定 理|OA| = |OB|得 , ∵ |a| = |OA |= 3 sin ∠ OBA sin ∠ OAB |b|= | OB | =6·sin ∠ OAB ≤ 6.6.已知向量 a = (2,1),b = (- 1, 2),若 a , b 在向量 c 方向上的投影相等,且 (c - a) ·(c - b) =- 5,则向量 c 的坐标为 ________.21 3答案 (2,2)分析设 c = (x , y),依据题意有x 2+ y 2- x - 3y =- 5,22x + y =- x + 2y ,1,x = 2解得3y = 2.→→ → 7.设向量 OA = (5+ cos θ,4+ sin θ), OB = (2,0) ,则 |AB|的取值范围是 ________. 答案[4,6]分析→ → →= (- 3- cos θ,- 4- sin θ),∵AB =OB -OA → 2 2 2 ∴ |AB| = (- 3-cos θ) +( -4- sin θ)= 6cos θ+ 8sin θ+26= 10sin(θ+ φ)+ 26,此中 tan φ= 3,4→ 2 →∴ 16≤|AB | ≤ 36,∴ 4≤|AB| ≤ 6.8.设向量 a = (a 1, a 2), b = (b 1, b 2),定义一种向量积 a?b = (a 1b 1, a 2b 2),已知向量 m =(2 , 1 π →2),n = (,0),点 P(x ,y)在 y = sin x 的图象上运动, Q 是函数 y = f(x)图象上的点, 且知足 OQ3→为坐标原点 ),则函数 y = f( x)的值域是 ________.= m?OP + n(此中 O1 1 答案 [- 2, 2]分析令 Q(c ,d),由新的运算可得→ →1 π π 1sin x), OQ = m?OP + n =(2x ,sin x)+ ( , 0)= (2x + ,233 2π, 11∴c =2x + 3π1消去 x 得 d =sin( c - ),22 6d = 2sin x ,1 1π1 1] .∴ y = f( x)= sin(x -),易知 y = f(x)的值域是 [- ,2262 2π9.设向量 a = ( 3sin x , sin x), b =(cos x ,sin x), x ∈ [0, 2].(1) 若 |a|= |b|,求 x 的值;(2) 设函数 f(x)= a ·b ,求 f(x)的最大值.解(1)由 |a|2= ( 3sin x)2+ (sin x)2= 4sin 2x ,222= 1,|b| =(cos x) + (sin x) 及 |a|= |b|,得 4sin 2x = 1.π1π又 x ∈ [0, ],进而 sin x = ,因此 x = .22 62(2) f(x)= a ·b = 3sin x ·cos x + sin x=3 1 1π 1,2sin 2x - cos 2x += sin(2x - )+ 2262π π π1,当 x = ∈ [0, ] 时, sin(2 x -)取最大值326因此 f( x)的最大值为32.10.已知向量 a = (cos α, sin α),b = (cos x , sin x), c = (sin x + 2sin α, cos x + 2cos α),此中 0<α<x<π.π(1) 若 α=4,求函数 f(x)= b ·c 的最小值及相应 x 的值;π (2) 若 a 与 b 的夹角为,且 a ⊥ c ,求 tan 2α的值.3解 (1)∵ b = (cos x , sin x),πc = (sin x + 2sin α, cos x + 2cos α), α= 4,∴ f(x)= b ·c= cos xsin x + 2cos xsin α+sin xcos x +2sin xcos α= 2sin xcos x + 2(sin x + cos x).π令 t = sin x +cos x 4<x<π ,则 2sin xcos x = t 2 -1,且- 1<t< 2.则 y = t 2+ 2t - 1= t +2 2-3,- 1<t< 2,2 2∴ t =- 2时, y min =-3,此时 sin x + cos x =- 2, 2 2 2 即 2sin x + π=- 2,42π π π 5π,∵ <x<π,∴ <x + <424 4 π 7 11π∴ x + = π,∴ x =12 .46∴函数 f(x)的最小值为- 3,相应 x 的值为 11π2 12.π(2) ∵ a 与 b 的夹角为 ,3π a ·b∴ cos= = cos αcos x + sin αsin x3 |a| ·|b|= cos(x - α).π∵ 0< α<x<π,∴ 0<x - α<π,∴ x - α=3.∵ a ⊥ c ,∴ cos α(sin x + 2sin α)+ sin α(cos x + 2cos α)= 0,π∴ sin(x + α)+ 2sin 2α= 0,即 sin 2α+3 + 2sin 2α= 0.5 sin 2α+ 3 3. ∴ 2cos 2α=0,∴ tan 2α=-52B 组 能力提升11.已知非零单位向量a 与非零向量b 知足 |a +b|= |a - b|,则向量 b - a 在向量 a 上的投影为 ________.答案 -1分析 因为 |a + b|= |a - b|,因此 (a + b)2= (a - b)2,2解得 a ·b = 0,因此向量 b - a 在向量 a 上的投影为 |b - a|cos 〈 a , b - a 〉=a ·(b -a)=0-|a||a||a|=- |a|=- 1.→ → →AB AC12.已知点 P 为 △ ABC 所在平面内一点, 且知足 AP = λ( → + →)(λ∈ R),则直线 |AB|cos B |AC|cos CAP 必经过 △ ABC 的 ________心. 答案垂→ → →AB AC分析 ∵BC ·( → + → )|AB|cos B |AC|cos C→ →=- |BC|+ |BC|= 0,→ → →AB AC∴ BC 与 λ( → + →)垂直,|AB|cos B |AC|cos C→ →AP 经过 △ABC 的垂心.∴ AP ⊥ BC ,∴点 P 在 BC 的高线上,即直线13.若 a = (2+ λ,1),b = (3,λ),若〈 a ,b 〉为钝角, 则实数 λ的取值范围是 ______________.答案3 (- ∞,- 3)∪( -3,- )2分析3 ∵ a = (2+ λ,1),b = (3,λ),∴ a ·b = 3(2+ λ)+ λ<0,得 λ<- .若 a ,b 共线,则 λ(2+ λ)2- 3= 0,解得λ=- 3 或λ=1.即当λ=- 3 时, a, b 方向相反,3又〈 a, b〉为钝角,则λ<-且λ≠- 3.14.在直角坐标系xOy 中,已知点A(1,1), B(2,3), C(3,2) ,点 P(x, y)在△ABC 三边围成的地区 (含界限 )上.→→→→(1) 若 PA+PB + PC= 0,求 |OP|;→→→(2) 设 OP=mAB+ nAC(m, n∈ R),用 x, y 表示 m-n,并求 m-n 的最大值.解 (1)方法一→ →→∵ PA+ PB+ PC= 0,→→→又 PA+ PB+ PC= (1- x,1- y)+ (2-x,3- y)+ (3- x,2- y)=(6 -3x,6- 3y),6- 3x= 0,x=2,∴解得6- 3y= 0,y=2,→→即 OP= (2,2),故 |OP|= 2 2.方法二→→→∵PA+ PB+ PC= 0,→→→→→→则 (OA- OP)+(OB -OP) +(OC-OP) =0,→1→→→→2.∴ OP=3(OA+ OB+ OC)=(2,2),∴ |OP|= 2→→→(2) ∵ OP=mAB+ nAC,x= m+2n,∴ (x, y)= (m+ 2n, 2m+ n),∴y= 2m+ n,两式相减得, m- n= y- x.令 y-x= t,由图知,当直线y= x+t 过点B(2,3) 时, t 获得最大值 1,故 m- n 的最大值为1.。
2020年全国卷Ⅲ高考数学解析过去三年我们整体的命题结构,其实相比之下没有大的调整,主要就是试题的数量、题型,还有我们知识主干,相对来说都比较稳定,同样的也是对我们对高中六大能力的一个全面的考察,这六大能力都是我们平时上课的时候经常提到的,比方说空间想象能力、抽象概括能力、推理能力、运算能力,还有数据处理和分析的能力,尤其是这个部分的运算能力和我们的数据的处理能力,这部分其实在近两年的考试当中,对同学们的考察要求是有所提升的,在这儿我给大家汇总了一下过去三年当中,全国3卷当中文科和理科所有题目的一个对比,大家可以看出来,不管是从2017年开始到2019年,可能大家不是很清楚,但是大家可以从下面的这个数据图当中可以明显的看到,在考试当中前三题基本上题型是不变的,就是集合、复数,还有统计概率的问题,二项式定理偶尔考,比方有些年份可能就会考一个二项式定理,当然了文科是不考的这个部分。
再往后看,大家发现会统计概率的问题当中,基本上会考察我们的一个选择题和一个大题,其实我们从这儿可以看出来三角函数的部分,还有立体几何的部分,导数的部分,还有圆锥曲线,也就是解析几何的部分,仍然是我们各年考试当中一个所占比重非常大的板块。
那么在这儿,我给大家看到了这个部分,这是我们过去三年当中全国卷3当中文理科的一个知识点题型对比,总体来说,题目相对比较稳定的,顺序稍微做了一些微调,在这儿大家可以看出来,在2018年和2017年当中,大题17题的位置,也就是第一个大题的位置,经常考察的就是数列部分或者三角函数、三角形相关的内容,18题才是一个统计概率的问题,可是在去年的高考当中顺序做了一个调整,所以题目调整之后,可能同学们不太适应,就觉得跟自己平常的做题习惯不太一样,所以会产生一些心理上的波动,从而影响一些成绩。
但总体来说我们的试题难度相差不大。
再往后大家也可以从这个饼状图当中可以看到,各年考试当中知识模块的分布,基本上保持一个大体的不变,还是我们刚刚提到导数的部分,仍然是我们最重要的一个模块,当然这个模块当中也很容易出现难题,区分度比较高的部分。
第03讲基本不等式 (精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:利用基本不等式求最值①凑配法②“1”的代入法③二次与二次(一次)商式(换元法)④条件等式求最值高频考点二:利用基本不等式求参数值或取值范围高频考点三:利用基本不等式解决实际问题高频考点四:基本不等式等号不成立,优先对钩函数第五部分:高考真题感悟第六部分:第03讲基本不等式(精练)1、基本不等式(一正,二定,三相等,特别注意“一正”,“三相等”这两类陷阱)①如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立. ②a ,b 的几何平均数;2a b+叫做正数a ,b 的算数平均数. 2、两个重要的不等式①222a b ab +≥(,a b R ∈)当且仅当a b =时,等号成立. ②2()2a b ab +≤(,a b R ∈)当且仅当a b =时,等号成立. 3、利用基本不等式求最值①已知x ,y 是正数,如果积xy 等于定值P ,那么当且仅当x y =时,和x y +有最小值;②已知x ,y 是正数,如果和x y +等于定值S ,那么当且仅当x y =时,积xy 有最大值24S;4、常用技巧利用基本不等式求最值的变形技巧——凑、拆(分子次数高于分母次数)、除(分子次数低于分母次数))、代(1的代入)、解(整体解). ①凑:凑项,例:()1123x x a a a x a x a x a+=-++≥+=>--; 凑系数,例:()()2112121112212022282x x x x x x x +-⎛⎫⎛⎫-=⋅-≤⋅=<< ⎪ ⎪⎝⎭⎝⎭;②拆:例:()2244442244822223x x x x x x x x x -+==++=-++≥=>----;③除:例:()2221011x x x x x=≤>++; ④1的代入:例:已知0,0,1a b a b >>+=,求11a b+的最小值. 解析:1111()()24b aa b a b a b a b+=++=++≥. ⑤整体解:例:已知a ,b 是正数,且3ab a b =++,求a b +的最小值.解析:22,322a b a b ab a b ++⎛⎫⎛⎫≤∴≥++ ⎪ ⎪⎝⎭⎝⎭,即()()21304a b a b +-+-≥,解得()62a b a b +≥+≤-舍去.一、判断题1.(2022·江西·贵溪市实验中学高二期末)当0,2x π⎛⎤∈⎥⎝⎦时,4sin sin x x +的最小值为4 ( )2.(2021·江西·贵溪市实验中学高二阶段练习)已知102x <<,则()12x x -的最大值为18( ) 二、单选题1.(2022·江西·高一阶段练习)当0x >时,92x x+的最小值为( ) A .3B .32C .D .2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3B .2C .1D .03.(2022·湖南·高一阶段练习)已知0a >,0b >且2510a b +=,则ab 的最大值为( ) A .2B .5C .32D .524.(2022·新疆·乌苏市第一中学高一开学考试)下列函数,最小值为2的函数是( ) A .1y x x=+B .222y x x -=+C .3y x =+D .2y =高频考点一:利用基本不等式求最值①凑配法1.(2022·北京大兴·高一期末)当02x <<时,(2)x x -的最大值为( ) A .0B .1C .2D .42.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8B .7C .6D .53.(2022·安徽省蚌埠第三中学高一开学考试)已知x >3,则对于43y x x =+-,下列说法正确的是( ) A .y 有最大值7B .y 有最小值7C .y 有最小值4D .y 有最大值44.(2022·江苏省天一中学高一期末)设实数x 满足1x >-,则函数41y x x =++的最小值为( ) A .3B .4C .5D .65.(2022·上海虹口·高一期末)已知04x <<,则()4x x -的最大值为______.②“1”的代入法1.(2022·河南·夏邑第一高级中学高二期末(文))已知x ,y 均为正数,若261x y +=,则当3x y +取得最小值时,x y +的值为( ) A .16B .4C .24D .122.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .63.(2022·四川·泸县五中高二开学考试(文))已知,x y 为正实数,且2x y +=,则212x y+的最小值为__________.4.(2022·广西桂林·高一期末)已知0,0a b >>,若31a b +=,则31a b+的最小值是___________.5.(2022·天津·南开中学高一期末)已知110, 0, 4a b a b>>+=,则4a b +的最小值为_______________.③二次与二次(一次)商式1.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值12.(2022·全国·高三专题练习)函数233(1)1x x y x x ++=<-+的最大值为( ) A .3 B .2 C .1 D .-13.(2022·江西南昌·高一期末)当2x >-时,函数2462++=+x x y x 的最小值为___________.4.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.5.(2021·江西·宁冈中学高一阶段练习(理))()21147x x x x ->-+的最大值为______.6.(2022·全国·高三专题练习)求下列函数的最小值 (1)21(0)x x y x x ++=>; (2)226(1)1x x y x x ++=>-.④条件等式求最值1.(2022·陕西咸阳·高二期末(文))已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A .4B 2C .18D .142.(2022·全国·高三专题练习)已知0,0a b >>,且3ab a b =++,则a b +的最小值为( ) A .4B .8C .7D .63.(2022·江苏·高三专题练习)已知0a >,0b >且满足2a b ab +=,则2+a b 的最小值为( ) A .4B .6C .8D .104.(2022·安徽芜湖·高一期末)已知正数x ,y 满足8xy x y =++,则x y +的最小值为_________ 5.(2022·全国·高三专题练习)已知2,1a b >>,且满足21ab a b =++,则2a b +的最小值为_______. 6.(2022·重庆·高一期末)已知0x >,0y >,24xy x y =++,则x y +的最小值为______. 7.(2022·广东广州·高一期末)已知0a >,0b >,且3a b ab +=-,则a b +的最小值为______.高频考点二:利用基本不等式求参数值或取值范围1.(2022·全国·高三专题练习)当2x >时,不等式12+≥-x a x 恒成立,则实数a 的取值范围是( ) A .(],2-∞B .[)2,+∞C .[)4,+∞D .(],4-∞2.(2022·浙江·高三专题练习)若关于 x 的不等式220x ax -+>在区间[]1,5上恒成立,则a 的取值范围为( )A .()+∞B .(,-∞C .(),3-∞D .27,5⎛⎫-∞ ⎪⎝⎭3.(2022·全国·高三专题练习)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .94.(2022·全国·高三专题练习)已知x ,()0,y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围是( ) A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .()2,1-D .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( )A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞6.(2022·甘肃·无高二期末(文))已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( ) A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞7.(2022·全国·高三专题练习)若对任意0x >,231xa x x ≤++恒成立,则实数a 的取值范围是( )A .1,5⎡⎫+∞⎪⎢⎣⎭B .1,5⎛⎫+∞ ⎪⎝⎭C .1,5⎛⎫-∞ ⎪⎝⎭D .1,5⎛⎤-∞ ⎥⎝⎦高频考点三:利用基本不等式解决实际问题1.(2022·北京市十一学校高二期末)某公司要建造一个长方体状的无盖箱子,其容积为48m 3,高为3m ,如果箱底每1m 2的造价为15元,箱壁每1m 2造价为12元,则箱子的最低总造价为( ) A .72元B .300元C .512元D .816元2.(2022·河南开封·高一期末)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足14a b +=,6c =,则此三角形面积的最大值为( )A .6B .C .12D .3.(2022·江苏常州·高一期末)2021年初,某地区甲、乙、丙三位经销商出售钢材的原价相同.受钢材进价普遍上涨的影响,甲、乙计划分两次提价,丙计划一次提价.设0p q <<,甲第一次提价%p ,第二次提价%q ;乙两次均提价%2p q+;丙一次性提价()%p q +.各经销商提价计划实施后,钢材售价由高到低的经销商依次为( ) A .乙、甲、丙 B .甲、乙、丙 C .乙、丙、甲D .丙、甲、乙4.(2022·全国·高三专题练习(文))已知k ∈R ,则“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.