石英晶体谐振式传感器
- 格式:doc
- 大小:21.50 KB
- 文档页数:2
石英传感器原理凡是把非电量转换为电量的装置均称为传感器,它是实现信息检测、转换、控制和传输的元器件。
石英晶体传感器按用途、结构、形状等大体可分为机械传感器、通用传感器、化学传感器以及应用于DNA检测的生物传感器,而石英压力温度传感器是一种典型的机械通用型传感器。
传感器一般由敏感元件、传感元件和测量电路等组成。
石英传感器的敏感元件是石英晶体,石英晶体的主要成份是二氧化硅,其密度为2.65×103kg/m3,莫氏硬度为7,熔点高达1750℃,难溶于水,长期稳定性能好,石英晶体具有较高的机电耦合系数,线性范围宽,重复精度高,滞后小,无热释电效应,动态特性优良,振动频率稳定,是其它材料难以代替的。
根据石英晶体的压电效应、压电逆效应及对某些物理量和化学量的变化会引起其频率和Q值(或等效电阻)发生变化的原理而制成的石英传感器,具有精度高、灵敏度好、测量范围宽、反应迅速、数字输出等独特的优势。
由于晶体是频率控制元件,本身就能达到数字化(以频率的方式输出),当绝对频偏与被测含量呈线性关系时,其数字处理既简单又方便,且输出数字量稳定可靠,易与计算机接口,有利于二次仪表的数字化。
数字量与模拟量相比,具有抗干扰性强,适宜于远距离传输,消除了模拟数字转换这一复杂环节及其造成的误差。
由于石英晶体还具有短稳频率与长稳频率的优良特点,传感器的分辨率可提高几个数量级,减少了传感器的校准次数。
石英晶体机械传感器石英晶体机械传感器主要用于测量位移、速度、力、弹性、重量等,较有代表性的传感器包括石英晶体测力计、石英晶体压力计、石英晶体加速度计、石英谐振式重力仪、石英差频重力仪等。
1石英晶体测力计根据压电效应原理制造的石英晶体测力计,与接触表面的面积大小无关,当石英晶体受到力的作用时会产生机械形变,在其表面形成束缚电荷,电荷量的大小与作用力成正比,故测出其表面电荷量就可显示出作用力。
大部分石英晶体测力计均采用压电系数较大的X切型或AT切型的晶体,X切型晶体的压电方程为: qX=d11FX(1)式中,d11为压电常数,FX为沿晶体X方向施加的压力,qX为垂直于X 轴平面上的电荷。
石英晶体(Quartz Crystal)是二氧化硅无水化合物,分子式是SiO2。
当石英晶体片沿X轴方向受力作用时,内部产生极化,在垂直于X轴的两个平面上产生等量的正负电荷,这种现象称为纵向压电效应。
而在垂直于Y轴的平面上,沿着Y轴的方向施加外力时,在与X轴垂直的平面上产生电荷,这种现象称为剪切效应。
石英晶体的压电效应是由于在外力作用下石英晶体内的硅原子和氧原子的位置产生相对变形,正电荷和负电荷的重心互相移位所致。
产生的电荷由覆盖在石英晶体表面的电极板进行收集、传输。
力值的计量就是直接利用这三个压电效应,制成单分量或多分量测力与称重传感器。
利用石英晶体制造称重传感器时,石英晶体篇有并联和串联连接两种方式。
并联连接:两个压电石英晶体片按极化方向相反粘接,负电荷集中在中间的负电极板上,正电荷在两端的正电极板上。
这时相当于两个电容器并联,输出电极板上的电荷和电容量将增加一倍,如图4所示。
如果有n个石英晶体片按并联方式连接,此时的总输出电荷将增加n倍,电荷灵敏度也增加n倍,而电压灵敏度则与单个石英晶体片工作时相同,n个石英晶体片并联所产生的电荷为:Q X=nd11F x式中:Q X——石英晶体圆片垂直于Fx平面产生的电荷d11——石英晶体的纵向压电模数,d11=2.31PC/N两个表面之间的电压U X为:U X=Q X/C X=d11F x/C X式中:C X——石英晶体圆片的电容量.C X=επd2/4t.ε——石英晶体的介电系数。
.串联连接:两个石英晶体片按极化方向相同粘接,于是在两个石英晶体片粘接处的中间电极板上正负电荷相互抵消,这时总电容量为单个石英晶体片工作时的一半,电压都增大一倍,而总电荷则不变,如图5所示。
..若n个石英晶体片串联连接,由于输出电压增加n倍,因此电压灵明度也增加n倍,而电荷灵明度则与单个石英晶体片工作时相同。
.由此得出,多个石英晶体片并联连接时,输出电荷量大,电荷灵敏度高;串联连接时,输出电压大,电压灵敏度高。
