人教版六年级数学下册第六单元导学案--立体图形的认识整理与复习
- 格式:doc
- 大小:685.00 KB
- 文档页数:2
第6单元 整理和复习 二、图形与几何
第3课时 立体图形的认识整理与复习
【学习目标】
1.明确长方体、正方体、圆柱和圆锥等立体图形的特征,能从整体上把握这些图形的特征及其相互关系。
2.能整理学过的有关立体图形方面的知识,并掌握相应的技能。
【学习过程】
1
二、重点训练
1. 判断并说一说理由。
(1) 圆柱的侧面展开图不是正方形就是长方形。
( ) (2) 长方体的三条棱就是它的长、宽、高。
( )
(3) 圆锥的高有一条,圆柱的高有两条。
( )
2.一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是多少厘米?
3.一个正方体的棱长是5分米,如果把这样的两个正方体拼成一个长方体,长方体的棱长总和是多少米?
三、课堂达标
1. 一个圆锥形沙堆,底面周长是18.84米,高是6米,求这个沙堆的重
量?(每吨沙的体积是4
3
立方米)
2.一个圆柱体的侧面积是12平方米,半径是2米,求它的体积。
(要求根据课本中圆柱体积的推导过程,不先求出圆柱的高,而用较简便的方法解答。
)
3.一个圆锥体,底面周长和它的高相等,它的底面半径是3厘米,你知道和它同底等高的圆柱体的侧面积是多少平方厘米吗?。
《立体图形整理和复习》(教案)六年级下册数学人教版教学内容:本课主要对小学阶段学习的立体图形进行整理和复习。
通过引导学生回顾和整理长方体、正方体、圆柱、圆锥和球等立体图形的特征和性质,加深学生对这些立体图形的理解和认识。
同时,通过解决一些实际问题,培养学生运用立体图形知识解决问题的能力。
教学目标:1. 让学生理解和掌握长方体、正方体、圆柱、圆锥和球等立体图形的特征和性质。
2. 培养学生运用立体图形知识解决问题的能力。
3. 培养学生的空间想象力和逻辑思维能力。
教学难点:1. 球的表面积和体积公式的推导。
2. 立体图形在实际问题中的应用。
教具学具准备:1. 长方体、正方体、圆柱、圆锥和球的模型或图片。
2. 教学PPT或黑板。
3. 练习题或作业纸。
教学过程:1. 导入:通过展示一些立体图形的模型或图片,引起学生对立体图形的兴趣和好奇心。
然后引导学生回顾小学阶段学习的立体图形,让学生分享他们对这些立体图形的认识和了解。
3. 解决实际问题:通过给出一些实际问题,让学生运用立体图形的知识来解决问题。
例如,计算长方体的体积、表面积,或者计算圆柱的体积等。
通过解决实际问题,培养学生的实际操作能力和解决问题的能力。
4. 小组讨论:将学生分成小组,给每个小组发一道与立体图形相关的题目,让他们在小组内进行讨论和解答。
通过小组讨论,培养学生的合作能力和思维能力。
板书设计:1. 长方体、正方体、圆柱、圆锥和球的特征和性质。
2. 立体图形在实际问题中的应用。
3. 小组讨论的题目和解答。
作业设计:1. 判断题:判断一些立体图形的特征和性质是否正确。
2. 计算题:计算一些立体图形的体积、表面积等。
3. 应用题:解决一些与立体图形相关的实际问题。
课后反思:重点关注的细节:教学难点教学难点是教学过程中学生难以理解或掌握的知识点,对于本节课来说,球的表面积和体积公式的推导以及立体图形在实际问题中的应用是学生难以掌握的知识点。
因此,教师需要在这两个方面进行详细的补充和说明,以确保学生能够理解和掌握这些知识点。
立体图形的认识与测量【教学内容】教材第88页内容【教材分析】本节教材着重学习小学阶段所学习的各种立体图形的特点、关系,以及立体图形的表面积、体积与容积的计算。