(2022·河南·模拟预测(理))一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为g m ,则( ) A .10m >B .10m =C .10m <D .以上都有可能6.(2022·全国·高一)如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =米,3AD =米,当BM =_______时,矩形花坛AMPN 的面积最小.高频考点四:基本不等式等号不成立,优先对钩函数1.(2022·重庆南开中学模拟预测)已知命题p :“21,4,402x x ax ⎡⎤∃∈-+>⎢⎥⎣⎦”为真命题,则实数a 的取值范围是( ) A .4a < B .172a <C .133a <D .5a >2.(2022·浙江·高三专题练习)若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的取值范围是( )A .0a ≥B .2a ≤-C .52a ≥-D .3a ≤-3.(2022·全国·高三专题练习)函数2y =的最小值为( )A .2B .52C .1D .不存在4.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞5.(2022·全国·高二课时练习)函数()3421x xf x x x -=++在区间[]1,3上( )A 0B .有最大值为2491,最小值为0C D .有最大值为2491,无最小值1.(2021·江苏·高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b ++的最小值是( ) A .23B .43C .2D .42.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+3.(2021·天津·高考真题)若0 , 0a b >>,则21ab ab ++的最小值为____________. 4.(2021·江苏·高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005xy x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.一、单选题1.(2022·江西·赣州市赣县第三中学高一开学考试)下列说法正确的为( )A .12x x+≥ B .函数224x y += 4C .若0,x >则(2)x x -最大值为1D .已知3a >时,43+≥-a a 43=-a a 即4a =时,43+-a a 取得最小值8 2.(2022·福建·莆田一中高一期末)函数2455()()22x x f x x x -+=≥-有( ) A .最大值52 B .最小值52 C .最大值2 D .最小值23.(2022·河南·郏县第一高级中学高二开学考试(理))正实数ab 满足121a b+=,则()()24a b ++的最小值为( )A .16B .24C .32D .404.(2022·江西抚州·高二期末(文))若命题“对任意(),0x ∈-∞,使得2240x ax -+≥成立”是真命题,则实数a 的取值范围是( )A .[)2,-+∞B .[)2,+∞C .(],2-∞-D .(],2-∞5.(2022·河南·驻马店市基础教学研究室高二期末(理))中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为1V ,在逆水中的速度为()212V V V ≠,则游船此次行程的平均速度V 与122V V +的大小关系是( ) A .122V V V +<B .122V V V +≤C .122V V V +>D .122V V V += 6.(2022·浙江温州·二模)已知正数a ,b 和实数t 满足221a tab b ++=,若a b +存在最大值,则t 的取值范围是( )A .(],2-∞B .()2,-+∞C .(]2,2-D .[)2,+∞7.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米8.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( )A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞二、填空题9.(2022·陕西西安·高三阶段练习(文))已知0x >,0y >,334x y x y +--=.则x y +的取值范围为__________. 10.(2022·上海·二模)已知对()0,x ∀∈+∞,不等式1x m x>-恒成立,则实数m 的最大值是_________. 11.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.12.(2022·安徽合肥·高一期末)如图所示,某农科院有一块直角梯形试验田ABCD ,其中//,AB CD AD AB ⊥.某研究小组计则在该试验田中截取一块矩形区域AGEH 试种新品种的西红柿,点E 在边BC 上,则该矩形区域的面积最大值为___________.三、解答题13.(2022·湖南·高一课时练习)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?(2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?14.(2022·辽宁朝阳·高一开学考试)如图,设矩形()ABCD AB AD >的周长为8cm ,将△ABC 沿AC 向△ADC 折叠,AB 折过去后交DC 于点P ,设AB xcm =,求ADP △面积的最大值及相应x 的值.15.(2022·贵州·赫章县教育研究室高一期末)已知关于x 的不等式220ax ax ++>的解集为R ,记实数a 的所有取值构成的集合为M .(1)求M ;(2)若0t >,对a M ∀∈,有245321a t t a --≤+-+,求t 的最小值.16.(2022·山西·怀仁市第一中学校高一期末)党中央国务院对节能减排高度重视,各地区认真贯彻党中央国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,新能源汽车环保节能以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本()C x 万元,且()210500,040,64009016300,40.x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=售价-成本)(2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润.。
第3讲平面向量的数量积及应用举例1.向量的夹角2.平面向量的数量积3.向量数量积的运算律(1)a·b=b·a;(2)(λa)·b=λ(a·b)=a·(λb);(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a ·b +b ·c +c ·a =( ) A .-32B .0C .32D .3解析:选A.依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32,故选A. 已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°解析:选A.由两向量的夹角公式,可得cos ∠ABC =BA →·BC →|BA →|·|BC →|=12×32+32×121×1=32,则∠ABC =30°.(2019·温州市高考模拟)已知向量a ,b 满足|b |=4,a 在b 方向上的投影是12,则a ·b=________.解析:a 在b 方向上的投影是12,设θ为a 与b 的夹角,则|a |·cos θ=12,a ·b =|a|·|b |·cos θ=2.答案:2(2017·高考浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析:法一:(|a +b |+|a -b |)2=(a +b )2+(a -b )2+2|a +b |·|a -b |=2a 2+2b 2+2|a+b |·|a -b |=10+2|a +b |·|a -b |,而|a +b |·|a -b |≥|(a +b )·(a -b )|=|a 2-b 2|=3,所以(|a +b |+|a -b |)2≥16,即|a +b |+|a -b |≥4,即|a +b |+|a -b |的最小值为4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为2 5.法二:由向量三角不等式得,|a +b |+|a -b |≥|(a +b )-(a -b )|=|2b |=4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为2 5.答案:4 2 5平面向量数量积的运算(1)(2017·高考浙江卷) 如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3(2)(2017·高考全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1【解析】 (1) 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.(2) 如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),所以PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2(y -32)2-32,当x =0,y =32时,PA →·(PB →+PC →)取得最小值,为-32,选择B.【答案】 (1)C (2)B在本例(2)的条件下,若D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于________.解析:法一:(通性通法)因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =23,在△ABD 中,AD 2=BD 2+AB2-2BD ·AB ·cos 60°=⎝ ⎛⎭⎪⎫232+22-2×23×2×12=289,即AD =273,同理可得AE =273,在△ADE 中,由余弦定理得cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=289+289-⎝ ⎛⎭⎪⎫2322×273×273=1314,所以AD →·AE →=|AD→|·|AE →|cos ∠DAE =273×273×1314=269.法二:(光速解法)如图,建立平面直角坐标系,由正三角形的性质易得A (0,3),D ⎝ ⎛⎭⎪⎫-13,0,E ⎝ ⎛⎭⎪⎫13,0,所以AD →=⎝ ⎛⎭⎪⎫-13,-3,AE →=⎝ ⎛⎭⎪⎫13,-3,所以AD →·AE →=⎝ ⎛⎭⎪⎫-13,-3·⎝ ⎛⎭⎪⎫13,-3=269.答案:269(1)向量数量积的两种运算方法①当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. ②当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(2)数量积在平面几何中的应用解决涉及几何图形的向量的数量积运算问题时,常利用解析法,巧妙构造坐标系,利用坐标求解.1.(2019·杭州中学高三月考)若A ,B ,C 三点不共线,|AB →|=2,|CA →|=3|CB →|,则CA →·CB →的取值范围是( )A .⎝ ⎛⎭⎪⎫13,3B .⎝ ⎛⎭⎪⎫-13,3C .⎝ ⎛⎭⎪⎫34,3 D .⎝ ⎛⎭⎪⎫-34,3 解析:选D.设|CB →|=x ,则|CA →|=3|CB →|=3x ,由于A ,B ,C 三点不共线,能构成三角形,如图:由三角形三边的性质得,⎩⎪⎨⎪⎧x +3x >23x +2>x x +2>3x,解得12<x <1,由余弦定理的推论得,cos C =AC 2+BC 2-AB 22AC ·BC =x 2+9x 2-46x 2=10x 2-46x2, 所以CA →·CB →=|CA →||CB →|cos C =3x 2×10x 2-46x2=5x 2-2, 由12<x <1得,-34<5x 2-2<3, 故选D.2.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a ·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:12平面向量的夹角与模(高频考点)平面向量的夹角与模是高考的热点,题型多为选择题、填空题,难度适中,属中档题.主要命题角度有:(1)求两向量的夹角; (2)求向量的模; (3)两向量垂直问题;(4)求参数值或范围.角度一 求两向量的夹角(2019·绍兴一中高三期中)若|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为( )A .π6B .π3C .2π3D .5π6【解析】 因为|a +b |=|a -b |=2|a |, 所以|a +b |2=|a -b |2,两边平方 可得a 2+2a ·b +b 2=a 2-2a ·b +b 2, 化简可得a ·b =0,设向量a +b 与a 的夹角为θ,则可得cos θ=(a +b )·a |a +b ||a |=a 2+a ·b|a +b ||a |=|a |22|a |2=12,又θ∈[0,π],故θ=π3. 【答案】 B角度二 求向量的模(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3【解析】 法一:设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A.法二:由b 2-4e ·b +3=0得b 2-4e ·b +3e 2=(b -e )·(b -3e )=0.设b =OB →,e =OE →,3e =OF →,所以b -e =EB →,b -3e =FB →,所以EB →·FB →=0,取EF 的中点为C ,则B 在以C 为圆心,EF 为直径的圆上,如图.设a =OA →,作射线OA ,使得∠AOE =π3,所以|a -b |=|(a -2e )+(2e -b )|≥|a -2e |-|2e -b |=|CA →|-|BC →|≥3-1.故选A.【答案】 A角度三 两向量垂直问题已知|a |=4,|b |=8,a 与b 的夹角是120°.求k 为何值时,(a +2b )⊥(k a -b )?【解】 由已知得,a ·b =4×8×⎝ ⎛⎭⎪⎫-12=-16.因为(a +2b )⊥(k a -b ), 所以(a +2b )·(k a -b )=0,k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0. 所以k =-7.即k =-7时,a +2b 与k a -b 垂直.角度四 求参数值或范围已知△ABC 是正三角形,若AC →-λAB →与向量AC →的夹角大于90°,则实数λ的取值范围是________.【解析】 因为AC →-λAB →与向量AC →的夹角大于90°,所以(AC →-λAB →)·AC →<0,即|AC →|2-λ|AC →|·|AB →|cos 60°<0,解得λ>2.故填(2,+∞).【答案】 (2,+∞)(1)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a ·b|a ||b |,其中两个向量的夹角θ的范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系;②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=;(2)求向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量模的运算转化为数量积运算.②几何法:利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.1.(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.解析:设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.答案:⎣⎢⎡⎦⎥⎤-1,-12 2.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.解析:因为AP →⊥BC →,所以AP →·BC →=0. 又AP →=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×(-12)-9λ+4=0.解得λ=712.答案:712向量数量积的综合应用(2019·金华十校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m=(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 【解】 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA →在BC →方向上的投影为 |BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎪⎫sin A2,cos A 2,n =⎝⎛⎭⎪⎫cos A 2,-cos A 2,且2m ·n +|m |=22,则∠A =________.解析:因为2m ·n =2sin A 2cos A 2-2cos 2 A 2=sin A -(cos A +1)=2sin ⎝⎛⎭⎪⎫A -π4-1,又|m |=1,所以2m ·n +|m |=2sin ⎝⎛⎭⎪⎫A -π4=22,即sin ⎝⎛⎭⎪⎫A -π4=12.因为0<A <π,所以-π4<A -π4<3π4,所以A -π4=π6,即A =5π12.答案:5π122.(2017·高考江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0. 于是tan x =-33. 又x ∈[0,π], 所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.平面向量中的最值范围问题(1)(2019·杭州市高三模拟)在△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A .54B .154C .174D .174(2)(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]【解析】 (1)以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2.设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.(2)|a |+|b |≥max{|a +b |,|a -b |}=4,(|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.【答案】 (1)B (2)B求解向量数量积最值问题的两种思路(1)直接利用数量积公式得出代数式,依据代数式求最值.(2)建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值. 1.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1,若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是__________.解析:由a ·b =1,|a |=1,|b |=2可得两向量的夹角为60°,建立平面直角坐标系,可设a =(1,0),b =(1,3),e =(cos θ,sin θ),则|a ·e |+|b ·e |=|cos θ|+|cosθ+3sin θ|≤|cos θ|+|cos θ|+3|sin θ|=3|sin θ|+2|cos θ|≤7,所以|a ·e |+|b ·e |的最大值为7.