单片式压电谐振型石英压力-温度传感器设计宋国庆;姚东媛;邹向光;谢胜秋【摘要】提出了一种采用石英力敏谐振器(QFSR)-石英热敏谐振器(QTSR)的单片式压电谐振型石英压力-温度传感器(QPTS),设计了单片式QPTS结构、石英压力传感器的无应力封接方案以及新型压力-伸缩力变换器.单片式QPTS由QFSR和QTSR构成,均采用AT切型,厚度切变模式工作,不同的是QTSR的长边取向与石英X轴的夹角为60°.无应力封接方案使用石英、单晶硅、非晶态SiC、硼硅酸盐玻璃和柯伐合金的组合,并且利用石英化学刻蚀和物理修饰技术以及半导体的新工艺使QFSR和QTSR改性.其中,非晶态SiC层的制作是为了实现应力的缓冲:虽然硅和石英材料的热膨胀系数不匹配,可是二者之间的非晶态SiC层却能够良好地吸收其热应力,成为无应力结构.%The design of a monolithic piezo-resonant quartz pressure-temperature sensors using quartz force sensing resonator (QFSR)-quartz temperature sensing resonator (QTSR),a structure for monolithic quartz pressure-temperature sensors(QPTS),a stress-free sealing scheme for quartz pressure sensor and a new type of pressure-contractility converter are proposed.The monolithic QPTS is composed of QFSR and QTSR,which uses AT cut quartz crystal and thickness shear mode,the difference is that the angle between the long edge orientation of the QTSR and X axis of quartz crystal is 60°.The stress-free sealing scheme for QFSR and QTSR is a combination of quartz,single crystal silicon,non-crystalline SiC,borosilicate glass and Kovar alloy,and the QFSR and QTSR are modified by chemical etching technology and physical modification technology about quartz and the new technology for semiconductor.Anon-crystalline SiC layer is prepared in order to achieve the stress buffer:although the mismatch of coefficient of thermal expansion of silicon and quartz,but the non-crystalline SiC layer between the silicon and quartz layers can well absorb the thermal stress,it will become stress-free structure.【期刊名称】《传感器与微系统》【年(卷),期】2017(036)005【总页数】4页(P102-105)【关键词】石英压力-温度传感器;压电谐振;单片式;厚度切变模式;压力-伸缩力变换器;非晶态SiC;无应力封接【作者】宋国庆;姚东媛;邹向光;谢胜秋【作者单位】中国电子科技集团公司第四十九研究所,黑龙江哈尔滨150001;中国电子科技集团公司第四十九研究所,黑龙江哈尔滨150001;中国电子科技集团公司第四十九研究所,黑龙江哈尔滨150001;中国电子科技集团公司第四十九研究所,黑龙江哈尔滨150001【正文语种】中文【中图分类】TP212谐振式石英晶体压力传感器(QPS)是一种高精密、高稳定的传感器,分辨率高、长期稳定性优异。
石英晶体谐振频率和q值-回复石英晶体是一种常用的材料,被广泛地应用于微电子设备、光学仪器等领域。
其中,石英晶体的谐振频率和Q值是关键参数,对于石英晶体的性能有重要影响。
在本文中,我们将详细介绍石英晶体的谐振频率和Q值,包括其定义、测量方法以及影响因素等内容。