在练习中还有一些知识点的复习巩固,以及图形认识与测量的简单实际应用。
【学情分析】这部分内容涵盖了小学阶段所学过的立体图形相关知识。
虽然学生对其零碎的知识点已初步掌握,但对知识的系统整理可能存在疑惑。
【教学目标】1.使学生认识长方体、正方体、圆柱和圆锥,知道它们的特点,掌握它们的体积和表面积计算公式,会从不同方向辨认物体的形状。
2.能根据立体图形的表面积和体积公式,解决日常生活中的实际问题。
【教学重难点】重点:理解长方体、正方体、圆柱和圆锥的特点,掌握这些图形表面积和体积的计算方法。
难点:运用所学知识解决生活中的实际问题。
【教学准备】多媒体课件、长方体、正方体、圆柱、圆锥模具、投影仪【情境导入】师:将一块石头放进装有水的圆柱形容器里,你们发现了什么?请解释这一现象。
学生观察、讨论后汇报。
(水面高度升高了,因为石头占了圆柱形容器中水的空间) 师:这个有趣的现象曾经启发了一位伟大的物理学家。
他发现了一个物理定律,从而给人类打开了征服海洋的大门。
你们有兴趣了解如何计算这块石头的体积吗?你们有办法计算出石头的体积吗?师:要计算石头的体积,我们可以借助于立体图形的有关知识。
(板书课题:立体图形的认识与测量)【复习回顾】1.复习立体图形的认识。
(1)课件出示四种立体图形。
(2)课件出示下面的问题。
①说出上面各立体图形的名称和特点。
②说一说图中各字母表示的是什么。
③拿出两个物体摆一摆,看一看,辨认从不同方向看到的形状。
组织学生分小组议一议,动手写一写,并互相交流。
教师巡视指导。
指名学生汇报并进行集体评议,教师根据学生的汇报整理出下表。
(课件出示)圆心2.比较长方体和正方体的异同。
(1)师:长方体和正方体有什么相同点和不同点?组织学生分组议一议,动手写一写,并相互交流。
立体图形的整理与复习教学目标:1.使同学们进一步理解与掌握有关“立体图形”的知识。
2.引导同学们自主建构有关立体图形的指示,搞清这部分知识的内在联系与区别。
3.通过整理与复习,培养同学们综合应用知识的能力。
教学准备:多媒体课件教学过程:一、欣赏导入1.出示课件:请来一起欣赏这些美丽的图片吧!(电脑演示学生观看)2.教师提问:在屏幕中,你看到了那些图形?(学生自由回答)、3.电脑演示这五种立体图形。
教师:在整个小学阶段,我们主要学习了这五种立体图形,你们还记得这些图形的有关知识吗?二、构建网络1. 回忆知识(小组讨论商量,共同回忆学过的有关知识,如果回想不起来,请打开书看一看)2. 你能试着用列表的方式来整理一下吗?(小组合作,自行整理,教师巡视指导)3. 汇报交流教师:哪个小组的同学来展示呢?对于他们小组的发言你们有什么问题吗?(学生相互质疑教师随即调控)4. 教师总结。
电脑演示5. 学生分类教师:如果将这些图形进行分类,你认为可以怎样分?学生::小组合作进行分类全班汇报分类方法,并说明理由6. 通过刚才的整理,你还有什么问题吗?(1)长方体与正方体有什么关系?(2)正方体、长方体、圆柱的体积公式都可以统一成底面积乘高,那么,这三种图形有什么共同点吗?(3)学生尝试回答后教师演示课件三、实践应用1. 购买鱼缸中的数学问题(1)请同学们想象一下,当时王老师看到这三种鱼缸的形状大致是怎样的?(2)工人叔叔做鱼缸时,如何切割玻璃?(3)观察这三个鱼缸,想知道点什么?(4)小组合作,共同解决三个鱼缸的表面积和体积(5)通过上面的计算,你有什么想法或问题?(6)你认为王老师应该购买几号鱼缸2. 土坑中的数学:出示一幅图0.4米3米6米四、课堂小结教师:这节课你有什么收获?(学生自由谈)C=12.56米1.5米。