答案:72.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45求向量模的常用方法利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之也不成立.易错防范(1)a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . (2)a ·b =a ·c (a ≠0)不能推出b =c ,即消去律不成立. [基础达标]1.已知A ,B ,C 为平面上不共线的三点,若向量AB →=(1,1),n =(1,-1),且n ·AC →=2,则n ·BC →等于( )A .-2B .2C .0D .2或-2解析:选B.n ·BC →=n ·(BA →+AC →)=n ·BA →+n ·AC →=(1,-1)·(-1,-1)+2=0+2=2.2.(2019·温州市十校联合体期初)设正方形ABCD 的边长为1,则|AB →-BC →+AC →|等于( )A .0B . 2C .2D .2 2解析:选C.正方形ABCD 的边长为1,则|AB →-BC →+AC →|2=|DB →+AC →|2=|DB →|2+|AC →|2+2DB →·AC →=12+12+12+12=4,所以|AB →-BC →+AC →|=2,故选C.3.(2019·温州市十校联合体期初)已知平面向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),且a ·c >0,b ·c >0.( )A .若a ·b <0则x >0,y >0B .若a ·b <0则x <0,y <0C .若a ·b >0则x <0,y <0D .若a ·b >0则x >0,y >0解析:选A.由a ·c >0,b ·c >0,若a ·b <0, 可举a =(1,1),b =(-2,1),c =(0,1), 则a ·c =1>0,b ·c =1>0,a ·b =-1<0, 由c =x a +y b ,即有0=x -2y ,1=x +y , 解得x =23,y =13,则可排除B ;若a ·b >0,可举a =(1,0),b =(2,1),c =(1,1),则a ·c =1>0,b ·c =3>0,a ·b =2>0,由c =x a +y b ,即有1=x +2y ,1=y ,解得x =-1,y =1, 则可排除C ,D.故选A.4.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,所以2AC →·BA →=0,所以AC →⊥AB →.所以∠A =90°,又因为根据条件不能得到|AB →|=|AC →|.故选C.5.已知正方形ABCD 的边长为2,点F 是AB 的中点,点E 是对角线AC 上的动点,则DE →·FC →的最大值为( )A .1B .2C .3D .4解析:选B.以A 为坐标原点,AB →、AD →方向分别为x 轴、y 轴的正方向建立平面直角坐标系(图略),则F (1,0),C (2,2),D (0,2),设E (λ,λ)(0≤λ≤2),则DE →=(λ,λ-2),FC →=(1,2),所以DE →·FC →=3λ-4≤2.所以DE →·FC →的最大值为2.故选B.6.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π3,2π3B .⎣⎢⎡⎦⎥⎤2π3,5π6C .⎣⎢⎡⎭⎪⎫2π3,πD .⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ, 且0<θ<π2.而由题意可得,b 与a -b 的夹角, 即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.7.(2019·温州市十校联合体期初)已知平面向量a 与b 的夹角为120°,且|a |=|b |=4,那么|a -2b |=________.解析:因为平面向量a 与b 的夹角为120°,且|a |=|b |=4,所以a ·b =4·4·cos 120°=-8,所以|a -2b |=(a -2b )2=a 2-4a ·b +4b 2=16-4·(-8)+4·16=112=47.答案:478.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3. a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π39. 如图,在边长为2的正方形ABCD 中,点Q 为边CD 上一个动点,CQ →=λQD →,点P 为线段BQ (含端点)上一个动点.若λ=1,则PA →·PD →的取值范围为________.解析:当λ=1时,Q 为CD 的中点. 设AB →=m ,AD →=n ,BP →=μBQ →(0≤μ≤1).易知BQ →=-12m +n ,AP →=AB →+BP →=m +μ⎝ ⎛⎭⎪⎫-12m +n =⎝ ⎛⎭⎪⎫1-12μm +μn , DP →=AP →-AD →=⎝⎛⎭⎪⎫1-12μm +μn -n =⎝⎛⎭⎪⎫1-12μm +(μ-1)n ,所以PA →·PD →=AP →·DP →=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12μm +μn ·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12μm +(μ-1)n =4⎝ ⎛⎭⎪⎫1-12μ2+4μ(μ-1)=5μ2-8μ+4.根据二次函数性质可知,当μ=45时上式取得最小值45;当μ=0时上式取得最大值4.所以PA →·PD →的取值范围为⎣⎢⎡⎦⎥⎤45,4.答案:⎣⎢⎡⎦⎥⎤45,4 10.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)·(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)11.已知m =⎝ ⎛⎭⎪⎫sin ⎝⎛⎭⎪⎫x -π6,1,n =(cos x ,1).(1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.解:(1)由m ∥n 得,sin ⎝⎛⎭⎪⎫x -π6-cos x =0,展开变形可得,sin x =3cos x , 即tan x = 3.(2)f (x )=m ·n =12sin ⎝⎛⎭⎪⎫2x -π6+34,由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z 得,-π6+k π≤x ≤π3+k π,k ∈Z .又x ∈[0,π],所以当x ∈[0,π]时,f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π.12.(2019·金华市东阳二中高三月考)设O 是△ABC 的三边中垂线的交点,a ,b ,c 分别为角A ,B ,C 对应的边,已知b 2-2b +c 2=0,求BC →·AO →的取值范围.解:因为O 是△ABC 的三边中垂线的交点,故O 是三角形外接圆的圆心, 如图所示,延长AO 交外接圆于点D .因为AD 是⊙O 的直径,所以∠ACD =∠ABD =90°. 所以cos ∠CAD =ACAD ,cos ∠BAD =AB AD. 所以AO →·BC →=12AD →·(AC →-AB →)=12AD →·AC →-12AD →·AB → =12|AD →||AC →|·cos ∠CAD -12|AD →||AB →|· cos ∠BAD =12|AC →|2-12|AB →|2=12b 2-12c 2=12b 2-12(2b -b 2)(因为c 2=2b -b 2) =b 2-b =⎝ ⎛⎭⎪⎫b -122-14.因为c 2=2b -b 2>0,解得0<b <2.令f (b )=⎝ ⎛⎭⎪⎫b -122-14.所以当b =12时,f (b )取得最小值-14.又f (0)=0,f (2)=2. 所以-14≤f (b )<2.即AO →·BC →的取值范围是⎣⎢⎡⎭⎪⎫-14,2.[能力提升]1.(2019·嘉兴市高考模拟)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1),则当max{c ·a ,c ·b }取最小值时,|c |= ( )A .255B .223C .1D .52解析:选A.如图,设OA →=a ,OB →=b ,则a =(1,0),b =(0,2),因为λ,μ≥0,λ+μ=1,所以0≤λ≤1.又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1.所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.3.(2019·瑞安市龙翔高中高三月考)向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①若m ∥n ,则tan x =________;②若m 与n 的夹角为π3,则x =________.解析:m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①由m ∥n ,得22cos x +22sin x =0,即sin ⎝⎛⎭⎪⎫x +π4=0,因为0<x <π,所以π4<x +π4<5π4,则x +π4=π,x =34π.所以tan x =-1.②由m 与n 的夹角为π3,得cos π3=22sin x -22cos x ⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫-222·sin 2x +cos 2x =sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π,所以-π4<x -π4<3π4,则x -π4=π6,x =5π12. 答案:①-1 ②5π124.(2019·宁波市余姚中学高三期中)已知向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,OP →=λOA →+μOB →.若λ+3μ=2,则|OP →|的最小值是________,此时OP →,OA →夹角的大小为________.解析:向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,即有OA →·OB →=|OA →|·|OB →|·cos 60°=2×23×12=23,若λ+3μ=2,可得λ=2-3μ,则|OP →|=|λOA →+μOB →|=λ2OA →2+μ2OB →2+2λμOA →·OB →=4λ2+12μ2+43λμ=4(λ+3μ)2-43λμ =16-43(2-3μ)μ=12⎝ ⎛⎭⎪⎫μ-332+12≥23, 当μ=33,λ=1时,|OP →|的最小值为2 3. 由OP →=OA →+33OB →, 可得OP →·OA →=OA →2+33OA →·OB →=4+33·23=6, 则cos 〈OP →,OA →〉=OP →·OA →|OP →|·|OA →|=623·2=32, 由0°≤〈OP →,OA →〉≤180°,可得〈OP →,OA →〉=30°.答案:2 3 30°5.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,求(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值.解:设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ,则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC ,因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°,设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332, 设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332,所以h =3217, 因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上,所以A 到BC 的距离最大值为4+h =4+3217. 所以S △ABC 的最大值为12×7×⎝⎛⎭⎪⎫4+3217=27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.6. 在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC →|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC →+OD →|的最小值; (2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1),由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC →+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝ ⎛⎭⎪⎫t -222+12, 所以当t =22时,|OC →+OD →|最小,为22. (2)由题意得C (cos θ,sin θ),m =BC →=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4, 因为θ∈⎣⎢⎡⎦⎥⎤0,π2, 所以π4≤2θ+π4≤5π4, 所以当2θ+π4=π2, 即θ=π8时,sin ⎝⎛⎭⎪⎫2θ+π4取得最大值1. 所以m ·n 的最小值为1-2,此时θ=π8.。
第3讲 空间点、直线、平面之间的位置关系基础知识整合1.平面的基本性质公理1:如果一条直线上的□01两点在一个平面内,那么这条直线就在此平面内. 公理2:经过□02不在同一直线上的三点,有且只有一个平面. 公理3:如果不重合的两个平面有一个公共点,那么它们有□03且只有一条过□04该点的公共直线.2.用集合语言描述点、线、面间的关系 (1)点与平面的位置关系:点A 在平面α内记作□05A ∈α,点A 不在平面α内记作□06A ∉α. (2)点与线的位置关系点A 在直线l 上记作□07A ∈l ,点A 不在直线l 上,记作□08A ∉l . (3)线面的位置关系:直线l 在平面α内记作□09l ⊂α,直线l 不在平面α内记作□10l ⊄α.(4)平面α与平面β相交于直线a ,记作□11α∩β=a . (5)直线l 与平面α相交于点A ,记作□12l ∩α=A . (6)直线a 与直线b 相交于点A ,记作□13a ∩b =A . 3.直线与直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎨⎧□14平行.□15相交.异面直线:不同在□16任何一个平面内的两条直线.(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的□17锐角或直角叫做异面直线a ,b 所成的角(或夹角). ②范围:□18⎝ ⎛⎦⎥⎤0,π2.1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面. 2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.1.(2019·银川模拟)已知m,n是两条不同的直线,α,β是两个不同的平面,若m ⊥α,n⊥β,且β⊥α,则下列结论一定正确的是( )A.m⊥n B.m∥nC.m与n相交D.m与n异面答案 A解析若β⊥α,m⊥α,则直线m与平面β的位置关系有两种:m⊂β或m∥β.当m⊂β时,又n⊥β,所以m⊥n;当m∥β时,又n⊥β,所以m⊥n.故选A.2.(2019·福州质检)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p 是q的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件,故选A.3.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD⊥BCD.若AB=AC,DB=DC,则AD=BC答案 D解析A,B,C,D构成的四边形可能为平面四边形,也可能为空间四边形,D不成立.4.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( ) A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案 C解析由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾,D错误.故选C.5.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是________(写出所有错误命题的序号).答案②③④解析由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错误.故填②③④.6.(2019·河南南阳模拟)如图,在四棱锥P-ABCD中,O为CD上的动点,V P-OAB恒为定值,且△PDC是正三角形,则直线PD与直线AB所成角的大小是________.答案60°解析因为V P-OAB为定值,所以S△ABO为定值,即O到线AB的距离为定值.因为O为CD上的动点,所以CD∥AB.所以∠PDC即为异面直线PD与AB所成角.因为△PDC为等边三角形,所以∠PDC=60°.所以PD与AB所成角为60°.核心考向突破考向一平面基本性质的应用例1 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图所示,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1.∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.触类旁通共面、共线、共点问题的证明方法(1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.提醒:点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.即时训练 1. 如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E ,F ,G ,H 四点共面; (2)设EG 与FH 交于点P . 求证:P ,A ,C 三点共线.证明 (1)∵E ,F 分别为AB ,AD 的中点, ∴EF ∥BD . 在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH ,∴E ,F ,G ,H 四点共面. (2)由(1)知EF 綊12BD ,GH 綊23BD .∴四边形FEGH 为梯形,∴GE 与HF 交于一点, 设EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC , ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点, 又平面ABC ∩平面ADC =AC , ∴P ∈AC ,∴P ,A ,C 三点共线. 考向二 空间两条直线的位置关系角度1 两条直线位置关系的判定例2 (1)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4即不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 构造如图所示的正方体ABCD -A 1B 1C 1D 1,取l 1为AD ,l 2为AA 1,l 3为A 1B 1,当取l 4为B 1C 1时,l 1∥l 4,当取l 4为BB 1时,l 1⊥l 4,故排除A ,B ,C ,选D.(2)(2019·贵州六盘水模拟)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )A.