第一部分:什么是谐振频率和Q值?在开始介绍石英晶体的谐振频率和Q值之前,我们先来了解一下什么是谐振频率和Q值。
谐振频率是指在某个系统中,当受到外力作用时,系统发生共振的频率。
具体来说,当外力频率等于系统固有频率时,系统会表现出最大振幅的现象,也就是共振现象。
而Q值则是谐振系统的品质因子,用来描述系统在共振状态下的能量储存与耗散的比值。
第二部分:石英晶体谐振频率和Q值的测量方法石英晶体的谐振频率和Q值可以通过不同的方法进行测量。
最常见的测量方法之一是扫频法,也被称为频率响应法。
这种方法需要通过外加一个交流信号来激励石英晶体,然后测量其输出信号的特性。
具体来说,我们会在一定频率范围内改变输入信号的频率,并测量输出信号的振幅和相位变化。
通过找到输出振幅最大的频率,就可以确定石英晶体的谐振频率。
此外,Q值也可以通过测量输出信号的带宽来确定,带宽越窄,Q值越高。
除了扫频法,还存在其他测量石英晶体谐振频率和Q值的方法,比如震荡电路法、压电电容法等。
这些方法各有优劣,选择适合的方法要根据实际需求和实验条件来确定。
第三部分:影响石英晶体谐振频率和Q值的因素石英晶体的谐振频率和Q值受到多种因素的影响,下面我们将介绍其中一些主要的因素。
首先,石英晶体的物理尺寸会影响其谐振频率和Q值。
一般来说,石英晶体的谐振频率与其物理尺寸成反比,即尺寸越小,谐振频率越高。
而Q值则与石英晶体的尺寸成正比,即尺寸越大,Q值越高。
这是因为尺寸越小的石英晶体在震动过程中受到的耗散影响越小,能量储存效果更好,因此Q值更高。
其次,石英晶体的结构和成分也会影响其谐振频率和Q值。
石英晶体主要由二氧化硅(SiO2)组成,但含有少量的杂质,比如铝(Al)、磷(P)等。
石英晶体谐振式传感器
以石英晶体谐振器作为敏感元件的谐振式传感器。
石英晶体谐振器是用石英晶体经过适当切割后制成,当被测参量发生变化时,它的固有振动频率随之改变,用基于压电效应(见压电式传感器)的激励和测量方法就可获得与被测参量成一定关系的频率信号。
石英晶体谐振式传感器的精度高,响应速度较快,常用于测量温度和压力。
石英晶体温度-频率传感器早期的石英晶体温度-频率传感器采用具有非线性温度-频率特性的石英晶体谐振器制作。
在发现具有线性温度-频率特性的石英晶体切型后,这种温度传感器的谐振器采用LC切型的平凸透镜石英晶体块制成,其直径约为数毫米,凸面曲率半径约为100毫米以上。
谐振器封装于充氦气的管壳内,在传感器电路中利用它的压电效应和固有振动频率随温度变化的特性构成热敏振荡器,它的基本谐振频率为28兆赫。
电路中另有一个振荡频率为2.8兆赫的基准振荡器,它通过十倍频后输出一个28兆赫的参照频率。
两个振荡器的输出经门电路相加送往混频器得到差频输出信号,它是被测温度与基准温度(即基准振荡器的温度)之差与1000赫/℃(温度系数)的乘积,因此该差频输出信号记录了被测温度的变化。
由时间选择开关产生不同的时间控制信号作为选通脉冲,以获得不同的分辨率。
线性石英晶体-频率传感器可用于热过程流动速度不高、间隔时间较长的各种高精度温度测量的场合以及多路遥控系统、水底探测等方面,还可用它制成高分辨率的直读式数字自动温度计。
石英晶体谐振式压力传感器这种传感器所采用的谐振器是用厚度
切变振动模式AT切型石英晶体制作的。
谐振器可制成包括圆片形振子和受力机构的整体式或分离式结构。
振子有扁平形、平凸形和双凸形三种,受力机构为环绕圆片的环形或圆筒形。
图2是振子和圆筒为整体式结构的谐振器的结构图。
振子和圆筒由一整块石英晶体加工而成,谐振器的空腔被抽成真空,振动两侧上各有一对电极。
圆筒和端盖严格密封。
石英圆筒能有效地传递周围的压力。
当电极上加以激励电压时,利用逆压电效应使振子振动,同时电极上又出现交变电荷,通过与外电路相连的电极来补充这种电和机械等幅振荡所需的能量。
当石英振子受静态压力作用时,振动频率发生变化,并且与所加压力成线性关系。
在此过程中
石英的厚度切变模量随压力的变化起了主要作用。
与分离式结构相比整体式结构的主要优点是滞后小、频率稳定性极佳。
但它的结构复杂、加工困难、成本也高。
压力传感器的谐振器还有振梁式,也是由AT切型石英晶体制成,振梁横跨于谐振器中央。
在振梁的两端上下对称设置四个电极,用于激励振动和拾取频率信号。
当振梁受拉伸力时,其谐振频率提高,反之则频率降低。
因此输出频率的变化可反映输入力的大小。
这种传感器的优点是对温度、振动、加速度等外界干扰不敏感、稳定性好、品质因数高、动态响应特性好等。