《立体图形的认识》整理和复习教学设计教学内容教科书第87页例4及相关内容。
教学目标1.引导学生系统整理学过的立体图形,进一步理解立体图形的特点,在比较中沟通图形之间的联系与区别,构建知识网络。
2.经历观察、动手操作、想象、推理、表达等数学活动,沟通立体图形与平面图形之间的联系,帮助学生形成几何形体的表象,发展空间观念及推理能力。
3.引导学生用数学的眼光观察和了解身边的世界,感受立体图形和生活的密切联系。
教学重点理解立体图形的特点,比较图形之间的相同点和不同点。
教学难点沟通立体图形与平面图形之间的联系。
教学准备多媒体课件、立体图形教具。
教学过程一、复习旧知(一)游戏引入教师用装有长方体、正方体、圆柱、圆锥和球几样教具的不透明布袋,组织学生开展游戏“我说你猜”。
游戏规则:一名学生摸摸袋里的一种立体图形,并口头描述这个立体图形的特点,请另一名学生猜测描述的是哪种立体图形。
学生有可能出错,教师引导其他学生质疑、纠正。
教师小结学生的表现并引入课题——立体图形的认识。
(二)梳理四种立体图形的特点师:这些立体图形分别是什么?预设:长方体、正方体、圆柱、圆锥。
师:课前大家已经用自己喜欢的方式整理学过的立体图形的特点,在小组交流中优化内容。
现在我们请小组代表发言,看哪组汇报得最精彩。
(学生可能用表格、思维导图等不同的形式梳理,教师可以多请几组展示,从而引导学生充分理解这些立体图形的特点。
)第1组:我们组认为,面对长方体、正方体、圆柱和圆锥“四体”,可采用一一列举法逐个击破,这是我们组整理的各图形的特点。
第2组:我们组是分类对比复习的。
(1)长方体和正方体的特点引导学生关注正方体是特殊的长方体,在上表中增加长方体与正方体的联系一列完善内容。
师追问:怎样计算长方体和正方体的棱长总和?预设:长方体的棱长总和=(长+宽+高)×4,正方体的棱长总和=棱长×12。
(2)圆柱和圆锥的特点师补充:当圆柱的上底面的面积等于0时,圆柱就变成了圆锥。
《立体图形的认识复习课》一、教学目标1. 让学生进一步理解和掌握长方体、正方体、圆柱、圆锥的特征,能正确计算长方体和正方体的表面积和体积。
2. 培养学生的空间想象能力,能根据图形的特征进行分类和判断。
3. 培养学生运用数学知识解决实际问题的能力,提高学生的数学素养。
二、教学重点与难点1. 教学重点:长方体、正方体、圆柱、圆锥的特征,表面积和体积的计算。
2. 教学难点:空间想象能力的培养,运用数学知识解决实际问题。
三、教学方法1. 讲授法:讲解长方体、正方体、圆柱、圆锥的特征和表面积、体积的计算方法。
2. 演示法:通过实物模型或多媒体展示,帮助学生直观理解立体图形的特征。
3. 练习法:设计相关练习题,让学生巩固所学知识,提高计算能力。
4. 讨论法:组织学生进行小组讨论,培养学生的合作意识和解决问题的能力。
四、教学过程1. 导入新课:通过复习长方体、正方体、圆柱、圆锥的特征,引导学生回顾已学知识,为新课的学习做好铺垫。
2. 讲解新课:(1)长方体、正方体的特征:长方体有6个面,12条棱,8个顶点;正方体有6个面,12条棱,8个顶点,且长方体的相对面面积相等,正方体的所有面面积相等。
(2)圆柱、圆锥的特征:圆柱有3个面,2个底面,1个侧面;圆锥有2个面,1个底面,1个侧面。
圆柱的底面是圆形,圆锥的底面也是圆形。
(3)长方体、正方体的表面积和体积计算:长方体的表面积=2(ab bc ac),体积=abc;正方体的表面积=6a²,体积=a³。
(4)圆柱、圆锥的表面积和体积计算:圆柱的表面积=2πrh 2πr²,体积=πr²h;圆锥的表面积=πrl πr²,体积=1/3πr²h。