垂直B.相交C.异面D.平行答案 D解析∵α是一个平面,m,n是两条直线,A是一个点,m⊄α,n⊂α,A∈m,A∈α,∴n在平面α内,m与平面α相交,A是m和平面α的交点,∴m和n异面或相交(垂直是相交的特殊情况),一定不平行.故选D.角度2异面直线的判定例3 (2019·许昌模拟)如下图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.答案②④解析①中HG∥MN;③中GM∥HN且GM≠HN,所以直线HG与MN必相交.触类旁通空间两条直线位置关系的判定方法即时训练 2.(2019·太原期末)已知平面α和直线l,则α内至少有一条直线与l( )A.平行B.相交C.垂直D.异面答案 C解析直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错误;l⊂α时,在平面α内不存在与l异面的直线,∴D错误;l∥α时,在平面α内不存在与l 相交的直线,∴B错误.无论哪种情形在平面α内都有无数条直线与l垂直.故选C.3.如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论序号都填上).答案③④解析 因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.考向三 异面直线所成的角例4 (1)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25 C.35 D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1或其补角即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,则A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.则异面直线A 1B 与AD 1所成角的余弦值为45.故选D.(2)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是________.答案 60°解析 如图所示,连接A 1B ,可知A 1B ∥E 1D ,∴∠A 1BC 1是异面直线E 1D 和BC 1所成的角.连接A 1C 1,可求得A 1C 1=C 1B =BA 1=3, ∴∠A 1BC 1=60°. 触类旁通用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角.二证:证明作出的角是异面直线所成的角.三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.即时训练 4. 如图,在三棱锥D -ABC 中,AC =BD ,且AC ⊥BD ,E ,F 分别是棱DC ,AB 的中点,则EF 和AC 所成的角等于( )A .30°B .45°C .60°D .90°答案 B解析 如图所示,取BC 的中点G ,连接FG ,EG .∵E ,F 分别为CD ,AB 的中点, ∴FG ∥AC ,EG ∥BD , 且FG =12AC ,EG =12BD .∴∠EFG 为EF 与AC 所成的角. ∵AC =BD ,∴FG =EG . ∵AC ⊥BD ,∴FG ⊥EG , ∴∠FGE =90°,∴△EFG 为等腰直角三角形,∴∠EFG =45°,即EF 与AC 所成的角为45°.故选B.5.在三棱锥S -ACB 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则SC 与AB 所成角的余弦值为________.答案1717解析 如图所示,取BC 的中点E ,分别在平面ABC 内作DE ∥AB ,在平面SBC 内作EF ∥SC ,则异面直线SC 与AB 所成的角为∠FED ,过F 作FG ⊥AB ,连接DG ,则△DFG 为直角三角形.由题知AC =2,BC =13,SB =29可得DE =172,EF =2,DF =52,在△DEF 中,由余弦定理可得cos ∠FED =DE 2+EF 2-DF 22DE ·EF =1717.(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.33答案 C解析 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos60°=3,所以BD =3,所以B 1D 1= 3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C. 答题启示(1)当异面直线所成的角不易作出或难于计算时,可考虑使用补形法.(2)补形法的目的是平移某一条直线,使之与另一条相交,常见的补形方法是对称补形. 对点训练(2019·银川模拟)如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =12,BC =3,AA 1=4,N 在A 1B 1上,且B 1N =4,则异面直线BD 1与C 1N 所成角的余弦值为( )A.25 B.35 C.45 D .-35答案 B解析 补一个与原长方体相同的,并与原长方体有公共面BC 1的长方体B 1F , 如图所示.连接C 1E ,NE ,则C 1E ∥BD 1,于是∠NC 1E 即为异面直线BD 1与C 1N 所成角(或其补角).在△NC 1E 中,根据已知条件可求C 1N =5,C 1E =13,EN =E 1N 2+EE 21=417.由余弦定理,得cos ∠NC 1E =C 1N 2+C 1E 2-EN 22C 1N ×C 1E =-35.所以BD 1与C 1N 所成角的余弦值为35.。
2020年全国卷Ⅲ高考数学解析过去三年我们整体的命题结构,其实相比之下没有大的调整,主要就是试题的数量、题型,还有我们知识主干,相对来说都比较稳定,同样的也是对我们对高中六大能力的一个全面的考察,这六大能力都是我们平时上课的时候经常提到的,比方说空间想象能力、抽象概括能力、推理能力、运算能力,还有数据处理和分析的能力,尤其是这个部分的运算能力和我们的数据的处理能力,这部分其实在近两年的考试当中,对同学们的考察要求是有所提升的,在这儿我给大家汇总了一下过去三年当中,全国3卷当中文科和理科所有题目的一个对比,大家可以看出来,不管是从2017年开始到2019年,可能大家不是很清楚,但是大家可以从下面的这个数据图当中可以明显的看到,在考试当中前三题基本上题型是不变的,就是集合、复数,还有统计概率的问题,二项式定理偶尔考,比方有些年份可能就会考一个二项式定理,当然了文科是不考的这个部分。
再往后看,大家发现会统计概率的问题当中,基本上会考察我们的一个选择题和一个大题,其实我们从这儿可以看出来三角函数的部分,还有立体几何的部分,导数的部分,还有圆锥曲线,也就是解析几何的部分,仍然是我们各年考试当中一个所占比重非常大的板块。
那么在这儿,我给大家看到了这个部分,这是我们过去三年当中全国卷3当中文理科的一个知识点题型对比,总体来说,题目相对比较稳定的,顺序稍微做了一些微调,在这儿大家可以看出来,在2018年和2017年当中,大题17题的位置,也就是第一个大题的位置,经常考察的就是数列部分或者三角函数、三角形相关的内容,18题才是一个统计概率的问题,可是在去年的高考当中顺序做了一个调整,所以题目调整之后,可能同学们不太适应,就觉得跟自己平常的做题习惯不太一样,所以会产生一些心理上的波动,从而影响一些成绩。
但总体来说我们的试题难度相差不大。
再往后大家也可以从这个饼状图当中可以看到,各年考试当中知识模块的分布,基本上保持一个大体的不变,还是我们刚刚提到导数的部分,仍然是我们最重要的一个模块,当然这个模块当中也很容易出现难题,区分度比较高的部分。
2020年普通高等学校招生全国统一考试——全国Ⅲ理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6答案:C解析:由题意,A ∩B 中的元素满足⎩⎨⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4.所以满足要求的元素有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.2.复数11-3i的虚部是( )A .-310B .-110C .110D .310答案:D解析:因为z =11-3i =1+3i (1-3i )(1+3i )=110+310i ,所以复数z =11-3i 的虚部为310.3.在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑4i =1p i =1,则下面四种情形中,对应样本的标准差最大的一组是( )A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.2答案:B解析:易知四种情形中平均数均为x -=∑4i =1x i p i =2.5.对于A ,方差s 2A =(1-2.5)2×0.1+(2-2.5)2×0.4+(3-2.5)2×0.4+(4-2.5)2×0.1=0.65; 对于B ,方差s 2B =(1-2.5)2×0.4+(2-2.5)2×0.1+(3-2.5)2×0.1+(4-2.5)2×0.4=1.85; 对于C ,方差s 2C =(1-2.5)2×0.2+(2-2.5)2×0.3+(3-2.5)2×0.3+(4-2.5)2×0.2=1.05; 对于D ,方差s 2D =(1-2.5)2×0.3+(2-2.5)2×0.2+(3-2.5)2×0.2+(4-2.5)2×0.3=1.45.因此,B 选项这一组标准差最大.法二:样本数据距离平均数越大,且概率越大时,方差和标准差可能越大.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e -0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为( )(ln19≈3)A .60B .63C .66D .69答案:C解析:当I (t *)=K 1+e-0.23(t *-53)=0.95K ,则e 0.23(t *-53)=19,所以0.23(t *-53)=ln19≈3,解得t *≈30.23+53≈66.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A .(14,0)B .(12,0)C .(1,0)D .(2,0)答案:B解析:因为直线x =2与抛物线y 2=2px (p >0)交于D ,E 两点,且OD ⊥OE ,所以∠DOx =∠EOx =π4,所以D (2,2),代入抛物线方程得4=4p ,即p =1,所以抛物线的焦点坐标为(12,0).6.已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos <a ,a +b >=( )A .-3135B .-1935C .1735D .1935答案:D解析:易得a ·(a +b )=|a |2+a ·b =52-6=19,|a +b |=a 2+2a ·b +b 2=25-2×6+36=7.因此,cos <a ,a +b >=a ·(a +b )|a |·|a +b |=195×7=1935.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23答案:A解析:由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C =42+32-2×4×3×23=9,即AB =3.于是cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.8.下图为某几何体的三视图,则该几何体的表面积是( )A .6+42B .4+42C .6+23D .4+2 3 答案:C解析:根据三视图,在正方体中截取出符合题意的立体图形.在立体图形中,易得S △ABC =S △ADC =S △CDB =12×2×2=2.易得AB =AD =DB =22,故S △ADB =12AB ·AD ·sin60º=34(22)2=23.所以,该几何体的表面积是3×2+23=6+23.9.已知2tan θ-tan(θ+π4)=7,则tan θ=( )A .-2B .-1C .1D .2答案:D解析:因为2tan θ-tan(θ+π4)=7,所以2tan θ-tan θ+11-tan θ=7,解得tan θ=2.10.若直线l 与曲线y =x 和x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12答案:D解析:设直线l 与曲线y =x 的切点为(x 0,x 0),x 0>0,因函数y =x 的导数为y'=12x ,所以直线l 的方程为y -x 0=12x 0(x -x 0),即x -2x 0y +x 0=0.由于直线l 与圆x 2+y 2=15相切,则d =x 01+4x 0=r =15,整理得5x 20-4x 0-1=0,解得x 0=1或x 0=-15(舍).所以,直线l 的方程为x -2y +1=0,即y =12x +12.11.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A .1B .2C .4D .8答案:A解析:因为离心率e =ca=5,所以c =5a .因为F 1P ⊥F 2P ,所以|PF 1|2+|PF 2|2=(2c )2. S △PF 1F 2=12|PF 1|·|PF 2|=4,即|PF 1|·|PF 2|=8.又由双曲线的定义可得||PF 1|-|PF 2||=2a .因为(|PF 1|-|PF 2|)2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|,即4a 2=4c 2-16,又c =5a ,所以16a 2=16,解得a =1.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b答案:A解析:由题意可知a ,b ,c ∈(0,1).a b =log 53log 85=lg3lg5·lg8lg5<1(lg5)2·(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,所以a <b ; 由b =log 85,得8b =5,因为55<84,得85b <84,所以5b <4,得b <45;由c =log 138,得13c =8,因为134<85,得134<135c ,所以5c >4,得c >45.综上所述,a <b <c .二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,2x -y ≥0,x ≤1,则z =3x +2y 的最大值为_________.答案:714.(x 2+2x )6的展开式中常数项是__________(用数字作答).答案:240解析:(x 2+2x )6的二项展开式通项为T r +1=C r 6·(x 2)6-r ·(2x )r =C r6(2)r ·x 12-3r ,令12-3r =0,解得r =4,所以(x 2+2x )6的展开式中常数项是C 46·24=240.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案:23π 解析:法一:圆锥内半径最大的球应该是该圆锥的内切球,如图.由底面半径为1,母线长为3,易得高SC =22.不妨设该内切球与母线BS 切于点D ,令OD =OC =r ,由△SOD ∽△SBC ,可得ODOS =BC BS ,即r 22-r =13,解得r =22. 此时V =43πr 3=23π.法二:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC =2,AB =AC =3,且点M 为BC 边上的中点,设内切圆的圆心为O .设内切圆半径为r ,则12×2×22=S △ABC =S △AOB +S △BOC +S △AOC =12×AB ×r +12×BC ×r +12×AC ×r =12×(3+3+2)×r ,解得r =22,故体积V =43πr 3=23π.16.关于函数f (x )=sin x +1sin x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =π2对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 答案:②③解析:函数f (x )的定义域为{x |x ≠kπ,k ∈Z },定义域关于0对称,易得f (-x )=sin(-x )+1sin(-x )=-sin x -1sin x =-(sin x +1sin x )=-f (x ),所以f (x )是非零的奇函数,因此图象关于原点对称,故命题①错误,命题②正确;对于命题③,因为f (π2-x )=sin(π2-x )+1sin(π2-x )=cos x +1cos x ,f (π2+x )=sin(π2+x )+1sin(π2+x )=cos x +1cos x ,则f (π2-x )=f (π2+x ),所以f (x )的图象关于直线x =π2对称,命题③正确;对于命题④,当-π<x <0时,sin x <0,则f (x )=sin x +1sin x<0<2,命题④错误.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .解析:(1)由题意,a 2=3a 1-4=9-4=5,a 3=3a 2-8=3×5-8=7.猜想数列{a n }是以3为首项,2为公差的等差数列,故a n =2n +1. 证明:①当n =1时,a 1=3=2+1;②假设当n =k (k ∈N *)时,命题成立,即a k =2k +1,则当n =k +1时,a k +1=3a k -4k =3(2k +1)-4k =2k +3=2(k +1)+1,所以当n =k +1时,命题也成立.综上,由数学归纳法知,对任意的n ∈N *,都有a n =2n +1. (2)由(1)可知,2n a n =(2n +1)·2n ,则S n =3×2+5×22+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+…+(2n -3)·2n -1+(2n -1)·2n +(2n +1)·2n +1,② ①-②得,-S n=6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2,所以S n =(2n -1)·2n +1+2.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400 人次>400空气质量好 空气质量不好附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),P (K 2≥k ) 0.050 0.0100.001k3.841 6.635 10.828解析:(1)由频数分布表可知,该市一天的空气质量等级为1的概率为2+16+25100=0.43,等级为2的概率为5+10+12100=0.27,等级为3的概率为6+7+8100=0.21,等级为4的概率为7+2+0100=0.09.(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100×20+300×35+500×45100=350.(3)2×2列联表如下:人次≤400 人次>400空气质量不好 33 37 空气质量好228 K 2=100×(33×8-37×22)55×45×70×30≈5.820>3.841,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.解析:(1)在棱CC 1上取点G ,使得CG =2C 1G ,连接DG 、FG 、C 1E 、C 1F .在长方体ABCD -A 1B 1C 1D 1中,易得CG =23CC 1=23BB 1=BF 且CG ∥BF ,所以四边形BCGF 为平行四边形,因此BC _∥FG . 又BC _∥AD ,所以FG _∥AD ,因此四边形ADGF 为平行四边形,所以AF _∥DG . 