椭圆知识点复习资料总结
- 格式:doc
- 大小:687.87 KB
- 文档页数:8
第一部分 椭圆相关知识点讲解一.椭圆的定义及椭圆的标准方程:1.椭圆的定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2.椭圆的标准方程(1)当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=(2)当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -3.圆的参数方程:{cos sin x a y b ϕϕ==(其中ϕ为参数).4.方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
二.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b+>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆⇔2200221x y a b+<三.椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
圆锥曲线★知识网络★第1讲椭圆★知识梳理★1.椭圆定义:(1)第一定义:平面内与两个定点F l、F2的距离之和为常数2a(2a |F2F2|)的动点P的轨迹叫椭圆,其中两个定点F1、F2叫椭圆的焦点.当PF1 PF2 2a F^2时,P的轨迹为椭圆;;当PF1 PF2 2a F^2时,P的轨迹不存在;当PF1 PF? 2a FT?时,p的轨迹为以F1、F2为端点的线段(2)椭圆的第二定义:平面内到定点F与定直线丨(定点F不在定直线I上)的距离之比是常数e(0 e 1)的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化)★重难点突破★重点:掌握椭圆的定义标准方程,会用定义法和待定系数法、坐标转移法、求椭圆的标准方程,能通过方程 研究椭圆的几何性质及其应用难点:椭圆的几何元素与参数a,b ,c 的转换的关系1•要有用定义的意识则AB[解析]ABF 2的周长为4a 20, AB =8 2•求标准方程要注意焦点的定位4 m 1m 3[解析]当焦点在x 轴上时,22重难点:运用数形结合,围绕“焦点三角形” ,用代数方法研究椭圆的性质,把握几何元素转换成参数a,b,c2x问题1已知F l 、F2为椭圆251的两个焦过F i 的直线交椭圆于A 、B 两点若F 2A 122x问题2木椭圆4 2y_ m 1的离心率为 1 2,则m16m -综上 3或3★热点考点题型探析★ 考点1椭圆定义及标准方程 题型1:椭圆定义的运用[例1 ](湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭 圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点 A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点 A 的小球(小球的半径不计) 次回到点A 时,小球经过的路程是 A . 4a B . 2(a — c) C . 2(a+c)D .以上答案均有可能[解析]按小球的运行路径分三种情况 :(1)A C A ,此时小球经过的路程为 2(a — c);⑵A B D B A ,此时小球经过的路程为 2(a+c);⑶A P B Q A 此时小球经过的路程为 4a,故选D【名师指弓I 】考虑小球的运行路径要全面 题型2求椭圆的标准方程[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4、2 — 4,求此椭圆方程.【名师指引】准确把握图形特征,正确转化出参数 a ,b ,c的数量关系.[警示]易漏焦点在 y 轴上的情况. 考点2椭圆的几何性质题型1:求椭圆的离心率(或范围) [例3 ]在厶ABC 中,A 30°,| AB| 2, S ABC 3 .若以A B 为焦点的椭圆经过点C ,则该椭圆的 离心率em 4 1 当焦点在y 轴上时,m 216~3,从点A 沿直线出发,经椭圆壁反弹后第【解题思路】将题中所给条件用关于参数a,b,c 的式子“描述”出来[解析]设椭圆的方程为2y b 22y 2 a1(a b0)则,b c 4(、2.2 2b c1)解之得:4 - 2 , b=c = 4•则所求的椭圆的方程为 2x 32 2y_ 16x 2或16 2红132【解题思路】由条件知三角形可解,然后用定义即可求出离心率1S ABC — |AB| |AC|si nA 屈 [解析]2|AC| 2j3 |BC| J|AB|2| AC f 2|AB| |AC|cosA 2| AB| 2|AC| |BC| 2、3 2【名师指引】(1 )离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也 随之确定 (2) 只要列出a 、b 、c 的齐次关系式,就能求出离心率(或范围) (3) “焦点三角形”应给予足够关注题型2:椭圆的其他几何性质的运用(范围、对称性等)P(x,y ),用x 表示y 后,把动点到直线的距离表示为 x 的函数,关键是要具有“函数思想” 考点4椭圆的综合应用题型:椭圆与向量、解三角形的交汇问题x 2[例4 ]已知实数x,y 满足42y_ 21 2 ,求X 2y X 的最大值与最小值2 2把x y X 看作X 的函数2X 2 y 1 21 2— y 2 x [解析]由 4 2 得 21 2222 - X X 22 X 2yX 1 2 X X 2 1 2-(X 1) 3-,x [ 2,2]22232 2 — 2 2当X 1时,x y x 取得最小值2 ,当x 2时,x y x取得最大值6 【名师指引】注意曲线的范围,才能在求最值时不出差错 考点3椭圆的最值问题题型:动点在椭圆上运动时涉及的距离、面积的最值2X[例5 ]椭圆161上的点到直线I :y 9 0的距离的最小值为【解题思路】把动点到直线的距离表示为某个变量的函数[解析]在椭圆上任取一点P 设P (4cos ,3sin).那么点P 到直线l 的距离为: 14cos 3sin1厂1212|【名师指引】也可以直接设点 【解题思0 1[例6]已知椭圆C 的中心为坐标原点 。
椭圆的相关知识点总结一、椭圆的定义椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。