3. 演示与练习:(1)教师通过实物模型或多媒体展示长方体、正方体、圆柱、圆锥的形状,让学生直观理解其特征。
(2)设计相关练习题,让学生计算长方体、正方体、圆柱、圆锥的表面积和体积。
第六单元《立体图形的整理与复习》(教案)六年级下册数学人教版一、教学内容本节课是六年级下册数学人教版的《立体图形的整理与复习》,主要内容包括回顾和巩固立体图形的知识,如正方体、长方体、圆柱体和球体的特征,以及它们的表面积和体积的计算方法。
二、教学目标通过本节课的学习,使学生能够熟练掌握立体图形的特征和计算方法,提高学生的空间想象力,培养学生的逻辑思维能力。
三、教学难点与重点重点:立体图形的特征和计算方法的掌握。
难点:立体图形表面积和体积计算公式的理解和应用。
四、教具与学具准备教具:立体模型、PPT课件学具:笔记本、彩笔五、教学过程1. 情景引入:通过展示各种立体模型,引导学生回顾立体图形的特征。
3. 例题讲解:以正方体为例,讲解表面积和体积的计算方法。
4. 随堂练习:让学生自主计算一个长方体的表面积和体积。
5. 巩固拓展:引导学生思考如何计算其他立体图形的表面积和体积。
六、板书设计立体图形的特征和计算方法正方体:六面体,六个正方形,表面积=6a²,体积=a³长方体:六面体,三个不同的面,表面积=2(ab+ac+bc),体积=abc圆柱体:侧面为矩形,底面为圆,表面积=2πrh+2πr²,体积=πr²h球体:一个圆形,表面积=4πr²,体积=4/3πr³七、作业设计(1)一个边长为4厘米的正方体。
(2)一个长为6厘米,宽为3厘米,高为5厘米的长方体。
(3)一个底面半径为3厘米,高为10厘米的圆柱体。
(4)一个半径为5厘米的球体。
答案:(1)表面积:96厘米²,体积:64厘米³(2)表面积:126厘米²,体积:90厘米³(3)表面积:180厘米²,体积:282.6厘米³(4)表面积:314厘米²,体积:523.6厘米³八、课后反思及拓展延伸通过本节课的学习,学生对立体图形的特征和计算方法有了更深入的了解。
《立体图形的整理与复习》(教案)六年级下册数学人教版在今天的数学课上,我们将会复习和整理立体图形的相关知识。
本节课的主要内容是六年级下册数学人教版中的《立体图形的整理与复习》。
一、教学内容我们将回顾和巩固的主要内容包括:正方体、长方体、圆柱体和圆锥体的性质和特征,以及它们之间的相互转化。
具体章节包括第二章《立体几何》的2.12.4节。
二、教学目标通过本节课的学习,我希望学生们能够:1. 掌握各种立体图形的性质和特征;2. 能够灵活运用立体图形的知识解决实际问题;3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点本节课的重点是让学生掌握各种立体图形的性质和特征,以及它们之间的相互转化。
难点则是如何培养学生空间想象能力和逻辑思维能力。
四、教具与学具准备为了更好地帮助学生理解和掌握知识,我准备了一些立体模型和幻灯片,以便在课堂上进行演示和讲解。
五、教学过程1. 引入:我将以一个实践情景引入,拿出一个正方体,让学生观察并说出它的性质和特征。
然后,我会再拿出一个长方体,让学生比较两者之间的异同。
2. 讲解:接着,我会用幻灯片展示各种立体图形,并详细讲解它们的性质和特征,包括它们的面积、体积和表面积的计算方法。
3. 例题:我会出一道例题,让学生运用所学的知识解决实际问题。
例如:一个长方体的长是8cm,宽是6cm,高是4cm,求它的体积和表面积。