易得C 1G _∥DE ,所以四边形DEC 1G 为平行四边形,因此C 1E _∥DG . 所以C 1E _∥AF ,则四边形AEC 1F 为平行四边形,因此点C 1在平面AEF 内.(2)以点C 1为坐标原点,C 1D 1、C 1B 1、C 1C 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系C 1-xyz .易得A (2,1,3),A 1(2,1,0),E (2,0,2),F (0,1,1),故AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1).设平面AEF 的法向量为m =(x 1,y 1,z 1),由⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,得⎩⎨⎧-y 1-z 1=0,-2x 1-2z 1=0,取z 1=-1,得x 1=y 1=1,则m =(1,1,-1).设平面A 1EF 的法向量为n =(x 2,y 2,z 2),由⎩⎪⎨⎪⎧n ·A 1E →=0,n ·A 1F →=0,得⎩⎨⎧-y 2+2z 2=0,-2x 2+z 2=0,取z 2=2,得x 2=1,y 2=4,则n =(1,4,2).于是cos <m ,n >=m ·n |m |·|n |=33×21=77.设二面角A -EF -A 1的平面角为θ,则|cos θ|=77,所以sin θ=1-cos 2θ=427,因此,二面角A -EF -A 1的正弦值为427.20.已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.解析:(1)因为椭圆C :x 225+y 2m2=1(0<m <5),所以a =5,b =m .e =c a=1-(b a)2=1-(m 5)2=154,解得m =54,所以C :x 225+y 2(54)2=1,即x 225+16y 225=1.(2)不妨设P ,Q 在x 轴上方,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N .因为BP ⊥BQ ,所以∠PBM +∠QBN =90º,又∠BQN +∠QBN =90º,所以∠PBM =∠BQN .又|BP |=|BQ |,所以△PMB ≌△BNQ .因为椭圆C :x 225+16y 225=1,所以B (5,0),所以|PM |=|BN |=6-5=1,即y P =1,将其代入x 225+16y 225=1,可得x P =3或-3,所以P 点为(3,1)或(-3,1).①当P 点为(3,1)时,|MB |=5-3=2=|NQ |,故Q 点为(6,2). 因为A (-5,0),可求得直线AQ 的直线方程为2x -11y +10=0,故点P 到直线AQ 的距离为d =|2×3-11×1+10|22+112=|5|125=55,又|AQ |=(6+5)2+(2-0)2=55,所以△APQ 面积为12×55×55=52. ②当P 点为(-3,1)时,|MB |=5+3=8=|NQ |,故Q 点为(6,8).因为A (-5,0),可求得直线AQ 的直线方程为8x -11y +40=0,故点P 到直线AQ 的距离为d =|8×(-3)-11×1+40|82+112=|5|185=5185,又|AQ |=(6+5)2+(8-0)2=185,所以△APQ 面积为12×185×5185=52. 综上所述,△APQ 的面积为52.21.设函数f (x )=x 3+bx +c ,曲线y =f (x )在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.解:(1)因为f'(x )=3x 2+b ,由题意得f'(12)=0,即3×(12)2+b =0,则b =-34.(2)由(1)得f (x )=x 3-34x +c ,故f'(x )=3x 2-34=3(x +12)(x -12).令f'(x )>0,得x >12或x <-12;令f'(x )<0,得-12<x <12.所以f (x )在(-12,12)上递减,在(-∞,-12),(12,+∞)上递增.且f (-1)=f (12)=c -14,f (-12)=f (1)=c +14.若f (x )有一个绝对值不大于1的零点,则f (x )在[-1,1]上有零点,则c -14≤0≤c +14,得-14≤c ≤14.当c =-14时,易知f (x )的零点为-12和1,满足所有零点的绝对值都不大于1.当c =14时,易知f (x )的零点为-1和12,满足所有零点的绝对值都不大于1.当-14<c <14时,f (-1)=f (12)=c -14<0,f (-12)=f (1)=c +14>0,所以f (x )的零点x 1∈(-1,-12),x 2∈(-12,12),x 3∈(12,1),满足所有零点的绝对值都不大于1.综上,f (x )所有零点的绝对值都不大于1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. [选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2-t -t 2,y =2-3t +t 2(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求|AB |;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.解析:(1)令x =0,则2-t -t 2=0,解得t =-2或1(舍),则y =2-3t +t 2=12,故A (0,12).令y =0,则2-3t +t 2=0,解得t =2或1(舍),则x =2-t -t 2=-4,故B (-4,0). |AB |=42+122=410.(2)由(1)可知k AB =3,则直线AB 的方程为y =3(x +4),即3x -y +12=0.所以,直线AB 的极坐标方程为3ρcos θ-ρsin θ+12=0.[选修4—5:不等式选讲](10分)(2020全国Ⅲ理23文23)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34.解析:(1)因为(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,所以ab +bc +ca =-12(a 2+b 2+c 2).因为abc =1,所以a ,b ,c 均不为0,所以ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a .由a +b +c =0,abc =1,可知a >0,b <0,c <0.易得a =-b -c ,a =1bc ,所以a 2=(b +c )2≥4bc =4a ,即a 3≥4,所以a ≥34.即证得max{a ,b ,c }≥34.。
专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。
高考数学热点必会题型第3讲 函数与方程和零点问题与嵌套函数 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、零点存在定理法判断函数零点所在区间 例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2B .()2,3C .()3,4D .()4,5例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t-取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( ) A .101x << B .2101xx e << C .()101f x <<D .()1ln 2,a ∈-+∞【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减 ③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③B .①④C .②③④D .①③④例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+C .()e 2x y f x =-D .()e 2x y f x =-+例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个B .2个C .3个D .4个例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______.第二天学习及训练【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1B .2C .3D .4例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1xx f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∈[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( )A .8B .9C .10D .11例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( ) A .函数()f x 是R 上的单调递增函数 B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+第三天学习及训练【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦ 例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4B .(]3.5,4C .(]3,4D .[)3,4例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭第四天学习及训练【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭例30.(2023·全国·高三专题练习)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( )A .6eB .(2eC .(2eD .2e【题型】八、一元二次不等式能成立问题例31.(2023·全国·高三专题练习)已知命题:R p x ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( ) A .1,4⎛⎤-∞ ⎥⎝⎦B .1,)4-∞( C .11,42⎛⎫ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭例32.(2023·全国·高三专题练习)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.高考数学热点必会题型第3讲 函数与方程和零点问题与嵌套函数 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、零点存在定理法判断函数零点所在区间 例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2 B .()2,3 C .()3,4 D .()4,5【答案】B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<-,()23ln 3ln 31031f =-=->-, 所以()()230f f <,所以函数的零点所在的区间是()2,3. 故选:B例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈ B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈【答案】D【分析】先由()2()log 20f f x x -=求出2()16log f x x =+,再由()()17f a f a +'=得到21log 10ln 2a a --=,结合单调性和零点存在定理进行判断即可. 【详解】不妨设2()log f x x m -=,则()20f m =,所以2log 2016m m m +=⇒=,得2()16log f x x =+,1()ln 2f x x '=, 因为()()17f a f a +'=,所以21log 10ln 2a a --=.令21()log 1ln 2g a a a =--,易得()g a 在(0,)+∞上单调递增,因为227ln118(3)log 3103ln 23ln 2g -=--=>,52531255ln 2ln 25ln 21ln 42410244(2.5)log 2.5102.5ln 25ln 25ln 25ln 25ln 2g ⎛⎫--- ⎪-⎝⎭=--===<<, 由零点存在定理知:(2.5,3)a ∈. 故选:D .例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t-取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭【答案】D【分析】由已知条件构造函数()e ln ah a a =-,利用导数求出最值,由零点存在性定理验证001e 0a a -=的根的范围即可. 【详解】令()()f s g t a ==,即e ln 0t s a ==>, ∴ln t a =,e a s =, ∴e ln (0)a s t a a -=->,令()e ln a h a a =-,则()1e ah a a'=-,令()1e am a a =-,则()21e a m a a '=+, ∴()m a 在()0,∞+上单调递增,且()1e 10m =->,1202m ⎛⎫=< ⎪⎝⎭∴存在唯一0a a =使得()0h a '=,当00a a <<时,1e a a <, ()0h a '<,当0a a >时,1e aa>, ()0h a '>,∴()0()min h h a a =,即s t -取得最小值时,0()f s a a ==,由零点的存在定理验证01e 0aa -=的根的范围,当012a =时,001e 0a a -<,当0ln2a =时,001e 0aa ->,故01(,ln 2)2a ∈, 故选:D .例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( ) A .101x << B .2101xx e << C .()101f x << D .()1ln 2,a ∈-+∞【答案】ACD 【分析】函数()()2e0-=->x af x x a 有两个极值点1x 和2x ,令()0f x '=,则e2e =x a x判断函数()e x g x x =的单调性,由题知()e xg x x=与2e =a y 有两个交点,借助图像求出a 的取值范围,判断D ;再根据零点存在性定理判断A ;又根据11e 2-=x ax ,求出()1f x 的取值范围,判断C ;由()()1200f x f x ⎧'=='⎪⎨⎪⎩,得2112e e x xx x =,由于101x <<,21x >,所以12e 1>x x ,从而判断B.【详解】已知()2e -=-x a f x x ,则()e 2-'=-x af x x ,令()0f x '=,则e2e =x a x考虑函数()e xg x x =,则()()2e 1x x g x x -'=,当(),0x ∈-∞时,()0g x '<,即()g x 在(),0∞-上单调递减; 当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减; 当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增;故()g x 的图象大致如图:依题意,若()f x 有两个极值点,则2e e >a ,即1ln 2a >-,因此选项D 正确; 由图易知,101x <<,21x >,故选项A 正确; 又11e 2-=x ax ,故()()122211111e 211-=-=-=--x a f x x x x x ,因为101x <<,所以()101f x <<,故选项C 正确; 因为()()1200f x f x ⎧'=='⎪⎨⎪⎩,即1212e 2e 2x a x a x x --⎧=⎨=⎩,故1212e e =x x x x ,即2112e e x xx x =. 由于101x <<,21x >,所以12e 1>x x ,从而21e 1>xx ,故选项B 错误.故答案为:ACD.【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减 ③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③ B .①④C .②③④D .①③④【答案】 D【分析】根据给定函数,计算(2)-f x 判断①;探讨()f x 在(2,)+∞上单调性判断②;探讨()f x 在(0,1)和(1,2)上单调性判断③;求出()f x 的零点判断④作答.【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于①,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,①正确;对于②,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,②不正确; 对于③,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,③正确;对于④,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,④正确, 所以所有正确结论的编号为①③④. 故选:D【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+ C .()e 2x y f x =- D .()e 2x y f x =-+【答案】B【分析】根据()f x 是奇函数可得()()f x f x -=-,因为0x 是()2e =-xy f x 的一个零点,代入得()002e xf x =,利用这个等式对A 、B 、C 、D 四个选项进行一一判断可得答案.【详解】()f x 是奇函数,()()f x f x ∴-=-且0x 是()2e =-xy f x 的一个零点,所以()002e xf x =,把0x -分别代入下面四个选项,对于A ,()()0020e e 222-=-x x f x ,不一定为0,故A 错误;对于B ,()()0000e 2e x xf x f x ---+=-0012e e 20x x -+=-⋅⋅+=,所以0x -是函数()e 2x y f x =+的零点,故B 正确;对于C ,()000224e 2e ---=--=-x f x ,故C 不正确;对于D ,()0000e22e e +24--+==x x x f x ,故D 不正确;故选:B.例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3 故选:C例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______. 【答案】13【分析】根据函数周期性和奇偶性的性质,进行递推即可. 【详解】()f x 是定义在R 上的以3为周期的奇函数,()()3f x f x ∴+=,且()()f x f x -=-,则()00f =,则()()()()()()36600330f f f f f f ==-==-=-=,,()20f =,()()()()514050f f f f ∴=-=-=-=,,()10f =,()40f =,()20f -=,方程的解至少有0,3,6,6-,3-,2,5,5-,2-,1-,1,4,4-,共13个. 