4. 随堂练习:在讲解完例题后,我会给学生们一些随堂练习题,让他们巩固所学知识。
六、板书设计在课堂上,我会用板书列出各种立体图形的性质和特征,以及它们的计算方法,以便学生能够清晰地理解和记忆。
七、作业设计作业题目:1. 请画出一个正方体,并标出它的性质和特征。
2. 请画出一个长方体,并标出它的性质和特征。
3. 请计算一个圆柱体的体积,已知底面半径为5cm,高为10cm。
答案:1. 正方体的性质和特征:(答案略)2. 长方体的性质和特征:(答案略)3. 圆柱体的体积:3.14×5×5×10 = 785cm³八、课后反思及拓展延伸通过本节课的教学,我觉得学生们对立体图形的性质和特征有了更深入的理解和掌握。
《立体图形整理和复习》是人教新课标六年级下册数学的教学内容,主要包括对立体图形的基本概念、性质、特征以及计算方法的整理和复习。
本节课的教学设计旨在帮助学生巩固已学知识,提高对立体图形的认识和应用能力,培养学生的空间想象能力和逻辑思维能力。
一、教学目标1. 知识与技能(1)掌握立体图形的基本概念,如长方体、正方体、圆柱、圆锥、球等。
(2)理解立体图形的性质和特征,如长方体的12条棱、6个面、8个顶点等。
(3)熟练运用立体图形的表面积和体积计算公式。
2. 过程与方法(1)通过观察、操作、探究等教学活动,培养学生的空间想象能力和逻辑思维能力。
(2)通过小组合作学习,提高学生的沟通能力和团队协作能力。
3. 情感、态度与价值观(1)培养学生对立体图形的兴趣,激发学生的学习积极性。
(2)培养学生严谨、踏实的科学态度,养成独立思考和解决问题的习惯。
二、教学重点与难点1. 教学重点:立体图形的基本概念、性质、特征以及计算方法。
2. 教学难点:立体图形的空间想象能力和计算方法的灵活运用。
三、教学过程1. 导入新课(1)教师出示一些生活中的立体图形实物,引导学生观察并说出它们的名称。
(2)教师提出问题:“这些立体图形有什么共同特点?”引导学生思考,为新课的学习做好铺垫。
2. 自主学习(1)学生阅读教材,了解立体图形的基本概念、性质、特征以及计算方法。
(2)学生尝试完成教材中的练习题,巩固所学知识。
3. 课堂讲解(1)教师针对教材中的重点内容进行讲解,如立体图形的表面积和体积计算公式。
(2)教师通过示例演示,引导学生掌握计算方法。
4. 小组合作学习(1)学生分组,每组选择一个立体图形进行深入研究。
(2)小组成员共同探讨立体图形的性质、特征以及计算方法。
(3)小组代表汇报研究成果,其他组员进行补充。
5. 课堂小结(1)教师引导学生总结本节课所学内容,梳理知识体系。
(2)教师强调立体图形在实际生活中的应用,激发学生的学习兴趣。
《立体图形整理和复习》(教案)六年级下册数学人教版教学目标:1. 理解什么是平面图形,什么是立体图形;2. 能够区分常见的平面图形和立体图形;3. 能够根据图形的特征或属性将其分类;4. 能够绘制图形的俯视图、正视图和侧视图;5. 能够在立体图形中识别和计算各种形状的面积和体积。
教学重点:1. 平面图形和立体图形的概念和区分;2. 垂直与平行的概念及应用3. 绘制图形的俯视图、正视图和侧视图。
4. 球体、正方体、长方体、圆柱、圆锥、棱锥的面积和体积的计算。
教学难点:1. 立体图形中各种形状的面积和体积的计算;2. 绘制图形的俯视图、正视图和侧视图。
3. 不同角度下的视图绘制。
教学方法:以探究为主导,让学生通过观察和比较来发现图形的属性和特征,培养学生观察和推理的能力。
教学过程:Step 1: 导入新课教师用实物展示,让学生认识几何体,到黑板前进行发问:1、这是一个什么形状?2、它有几个面?每个面是什么形状?3、它有几个边?4、它有几个顶点?解答完成后引导学生,根据几何体的不同,可以分为平面图形和立体图形,这就是今天的主题。
Step 2: 平面图形和立体图形的介绍1、让学生根据常见的图形进行分类,比如:三角形、正方形、长方形、圆形、梯形等。
2、引导学生认识立体图形:让学生提供一些立体物体,如学生自己的书包、魔方等,让学生探究其中的立体体元素,比如面、边、顶点等。
3、老师在黑板上画出多边形、正方形、长方形的立体图形进行学生展示。
Step 3: 绘制图形的视图1、引导学生认识图形的视图,包括横视图、侧视图、正视图,通过观察和比较,能够快速准确地绘制出视图。
2、让学生在课堂上完成一些绘制视图的练习,加深学生的印象。
Step 3: 计算图形的面积和体积1、介绍球体、正方体、长方体、圆柱、圆锥、棱锥的面积和体积的计算公式;2、通过实际测量和计算,带领学生进行求解的实践操作。
Step 4: 总结课程内容教师总结全节课的内容,回归到学生的最初疑惑:“平面图形和立体图形的定义及分类特征”,带领学生一起总结定义、特征、分类,当场与立体图形进行实物对照,帮助学生切实认识到本节课的重要性。
第6单元 整理和复习 二、图形与几何第3课时 立体图形的认识整理与复习【学习目标】1.明确长方体、正方体、圆柱和圆锥等立体图形的特征,能从整体上把握这些图形的特征及其相互关系。
2.能整理学过的有关立体图形方面的知识,并掌握相应的技能。
【学习过程】 一、知识梳理1.复习长方体和正方体形体相同点 不同点关系长方体面棱 点面的形状 面积 棱 长正方体2.复习圆柱和圆锥 底面 侧面 高圆柱 圆锥二、重点训练1. 判断并说一说理由。
(1) 圆柱的侧面展开图不是正方形就是长方形。
( ) (2) 长方体的三条棱就是它的长、宽、高。
( )你都学过哪些立体图形?( )如果把学过的立体图形分两类,你打算怎样分?( )正方体和长方体有什么关系?为什么说正方体是特殊的长方体?(3) 圆锥的高有一条,圆柱的高有两条。
( )2.一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是多少厘米?3.一个正方体的棱长是5分米,如果把这样的两个正方体拼成一个长方体,长方体的棱长总和是多少米?三、课堂达标1. 一个圆锥形沙堆,底面周长是18.84米,高是6米,求这个沙堆的重量?(每吨沙的体积是43立方米)2.一个圆柱体的侧面积是12平方米,半径是2米,求它的体积。
(要求根据课本中圆柱体积的推导过程,不先求出圆柱的高,而用较简便的方法解答。
)3.一个圆锥体,底面周长和它的高相等,它的底面半径是3厘米,你知道和它同底等高的圆柱体的侧面积是多少平方厘米吗?为什么要规定“先乘除后加减”?对于这个问题,我们分两层来谈。
第一层先谈谈规定运算顺序的必要性,第二层再谈谈为什么要规定“先乘除后加减”。
(1)规定运算顺序的必要性。
先举两个例子予以说明。
例1 小勇买了一块橡皮,价18分,又买了3支铅笔,每支12分,一共多少钱?综合算式18+12×3=18+36=54(分)=5角4分根据题意,这道题先算乘法后算加法是合情合理的。
例2 小春有18分钱,小敏有12分钱,小冬的钱数是他们俩人钱数之和的3倍,问小冬有多少钱?解答这道题的时候应该先求出小春与小敏两人钱数之和,即求出(18+12=)30分,然后再求出30分的3倍,即(30×3=)90分。
第6单元 整理和复习二、图形与几何第4课时 立体图形表面积和体积的整理与复习【学习目标】1.能进一步熟悉立体图形的表面积和体积的内涵,会灵活运用立体图形的表面积和体积的计算方法解决实际问题。