故答案为:13第二天学习及训练【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个【答案】D【分析】设()t f x =,求导分析()33f x x x =-的最值与极值,画出图形,再分析()f t c =与()t f x =的根的范围与个数即可【详解】设()t f x =,则由()()0h x f f x c =-=⎡⎤⎣⎦, 得()f f x c =⎡⎤⎣⎦,即()f t c =,()t f x = 又()()()233311f x x x x '=-=-+, 由0fx得1x <-或1x >,此时函数单调递增,由()0f x '<得11x -<<,此时函数单调递减,即函数在=1x -处取得极大值()()()311312f -=--⨯-=,函数在1x =处取得极小值()311312f =-⨯=-,又由()()()322322f -=--⨯-=-,()322322f =-⨯=可得图象:若()f t c =,()2,2c ∈-,则方程有三个解, 满足121t -<<-,211t -<<,312t <<, 则当121t -<<-时,方程()t f x =,有3个根, 当211t -<<时,方程()t f x =,有3个根, 当312t <<时,方程()t f x =,有3个根, 此时共有9个根,若()f t c =,2c =,则方程有两个解, 满足11t =-,22t =,则当11t =-时,方程()t f x =,有3个根, 当22t =,有2个根, 此时共有5个根,同理()f t c =,2c =-,也共有5个根 故选:D .例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1 B .2C .3D .4【答案】D【分析】由题意知,f (x )是周期为2的偶函数,将函数零点转化为求两个函数图象交点的个数即可,作出图象观察得出结论.【详解】由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 故选:D.例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1x x f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7【答案】B【分析】令()t f x =,()0g x =,则()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,得到10t =,212t <<,再分别作出函数()y f x =和直线y t =的图象,得到方程()0f x =和方程()2t f x =的根的个数,进而得到函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数. 【详解】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-, 分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t , 则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根, 当()2t f x =时,函数()y f x =和直线2y t =有三个交点, 即方程()2t f x =有三个不相等的根, 综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:B.例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∈[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【答案】2n ﹣1##12-+n【分析】数形结合,画出y =f (x )在区间[0,n ]上的图象,根据y =knx 与y =f (x )的图象交点分析即可.【详解】由题意,画出y =f (x )在区间[0,1]上的图象, 又对任意的[1,n ],都成立f (x )=f (x ﹣1)+1.可理解为区间[n ﹣1,n ]的图象由区间[n ﹣2,n ﹣1]的图象向右平移一个单位所得, 即可画出y =f (x )在区间[0,n ]上的图象,如图所示,故若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解, 则y =knx 与y =f (x )在区间[n ﹣1,n ]上的图象相切,且易得y =f (x )的图象在y =x 与区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上的公切线之间,故y =knx 与y =f (x )在区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上均有2个交点, 故关于x 的方程f (x )=knx 的实数解的个数为2(n ﹣1)+1=2n ﹣1个.故答案为:2n ﹣1.【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( ) A .8 B .9 C .10 D .11【答案】B【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣,且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<- 【答案】C【分析】A 根据函数奇偶性的定义即可判断()f x 的奇偶性;B 利用放缩法,当0x >易证()1f x >,由奇函数的对称性知0x <时()1f x <-,即可知()f x 与sin y x =的交点情况;C :由()2f x =变形可得112713xx⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭,设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭只需判断()1g x =解得个数即可;D 根据函数解析式求出()()2,1f f --比较大小即可. 【详解】A :()f x 定义域为{|0}x x ≠且()()()()()()333391log log 91log 91log 9191120x x x x x f x f x x x x x -⎛⎫+ ⎪+++⎝⎭-+=-+-=--=-,故()f x 为奇函数,错误;B :当0x >时有()3log 91211xf x x>-=-=,又()f x 为奇函数,则当0x <时,()1f x <-,即在R 上()f x ∈()(),11,-∞-⋃+∞,则()f x 的图象与sin y x =没有交点,错误, C :若()2f x =,则有()3log 9112x x+-=,即()3log 913x x +=,变形得9127x x+=,即112713x x⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭, 设()11327x xg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 为减函数且其值域为0,,则()1g x =有且只有一个解,即()f x 的图象与2y =只有一个交点,正确,D :()()2333182log 1log 2log 918181211222f -⎛⎫⎛⎫++ ⎪+ ⎪⎝⎭-=-=--=- ⎪- ⎪⎝⎭3182log 29=-⨯3log =-,而()333110101log 11log 1log 993f ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪⎝⎭⎝⎭,则有()()21f f ->-,错误.故选:C.【点睛】关键点点睛:A 利用奇偶性定义判断函数的奇偶性,B 放缩法及奇函数的对称性,结合正弦函数的性质判断交点情况,C 将交点问题,通过恒等变形转化为方程是否有解的问题,D 通过函数解析式求函数值,进而比较大小.例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( ) A .函数()f x 是R 上的单调递增函数 B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+ 【答案】BD【分析】对于AC ,举例判断,对于B ,利用取整函数和零点的定义判断即可,对于D ,定义{}[]a a a -=这样一个函数,就会有{}10a >≥,然后结合高斯函数的定义判断即可【详解】对于A ,(1.1)1f =,(1.2)1f =,(1.1)(1.2)f f =,()f x ∴在R 上不是单调增函数,所以A 错.对于B ,由()[]f x x =,可得1()x f x x -<≤,所以1()33x xg x -<≤,若函数()g x 要有零点,则1033x x -<≤,得[0,3)x ∈,因为()g x 要想为0,必须23x 也为整数,在这个范围内,只有30,2x x ==两个点,所以B 正确, 对于C ,(1.1)1f =,( 1.1)2(1.1)f f -=-≠-,()f x ∴不是奇函数,所以C 错, 对于D ,如果我们定义{}[]a a a -=这样一个函数,就会有{}10a >≥,同时有{}{}{}{}()([][])[[][]]f a b f a b a b a b a b +=+++=+++,当{}{}1a b +≥时,会有()[][]()()f a b a b f a f b +=+=+,当{}{}01a b <+<时,()[][]()()f a b a b f a f b +>+=+,所以D 正确,故选:BD.第三天学习及训练【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14【答案】D【分析】通过a 是否为0,然后求解函数的零点即可.【详解】解:当0a =时,函数()1f x x =--仅有一个零点,满足题意;当0a ≠时,函数2()1f x ax x =--仅有一个零点,可得140a ∆=+=,解得14a =-.故选:D例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)【答案】A【分析】解方程22()(23)()30-++=f x a f x a 得()f x a =或3()2f x =,根据a 的取值分类讨论即可.【详解】方程22()(23)()30-++=f x a f x a ,解得()f x a =或3()2f x =, 若32a =,13,132()12()1,12x x f x x -⎧=⎪⎪==⎨⎪+≠⎪⎩, 解得1x =或0或2,不符合题意,所以32a ≠, 由3()2f x =,可得原方程有3个不等实根1x =或0或2; 所以只要|1|1()12x a -+=有2个不等实根即可.由|1|0x ->可得|1|10()12x -<<,即有12a <<,综上可得33(1,)(,2)22a ⋃∈.故选:A .例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D【分析】画出()f x 的图像,结合函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,结合图像列不等式来求得m 的取值范围.【详解】当0x ≤时,()f x 是开口向下的二次函数,对称轴为2x =-,()()24831,03f f -=-+-==-.由243=0x x ---解得=1x -或3x =-. 由此画出()f x 的图像如下图所示,依题意,函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点, 令()t f x =,则21y t mt =++,根据图像可知,函数21y t mt =++在区间[)3,1-上有两个不相等的实数根,则()222Δ403310110312m m m m ⎧=->⎪--+≥⎪⎪⎨++>⎪⎪-<-<⎪⎩,解得1023m <≤,所以m 的取值范围是102,3⎛⎤ ⎥⎝⎦.故选:D例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦【答案】A【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点. 当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.①当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意; ②当12,0t t >时:1. 若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2. 若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<; 综上可得101t <<或1423t ≤<. 又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭【答案】BC【分析】A 根据()f x 的周期性判断区间单调性;B 利用周期性求得()() 202230f f =-=即可判断;C 转化为y b =与()y f x =的交点问题,应用数形结合法及对称性求零点的和;D 根据函数图象求得1y kx =+与()y f x =交点个数为2或3时的临界值,即可得范围. 【详解】A :由题意,当3x ≥-时()f x 以3为周期的函数,故()f x 在[7,9]上的单调性与()f x 在[-2,0]上的单调性相同,而当0x <时()23924x x f ⎛⎫=-++ ⎪⎝⎭,∴()f x 在[-2,0]上不单调,错误;B :()22f -=,()() 202230f f =-=,故()()2 20222f f -+=,正确;C :作出()y f x =的函数图象如图所示:由于()y f x b =-在(),6-∞上有6个零点,故直线y b =与()y f x =在(),6-∞上有6个交点,不妨设1i i x x +<,i =1,2,3,4,5,由图象知:1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴513392229222i i x ==-⨯+⨯+⨯=∑,正确;D :若直线1y kx =+经过(3,0),则13k =-,若直线1y kx =+与()230y x x x =--<相切,则消元可得:()2103x k x ++=+,令Δ0=可得()2340k +-=,解得k =-1或k =-5(舍),若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性得:k =1. 因为()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =有3个交点, ∴113k -<<-或k =1,错误,故选:BC .例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【答案】2⎫⎪⎪⎝⎭【分析】根据开区间上连续函数的最值点必为导函数的零点,然后求导,数形结合,根据零点存在性定理建立不等式即可求解【详解】因为()()()22e 222e 2x xf x x x a x x a '=-++-+=-++,且函数()f x 在区间(),1a a +上存在最大值, 故只需()22h x x a =-++满足()()>0+1<0h a h a ⎧⎪⎨⎪⎩,所以()22++2>0+1++2<0a a a a --⎧⎪⎨⎪⎩,2a <<.故答案为:2⎫⎪⎪⎝⎭【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4 B .(]3.5,4C .(]3,4D .[)3,4【答案】A【分析】由已知得出函数()f x 是周期函数,周期为2,函数()F x 的零点个数转化为函数()f x 的图象与sin()y x π=的图象的交点个数,作出函数的图象(其中()f x 的图象由奇偶性与周期性结合作出),然后分析交点个数得出参数范围. 【详解】由(2)()0f x f x -+=得(2)()f x f x +=--,又()f x 是奇函数,所以(2)()()f x f x f x +=--=,即()f x 是周期函数,周期为2,sin()y x π=也是周期函数,且最小正周期是22ππ=,由奇偶性和周期性作出函数()f x 的图象,再作出sin()y x π=的图象,如图,函数()()sin()F x f x x π=-的零点个数即为函数()y f x =的图象与函数sin()y x π=的图象交点个数,()f x 是R 上的奇函数,所以(0)0f =,从而20()f k =,Z k ∈,易知它们在[1,1)-上有4个交点,从而在[1,3)上也有4个交点,而4x =时,点(4,0)是一个交点,所以4m <,在(0,1)上,2()log f x x =-,11()1sin 22f π==,即1(,1)2是(0,1)上交点,从而在(1,0)-上交点上交点为1(,1)2--,由周期性在(3,4)上两函数图象交点为7(,1)2-,所以72m ≥. 综上,724m ≤<.故选:A .例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】运用代入法,结合余弦型函数的性质、函数零点的定义进行求解即可. 【详解】因为()2cos()1f x x ωϕ=+-经过(0,0)点, 所以12cos 10cos 2ϕϕ-=⇒=,因为0πϕ<<,所以π3ϕ=,即π()2cos()13f x x ω=+-,令ππ1()2cos()10cos()332f x x x ωω=+-=⇒+=,因为π()0,x ∈,所以πππ(,π)333x ωω+∈+,因为()f x 在(0,π)上只有一个零点0x ,所以有5πππ43327ππ3π33ωωω⎧<+⎪⎪⇒<≤⎨⎪≤+⎪⎩,所以ω的最大值为2, 故选:C例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】求出函数()f x 的导数,利用导数的几何意义求出ϕ,再由零点信息列出不等式,求解作答.【详解】依题意,()2sin()f x x ωωϕ'=-+,则(0)2sin f ωϕ'=-=,即sin ϕ=,而π02ϕ<<,解得π3ϕ=, 因此,π()2cos()13f x x ω=+-,由()0f x =得:π1cos()32x ω+=,又π()0,x ∈,有πππ(,π)333x ωω+∈+,因()f x 在(0,π)上只有一个零点0x ,于是得5ππ7ππ333ω<+≤,解得423ω<≤, 所以ω的最大值为2. 故选:C例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】根据函数的奇偶性求出函数在[2,0]-上的解析式,将问题转化为函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,结合图形即可得出结果.【详解】由题意知,函数()f x 为偶函数,且(2)(2)f x f x -=+,令2x x →+,则(22)()(4)()f x f x f x f x --=-=+=, 所以函数()f x 是以4为周期的函数. 当[2,0]x ∈-时,[0,2]x -∈,所以()x f x --=,即当[2,0]x ∈-时()x f x -=, 因为函数()()(1)m g x f x x =-+在[0,10]上有5个零点, 所以方程()(1)0m f x x -+=在[0,10]上有5个根,即函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,如图,当[0,2]x ∈时,()xf x =,()121e 2x f x '=,()102f '=,设()(1)mp x x =+,则()1(1)m p x m x -'=+,()0p m '=,当12m ≤,()()00p f '≤', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+只有一个零点,此时,若要使图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点, 则()()11010mf +≤,11log e m ≤,所以110log e m <≤; 当12m >时,()()00p f '>', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+有两个零点, 所以()()166mf +<且()()11010mf +>,即7e 11em m ⎧<⎨>⎩,解得71log e 2m <<,故m 的取值范围为(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭.故选:B.例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃【答案】C【分析】根据已知条件画出函数()f x 的图象,将函数()()g x f x kx k =-+恰好有两个零点转化为函数()f x 与直线()1y k x =-图象恰有两个交点即可求解.【详解】由题意知,画出函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩的简图,如图所示由()()g x f x kx k =-+恰好有两个零点转化为()f x 与直线()1y k x =-有两个不同的交点, 由图知,当直线经过点()()1,0,0,1-两点的斜率为10101k --==-,则1k >. 所以实数k 的取值范围为()1,+∞. 故选:C.例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭【答案】ACD【分析】根据零点的定义判断A ,利用导数分析函数的单调性,作出函数()f x 的图象,根据图象判断其余选项.【详解】由()0f x =得:0x =,即0x =,故函数()f x 有唯一零点0x = 由题可知:(),0e e ,0e xx xxx x f x x x ⎧≥⎪⎪==⎨⎪-<⎪⎩设()e e xxx g x x -==⋅,x ∈R ,则()()1x g x x e -'=-⋅,由()()1e 0x g x x -⋅'=-≥得:1x ≤;由()()1e 0xg x x -⋅'=-≤得;1x ≥;故()g x 在(],1-∞上单调递增﹐在[)1,+∞上单调递减,作出()y g x =图象,并将0x <的部分图象关于x 轴对称可得()y f x =的图象如下:观察图象可得函数()y f x =的单调递减区间为(),0∞-,()1,+∞,B 错, 函数()y f x =在1x =时有极大值1e,C 对,方程()f x a =有三个不同的根,则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭,D 对,故选:ACD.第四天学习及训练【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23【答案】C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案. 【详解】22()4f x x x m '=-+,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤- 又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -== 故选:C .例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】分离参变量得211a x x ⎛⎫<- ⎪⎝⎭恒成立,只用2min 11a x x ⎡⎤⎛⎫<-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解.【详解】当13x ≤≤时,由210ax x -<+恒成立可得,。
第3讲三次函数1.已知322()3f x x ax bx a =+++在1x =-时有极值0,则(a b -=)A .7-B .2-C .7-和2-D .以上答案都不对2.已知函数32()35f x x x =-+,()(1)()g x m x m R =+∈,若存在唯一的正整数0x ,使得00()()f x g x <,则实数m 的取值范围是()A .5[0,]4B .15[,]34C .15(,]34D .1(0,)33.设函数32()35f x x x ax a =--+-,若存在唯一的正整数0x ,使得0()0f x <,则a 的取值范围是()A .1(0,)3B .1(3,5]4C .1(3,3]2D .5(4,3]24.已知函数32()1f x x ax x =-+--在(,)-∞+∞上是单调函数,则实数a 的取值范围是()A .(,3][3,)-∞-+∞B .[3,3]-C .(,3)(3,)-∞-+∞ D .(3,3)-5.若函数32()132x a f x x x =-++在区间1(2,3)上有极值点,则实数a 的取值范围是()A .5(2,)2B .[2,5)2C .10(2,)3D .[2,10)36.若322()7f x x ax bx a a =++--在1x =处取得极大值10,则ba的值为()A .32-或12-B .32-或12C .32-D .12-7.如果函数3211()(1)132f x x ax a x =-+-+在区间(1,4)上为减函数,在(6,)+∞上为增函数,则实数a 的取值范围是()A .5a B .57a C .7a D .5a 或7a 8.已知函数3211()32f x x ax x =-+在区间1(2,3)上既有极大值又有极小值,则实数a 的取值范围是()A .(2,)+∞B .[2,)+∞C .5(2,)2D .10(2,39.已知函数321()(0)32a f x x x x a =-- 在区间(0,1)上不是单调函数,则实数a 的取值范围是()A .(0,2)B .[0,1)C .(0,)+∞D .(2,)+∞10.函数3211()(1)2(1)32f x x m x m x =-++-在(0,4)上无极值,则m =.11.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x + 恒成立,则实数a 的取值范围是.12.若函数32()132x a f x x x =-++在区间1[,3]2上单调递减,则实数a 的取值范围是.13.若函数3212()33f x x x =+-在区间(,5)a a +上存在最小值,则实数a 的取值范围是.14.已知函数3211()(1)132f x x a x ax =-+++,a R ∈.若函数()f x 在区间(1,1)-内是减函数,则实数a 的取值范围是.。
第3讲立体几何中的向量方法高考定位以空间几何体为载体考查空间角是高考命题的重点,常与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.真题感悟1.(2017·全国Ⅱ卷)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.32 B.155 C.105 D.33解析法一以B为原点,建立如图(1)所示的空间直角坐标系.图(1) 图(2)则B (0,0,0),B 1(0,0,1),C 1(1,0,1).又在△ABC 中,∠ABC =120°,AB =2,则A (-1,3,0).所以AB 1→=(1,-3,1),BC 1→=(1,0,1),则cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=(1,-3,1)·(1,0,1)5×2=25×2=105, 因此,异面直线AB 1与BC 1所成角的余弦值为105.法二 如图(2),设M ,N ,P 分别为AB ,BB 1,B 1C 1中点,则PN ∥BC 1,MN ∥AB 1,∴AB 1与BC 1所成的角是∠MNP 或其补角.∵AB =2,BC =CC 1=1,∴MN =12AB 1=52,NP =12BC 1=22.取BC 的中点Q ,连接PQ ,MQ ,则可知△PQM 为直角三角形,且PQ =1,MQ =12AC ,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC=4+1-2×2×1×⎝ ⎛⎭⎪⎫-12=7,AC =7, 则MQ =72,则△MQP 中,MP =MQ 2+PQ 2=112,则△PMN 中,cos ∠PNM =MN 2+NP 2-PM 22·MN ·NP=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫11222×52×22=-105, 又异面直线所成角范围为⎝ ⎛⎦⎥⎤0,π2,则余弦值为105. 答案 C2.(2018·全国Ⅲ卷)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CDM ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .由于DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz .当三棱锥M -ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎨⎧-2x +y +z =0,2y =0. 可取n =(1,0,2).又DA →是平面MCD 的法向量,因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值为255.3.(2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得,BF ⊥PF ,BF ⊥EF ,又PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,以HF →的方向为y 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF .可得PH =32,EH =32.则H (0,0,0),P ⎝⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0, DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的一个法向量. 设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.考 点 整 合1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则(1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3.(4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).(1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则 cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则 sin θ=|a ·μ||a ||μ|=|cos a ,μ|.(3)面面夹角设平面α,β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |=|cos μ,v |.热点一 利用空间向量证明平行、垂直关系【例1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC的中点.证明:(1)BE ⊥DC ;(2)BE ∥平面P AD ;(3)平面PCD ⊥平面P AD .证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0.所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD ,所以AB ⊥平面P AD ,所以向量AB →=(1,0,0)为平面P AD 的一个法向量,而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB ,又BE ⊄平面P AD ,所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0, 不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量.且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →.所以平面P AD ⊥平面PCD .探究提高 1.利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何定理的条件,如在(2)中忽略BE ⊄平面P AD 而致误.【训练1】 在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ;(2)平面EGF ∥平面ABD .证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4).设BA =a ,则A (a ,0,0),所以BA →=(a ,0,0),BD →=(0,2,2),B 1D →=(0,2,-2).B 1D →·BA →=0,B 1D →·BD →=0+4-4=0,则B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,BA ,BD ⊂平面ABD ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4), 则EG →=⎝ ⎛⎭⎪⎫a 2,1,1,EF →=(0,1,1), B 1D →·EG →=0+2-2=0,B 1D →·EF →=0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,EG ,EF ⊂平面EGF ,因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .热点二 利用空间向量计算空间角考法1 求线面角或异面直线所成的角【例2-1】 (2018·烟台质检)如图,在梯形ABCD 中,AD =BC ,AB ∥CD ,AC ⊥BD ,平面BDFE ⊥平面ABCD ,EF ∥BD ,BE ⊥BD .(1)求证:平面AFC ⊥平面BDFE ;(2)若AB =2CD =22,BE =EF =2,求BF 与平面DFC 所成角的正弦值.(1)证明 ∵平面BDFE ⊥平面ABCD ,平面BDFE ∩平面ABCD =BD ,AC ⊂平面ABCD ,AC ⊥BD ,∴AC ⊥平面BDFE .又AC ⊂平面AFC ,∴平面AFC ⊥平面BDFE .(2)解 设AC ∩BD =O ,∵四边形ABCD 为等腰梯形,AC ⊥BD ,AB =2CD =22, ∴OD =OC =1,OB =OA =2,∵FE ∥OB 且FE =OB ,∴四边形FEBO 为平行四边形,∴OF ∥BE ,且OF =BE =2,又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD .以O 为原点,向量OA →,OB →,OF →的方向分别为x 轴、y轴、z 轴的正方向,建立如图所示的空间直角坐标系,则B (0,2,0),D (0,-1,0),F (0,0,2),C (-1,0,0),DF →=(0,1,2),CD →=(1,-1,0),BF →=(0,-2,2),设平面DFC 的一个法向量为n =(x ,y ,z ),有⎩⎪⎨⎪⎧DF →·n =0,CD →·n =0,即⎩⎨⎧y +2z =0,x -y =0. 不妨设z =1,得x =y =-2,得n =(-2,-2,1).于是cos 〈n ,BF →〉=4+28×9=22. 设BF 与平面DFC 所成角为θ,则sin θ=|cos 〈n ,BF →〉|=22. ∴BF 与平面DFC 所成角的正弦值为22. 探究提高 1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两方向向量的夹角(或其补角).【训练2】 (2018·江苏卷)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.解 如图,在正三棱柱ABC -A 1B 1C 1中,设AC ,A 1C 1 的中点分别为O ,O 1,连接OB ,OO 1.则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB .以{OB →,OC →,OO 1→}为基底,建立如图所示的空间直角坐标系O -xyz .因为AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P ⎝ ⎛⎭⎪⎫32,-12,2, 从而BP →=⎝ ⎛⎭⎪⎫-32,-12,2,AC 1→=(0,2,2), 故|cos 〈BP →,AC 1→〉|=|BP →·AC 1→||BP →|·|AC 1→|=|-1+4|5×22=31020. 因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以Q ⎝ ⎛⎭⎪⎫32,12,0, 因此AQ →=⎝ ⎛⎭⎪⎫32,32,0,AC 1→=(0,2,2),CC 1→=(0,0,2).设n =(x ,y ,z )为平面AQC 1的一个法向量, 则⎩⎪⎨⎪⎧AQ →·n =0,AC 1→·n =0,即⎩⎨⎧32x +32y =0,2y +2z =0.不妨取n =(3,-1,1).设直线CC 1与平面AQC 1所成角为θ,则sin θ=|cos 〈CC 1→,n 〉|=|CC 1→·n ||CC 1→|·|n |=25×2=55,所以直线CC 1与平面AQC 1所成角的正弦值为55. 考法2 二面角的计算【例2-2】 (2018·福州模拟)如图,在直三棱柱ABC -A 1B 1C 1中,CC 1=4,AB =2,AC =22,∠BAC =45°,点M 是棱AA 1上不同于A ,A 1的动点. (1)证明:BC ⊥B 1M ;(2)若平面MB 1C 把此棱柱分成体积相等的两部分,求此时二面角M -B 1C -A 的余弦值.(1)证明 在△ABC 中,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =4+8-2×2×22×cos 45°=4,∴BC =2,则有AB 2+BC 2=8=AC 2, ∴∠ABC =90°,∴BC ⊥AB , 又∵BB 1⊥BC ,BB 1∩AB =B ,∴BC ⊥平面ABB 1A 1,又B 1M ⊂平面ABB 1A 1, 故BC ⊥B 1M .(2)解 由题设知,平面MB 1C 把此三棱柱分成两个体积相等的几何体为四棱锥C -ABB 1M 和四棱锥B 1-A 1MCC 1. 由(1)知四棱锥C -ABB 1M 的高为BC =2, ∵V 三棱柱ABC -A 1B 1C 1=12×2×2×4=8,∴V 四棱锥C -ABB 1M =12V 柱=4,又V 四棱锥C -ABB 1M =13S 梯形ABB 1M ·BC =23S 梯形ABB 1M =4, ∴S 梯形ABB 1M =6=AM +42×2,∴AM =2. 此时M 为AA 1中点,以点B 为坐标原点,BA →,BC →,BB 1→的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系B -xyz .∴A (2,0,0),C (0,2,0),B 1(0,0,4),M (2,0,2). ∴CB 1→=(0,-2,4),B 1M →=(2,0,-2),AC →=(-2,2,0), 设n 1=(x 1,y 1,z 1)是平面CB 1M 的一个法向量, ∴⎩⎪⎨⎪⎧n 1·CB 1→=0,n 1·B 1M →=0,即⎩⎨⎧-2y 1+4z 1=0,2x 1-2z 1=0.令z 1=1,可得n 1=(1,2,1),设n 2=(x 2,y 2,z 2)是平面ACB 1的一个法向量, ∴⎩⎪⎨⎪⎧n 2·CB 1→=0,n 2·AC →=0,即⎩⎨⎧-2y 2+4z 2=0,-2x 2+2y 2=0.令z 2=1,得n 2=(2,2,1), ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=736=7618. 所以二面角M -B 1C -A 的余弦值等于7618.探究提高 1.二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.2.