2.能将所学知识进一步条理化和系统化。
【学习过程】一、知识梳理1.复习立体图形表面积和体积的意义及计算公式。
立体图形的表面积是指()立体图形体积是指( )。
你所知道的立体图形表面积公式有:(); 你所知道的立体图形体积公式有:()。
2.复习计算公式的推导过程。
那么,这些计算公式是怎样推导出来的?请同学们选择1-2种自己喜欢的图形,在小组里说一说。
我的收获:从立体图形的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题( ),从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。
3.整理知识间的内在联系(1)立体图形的表面积计算公式的内在联系:长方体和圆柱体的表面积都可以用( )加( );(2)立体图形的体积计算公式的内在联系:正方体、圆柱的体积计算公式都是在( )体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥体积的( ),等体积等高的圆柱体的底面积是圆锥的( ),等体积等底的圆柱体的高是圆锥的( )。
二、重点训练1.判断。
(对的打“√” ,错误的打“×”)(1) 正方体的棱长扩大2倍,体积就扩大6倍。
( )(2) 一个圆柱体底面半径缩小3倍,高扩大9倍,它的体积不变。
( )我们已经对立体图形的认识进行了整理和复习,今天我们来走入立体图形的表面积和体积的整理与复习。
你还有什么问题要补充吗?(3) 因为求体积与求容积的计算公式相同,所以物体的体积就是它的容积。
( )(4) 圆柱和圆锥等底等高,则圆锥的体积比圆柱少32,圆柱的体积比圆锥多200%。
( )2.解决问题。
(2)一个底面直径是40厘米的圆柱容器中,水深12厘米,把一块石头沉入水中完全浸没后,水面上升了5厘米。
第6单元 整理和复习 二、图形与几何
第3课时 立体图形的认识整理与复习
【学习目标】
1.明确长方体、正方体、圆柱和圆锥等立体图形的特征,能从整体上把握这些图形的特征及其相互关系。
2.能整理学过的有关立体图形方面的知识,并掌握相应的技能。
【学习过程】 一、知识梳理
1.复习长方体和正方体
小组展开讨论,交流意见,整理归纳。
合作完成表格一。
形体
相同点
不同点
关系
长方体
面
棱 点
面的形状 面积 棱 长
正方体
2.复习圆柱和圆锥 底面 侧面 高
圆柱 圆锥
二、重点训练
1. 判断并说一说理由。
(1) 圆柱的侧面展开图不是正方形就是长方形。
( ) (2) 长方体的三条棱就是它的长、宽、高。
( )
你都学过哪些立体图形?
( )
如果把学过的立体图形分两类,你打算怎样分?( )
正方体和长方体有什么关系?为什么说正方体是特殊的长方体?
(3) 圆锥的高有一条,圆柱的高有两条。
( )
2.一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是多少厘米?
3.一个正方体的棱长是5分米,如果把这样的两个正方体拼成一个长方体,长方体的棱长总和是多少米?
三、课堂达标
1. 一个圆锥形沙堆,底面周长是18.84米,高是6米,求这个沙堆的重
量?(每吨沙的体积是4
3
立方米)
2.一个圆柱体的侧面积是12平方米,半径是2米,求它的体积。
(要求根据课本中圆柱体积的推导过程,不先求出圆柱的高,而用较简便的方法解答。
)
3.一个圆锥体,底面周长和它的高相等,它的底面半径是3厘米,你知道和它同底等高的圆柱体的侧面积是多少平方厘米吗?。