利用向量法求二面角,必须能判定“所求二面角的平面角是锐角或钝角”,否则解法是不严谨的.【训练3】(2018·北京卷)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.(1)证明在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.因为AB=BC,所以AC⊥BE.又EF∩BE=E,所以AC⊥平面BEF.(2)解由(1)知AC⊥EF,AC⊥BE,EF∥CC1,又CC1⊥平面ABC,所以EF⊥平面ABC,因为BE⊂平面ABC,所以EF⊥BE.如图建立空间直角坐标系E-xyz,由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).所以BC →=(-1,-2,0),BD →=(1,-2,1). 设平面BCD 的法向量为n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,即⎩⎨⎧x 0+2y 0=0,x 0-2y 0+z 0=0.令y 0=-1,则x 0=2,z 0=-4. 于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题知二面角B -CD -C 1为钝角,所以其余弦值为-2121.(3)证明 由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1). 因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交. 热点三 利用空间向量求解探索性问题【例3】 如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E 为PD 上的点,且PB ∥平面EAC ,试确定E 点的位置;(2)在(1)的条件下,在线段P A 上是否存在点F ,使平面AEC 和平面BDF 所成的锐二面角的余弦值为114,若存在,求线段PF 的长度,若不存在,请说明理由. 解 (1)设BD 交AC 于点O ,连接OE .∵PB ∥平面AEC ,平面AEC ∩平面BDP =OE , ∴PB ∥OE .又O 为BD 的中点,∴在△BDP 中E 为PD 中点. (2)连接OP ,由题知PO ⊥平面ABCD ,且AC ⊥BD , ∴以OC →,OD →,OP →所在直线为x 、y 、z 轴建立直角坐标系,如图.OP =PD 2-OD 2= 6.∴O (0,0,0),A (-2,0,0),B (0,-2,0),C (2,0,0),D (0,2,0),P (0,0,6),则E ⎝ ⎛⎭⎪⎫0,22,62,OC →=(2,0,0),OE →=⎝ ⎛⎭⎪⎫0,22,62,OD →=(0,2,0).设平面AEC 的法向量为m =(x 1,y 1,z 1). 则⎩⎪⎨⎪⎧m ·OC →=0,m ·OE →=0⇒⎩⎨⎧x 1=0,y 1+3z 1=0.令z 1=1,得平面AEC 的一个法向量m =(0,-3,1),假设在线段P A 上存在点F ,满足题设条件,不妨设PF →=λP A →(0≤λ≤1). 则F (-2λ,0,6-6λ),OF →=(-2λ,0,6-6λ). 设平面BDF 的法向量n =(x 2,y 2,z 2), ∴⎩⎪⎨⎪⎧n ·OD →=0,n ·OF →=0⇒⎩⎨⎧y 2=0,-2λx 2+(1-λ)6z 2=0.令z 2=1得平面BDF 的一个法向量n =⎝ ⎛⎭⎪⎫3(1-λ)λ,0,1.由平面AEC 与平面ADF 所成锐二面角的余弦值为114, 则cos 〈m ,n 〉=m·n|m ||n |=12·1+3⎝ ⎛⎭⎪⎫1λ-12=114, 解得λ=15.所以|PF →|=15|P A →|=225.故在线段P A 上存在点F ,当|PF |=225时,使得平面AEC 和平面BDF 所成的锐二面角的余弦值为114.探究提高 1.空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.2.空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论. 【训练4】 (2018·广州质检)如图,在几何体ABCDEF 中,四边形ABCD 是边长为2的菱形,DE ⊥平面ABCD ,BF ⊥平面ABCD ,DE =22,DE >BF ,∠ABC =120°. (1)当BF 长为多少时,平面AEF ⊥平面CEF? (2)在(1)的条件下,求二面角E -AC -F 的余弦值. 解 (1)连接BD 交AC 于点O ,则AC ⊥BD . 取EF 的中点G ,连接OG ,则OG ∥DE . ∵DE ⊥平面ABCD ,∴OG ⊥平面ABCD . ∴OG ,AC ,BD 两两垂直.以AC ,BD ,OG 所在直线分别作为x 轴,y 轴,z 轴建立空间直角坐标系(如图), 设BF =m (0<m <22),由题意,易求A (3,0,0),C (-3,0,0),E (0,-1,22),F (0,1,m ).则AE →=(-3,-1,22),AF →=(-3,1,m ),CE →=(3,-1,22),CF →=(3,1,m ),设平面AEF ,平面CEF 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,∴⎩⎨⎧-3x 1-y 1+22z 1=0,-3x 1+y 1+mz 1=0,解得⎩⎨⎧z 1=23m +22x 1,y 1=26-3m m +22x 1.取x 1=m +22,得n 1=(m +22,26-3m ,23). 同理可求n 2=(m +22,3m -26,-23). 若平面AEF ⊥平面CEF ,则n 1·n 2=0,∴(m +22)2+(3m -26)(26-3m )-12=0, 解得m =2或m =72(舍),故当BF 长为2时,平面AEF ⊥平面CEF .(2)当m =2时,AE →=(-3,-1,22),AC →=(-23,0,0),EF →=(0,2,-2),AF →=(-3,1,2),CF →=(3,1,2),则EF →·AF →=0,EF →·CF →=0,所以EF ⊥AF ,EF ⊥CF ,且AF ∩CF =F ,所以EF ⊥平面AFC ,所以平面AFC 的一个法向量为EF →=(0,2,-2). 设平面AEC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=0,n ·AC →=0,∴⎩⎨⎧-3x -y +22z =0,x =0,得⎩⎨⎧y =22z ,x =0.令z =2,n =(0,4,2).从而cos 〈n ,EF →〉=n ·EF →|n |·|EF →|=663=33. 故所求的二面角E -AC -F 的余弦值为33.1.两条直线夹角的范围为⎣⎢⎡⎦⎥⎤0,π2.设直线l 1,l 2的方向向量分别为n 1,n 2,其夹角为θ,则cos θ=|cos n 1,n 2|=|n 1·n 2||n 1||n 2|.2.二面角的范围为[0,π].设半平面α与β的法向量分别为n 1与n 2,二面角为θ,则|cos θ|=|cosn 1,n 2|=|n 1·n 2||n 1||n 2|.3.利用空间向量求解二面角时,易忽视二面角的范围,误以为两个法向量的夹角就是所求的二面角,导致出错.4.空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题.应用的核心是充分认识形体特征,进而建立空间直角坐标系,通过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的准确性.一、选择题1.在三棱柱ABC -A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( ) A.32B.22C.104D.64解析 如图,建立空间直角坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以sin α=|cos 〈n ,AD →〉|=322=64.答案 D2.(2018·合肥质检)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 是底面ABCD 上的动点,则(CE →-CA 1→)·D 1B 1→的最大值为( ) A.22B.1C. 2D. 6解析 由正方体性质知CA 1→·D 1B 1→=0,则(CE →-CA 1→)·D 1B 1→=CE →·D 1B 1→.建立如图所示的空间直角坐标系,则B (1,1,0),C (0,1,0).设点E (x ,y ,0),则CE →=(x ,y -1,0),D 1B 1→=DB→=(1,1,0).∴CE →·D 1B 1→=(x ,y -1,0)·(1,1,0)=x +y -1.易知当E 位于点B 时,x +y 有最大值2.因此CE →·D 1B 1→的最大值为2-1=1. 答案 B3.(2018·衡水中学质检)如图,在四棱锥C -ABOD 中,CO ⊥平面ABOD ,AB ∥OD ,OB ⊥OD ,且AB =2OD =4,AD =22,异面直线CD 与AB 所成角为30°,若点O ,B ,C ,D 都在同一个球面上,则该球的表面积为( ) A.72πB.8πC.283πD.263π解析 ∵CD 与AB 所成角为30°,且AB ∥OD ,∴∠CDO =30°,由OD =2,知OC =OD ·tan 30°=233.在直角梯形ABOD 中,OB =AD 2-4=2.因此(2R )2=OB 2+OD 2+OC 2=283,故球的表面积S =4πR 2=283π. 答案 C4.(2018·全国Ⅱ卷)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A.15B.56C.55D.22解析 法一 如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM .易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝ ⎛⎭⎪⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21= 5.所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55.法二 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→= (-1,0,3),DB 1→=(1,1,3).则cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55,即异面直线AD 1与DB 1所成角的余弦值为55. 答案 C5.(2018·长沙雅礼中学检测)在三棱锥P -ABC 中,点P 在底面的正投影恰好是等边△ABC 的边AB 的中点,且点P 到底面ABC 的距离等于底面边长.设△P AC 与底面所成的二面角的大小为α,△PBC 与底面所成的二面角的大小为β,则tan(α+β)的值是( ) A.34 3 B.25 3 C.-8133D.-583 解析 如图,设点P 在边AB 上的射影为H ,作HF ⊥BC ,HE ⊥AC ,连接PF ,PE .依题意,∠HEP =α,∠PFH =β.不妨设等边△ABC 的边长为2,则PH =2,AH =BH =1.∴HE =32,HF =32,则tan α=tan β=232=43,故tan(α+β)=2tan α1-tan 2α=2×431-⎝ ⎛⎭⎪⎫432=-813 3. 答案 C 二、填空题6.如图所示,在正方体ABCD -A 1B 1C 1D 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.解析 ∵AC ⊥BD 且AC ⊥BB 1,BD ∩BB 1=B ,∴AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,∴α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面ADD 1A 1,则β=∠EDF .cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF=sin ∠EDF =EF ED =66.答案 66 三、解答题7.(2017·全国Ⅰ卷)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余弦值. (1)证明 ∵∠BAP =∠CDP =90°,∴P A ⊥AB ,PD ⊥CD ,又∵AB ∥CD ,∴PD ⊥AB , 又∵PD ∩P A =P ,PD ,P A ⊂平面P AD , ∴AB ⊥平面P AD ,又AB ⊂平面P AB , ∴平面P AB ⊥平面P AD .(2)解 在平面P AD 内作PO ⊥AD ,垂足为点O .由(1)可知,AB ⊥平面P AD ,故AB ⊥PO ,又AB ∩AD =A ,可得PO ⊥平面ABCD .以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz ,设P A =2,∴D (-2,0,0),B (2,2,0),P (0,0,2),C (-2,2,0), ∴PD →=(-2,0,-2),PB →=(2,2,-2), BC →=(-22,0,0),设n =(x ,y ,z )为平面PBC 的一个法向量, 由⎩⎪⎨⎪⎧n ·PB →=0,n ·BC →=0得⎩⎨⎧2x +2y -2z =0,-22x =0.令y =1,则z =2,x =0,可得平面PBC 的一个法向量n =(0,1,2),∵∠APD =90°,∴PD ⊥P A ,又知AB ⊥平面P AD ,PD ⊂平面P AD ,∴PD ⊥AB ,又P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴PD ⊥平面P AB ,即PD →是平面P AB 的一个法向量, ∴cos 〈PD →,n 〉=PD →·n |PD →|·|n |=-223=-33,由图知二面角A -PB -C 为钝角, 所以它的余弦值为-33.8.(2018·浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.(1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz . 由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3). 由AB 1→·A 1B 1→=0得AB 1⊥A 1B 1.由AB 1→·A 1C 1→=0得AB 1⊥A 1C 1,A 1B 1∩A 1C 1=A 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的法向量n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,即⎩⎨⎧x +3y =0,2z =0,令y =1,则x =-3,z =0,可得平面ABB 1的一个法向量n =(-3,1,0). 所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→|·|n |=3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是3913.9.(2018·武汉模拟)如图1,在高为6的等腰梯形ABCD 中,AB ∥CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ⊥平面BCO 1O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∥OB .(1)证明:OD ⊥平面P AQ ;(2)若BE =2AE ,求二面角C -BQ -A 的余弦值.(1)证明 由题设知OA ,OB ,OO 1两两垂直,所以以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 中点,∴P ⎝ ⎛⎭⎪⎫0,92,3,∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=⎝ ⎛⎭⎪⎫6,m -92,-3,∵OD →·AQ →=0,OD →·PQ →=0.∴OD ⊥AQ ,OD ⊥PQ ,且AQ ∩PQ =Q , ∴OD ⊥平面P AQ .(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3, 则Q (6,3,0),∴QB →=(-6,3,0),BC →=(0,-3,6). 设平面CBQ 的法向量为n 1=(x ,y ,z ), ∵⎩⎪⎨⎪⎧n 1·QB →=0,n 1·BC →=0,∴⎩⎨⎧-6x +3y =0,-3y +6z =0,令z =1,则y =2,x =1,则n 1=(1,2,1),又显然,平面ABQ 的法向量为n 2=(0,0,1).设二面角C -BQ -A 的平面角为θ.由图可知,θ为锐角, 则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=66.所以二面角C -BQ -A 的余弦值为66.10.(2018·全国Ⅱ卷)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值.(1)证明 因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC .(2)解 如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O -xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的一个法向量OB →=(2,0,0).设M (a ,2-a ,0)(0<a ≤2),则AM →=(a ,4-a ,0). 设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB →,n 〉|=32, 所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去),a =43,所以n =⎝⎛⎭⎪⎫-833,433,-43. 又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34.11.(2018·佛山调研)如图所示,该几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -ABCD 组合而成,AD ⊥AF ,AE =AD =2.(1)证明:平面P AD ⊥平面ABFE ;(2)求正四棱锥P -ABCD 的高h ,使得二面角C -AF -P 的余弦值是223. (1)证明 由于几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -ABCD 的组合体.∴AD ⊥AB ,又AD ⊥AF ,AF ∩AB =A ,∴AD ⊥平面ABFE .又AD ⊂平面P AD , ∴平面P AD ⊥平面ABFE .(2)解 以A 为原点,AB →,AE →,AD →的方向为x ,y ,z 轴的正方向,建立空间直角坐标系A -xyz .设正四棱锥的高为h ,AE =AD =2,则A (0,0,0),F (2,2,0),C (2,0,2),P (1,-h ,1),设平面ACF 的一个法向量m =(x ,y ,z ), AF →=(2,2,0),AC →=(2,0,2),则⎩⎪⎨⎪⎧m ·AF →=2x +2y =0,m ·AC →=2x +2z =0,取x =1,得m =(1,-1,-1),设平面AFP 的一个法向量n =(a ,b ,c ), AP →=(1,-h ,1),则⎩⎪⎨⎪⎧n ·AF →=2a +2b =0,n ·AP →=a -hb +c =0,取b =1,则n =(-1,1,1+h ),二面角C -AF -P 的余弦值223,∴|cos 〈m ,n 〉|=|m ·n ||m |·|n |=|-1-1-(1+h )|3·2+(h +1)2=223,解得h =1或h =-35(舍去).22∴当正四棱锥P-ABCD的高为1时,二面角C-AF-P的余弦值为3.。