这两个定点F1、F2称为椭圆的焦点,常数2a称为椭圆的长轴,长轴的一半a称为椭圆的半长轴。
椭圆的短轴的长度为2b,短轴的一半b称为椭圆的半短轴。
椭圆上到焦点的距离等于常数2a的性质可以用数学语言表示为:|PF1|+|PF2|=2a。
椭圆的离心率e的定义是e=c/a,其中c是焦点到中心的距离。
显然,0<e<1,当e=0时,椭圆退化为一条线段;当e=1时,椭圆退化为一个圆。
二、椭圆的性质1. 焦点离心率椭圆的离心率大于0小于1。
2. 焦点公式椭圆长轴长度为2a,半短轴长度为b。
其中a、b分别是半长轴和半短轴的长度。
焦点坐标为(f1,0)和(-f1,0)。
其中f1=\sqrt{a^2-b^2}。
3. 针焦直线椭圆的焦点圆椭圆的大小只和a、b两轴有关,与焦点的远近无关。
4. 椭圆的直径垂直于直径的直线,称为轴;椭圆的两条轴相互垂直,且它们的交点是中心。
三、椭圆的方程1. 标准方程椭圆的标准方程为(x^2/a^2)+(y^2/b^2)=1,其中a、b分别为半长轴和半短轴的长度。
2. 一般方程椭圆的一般方程为Ax^2+By^2+Cx+Dy+E=0,其中A、B、C、D、E为常数。
一般方程的椭圆可以通过平移和旋转变换为标准方程。
四、椭圆的焦点椭圆的焦点离中心的距离c=\sqrt{a^2-b^2}。
五、椭圆的参数方程设椭圆的焦点为(f,0)和(-f,0),半长轴为a,半短轴为b,则椭圆的参数方程为:x=a\cos t,y=b\sin t,其中0\leq t\leq 2\pi。
六、椭圆的极坐标方程椭圆的极坐标方程可以表示为:r=\frac{a(1-e^2)}{1+e\cos\theta},其中e为椭圆的离心率。
七、椭圆的图形椭圆的图形是一种闭合的曲线,形状类似于椭子。
椭圆的长轴和短轴分别是轴、横轴。
椭圆是关于两条坐标轴对称的曲线。
(完整版)椭圆知识点归纳总结1. 椭圆的定义椭圆是平面上到两个给定点的距离之和等于常数的点的集合。
这两个给定点称为焦点,而常数称为离心率。
椭圆的形状由焦点之间的距离决定,离心率的大小则决定了椭圆的扁平程度。
2. 椭圆的基本性质- 椭圆的长轴是焦点之间的距离,短轴是长轴的垂直中垂线。
- 椭圆的离心率介于0和1之间,且离心率为0时为圆。
- 椭圆有两个对称轴,分别是长轴和短轴的中垂线。
- 椭圆的焦点和任意一点的距离和等于离心率与该点到椭圆两个焦点的距离之和。
- 椭圆的面积为π * a * b,其中a和b分别是长轴和短轴的一半。
3. 椭圆的方程普通椭圆的方程为:(x-h)²/a² + (y-k)²/b² = 1其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半。
4. 椭圆的参数方程椭圆的参数方程为:x = h + a * cos(t)y = k + b * sin(t)其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半,t是参数。
5. 椭圆的焦点与直径- 焦点到定点的距离等于椭圆的常数离心率。
- 椭圆的两个焦点与椭圆的直径的交点相同。
6. 椭圆与其他几何图形关系- 椭圆与直线的关系:给定一条直线,椭圆上离直线距离之和最小的点在直线的垂直线上。
- 椭圆与双曲线的关系:双曲线可以看作是离心率大于1的椭圆。
- 椭圆与抛物线的关系:抛物线可以看作是离心率等于1的椭圆。
7. 椭圆的应用椭圆在现实生活中有广泛的应用,例如:- 天体运动:行星、卫星等的轨道可以近似看作是椭圆。
- 椭圆滤波器:在信号处理中用于清除噪音。
- 光学器件:如折射球面镜、椭圆镜等。
以上是关于椭圆的常见知识点的归纳总结,希望能对你有所帮助。
第一部分 椭圆相关知识点讲解一.椭圆的定义及椭圆的标准方程:1.椭圆的定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2.椭圆的标准方程(1)当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=(2)当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -3.圆的参数方程:{cos sin x a y b ϕϕ==(其中ϕ为参数).4.方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
二.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b+>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+<三.椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。
1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。
(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。
(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。
1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。
这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。
二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。
2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。
2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。
椭圆的性质对于解析几何的学习非常重要。
在实际应用中,我们可以利用这些性质进行问题的求解和分析。
2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。
三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。
3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。
3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。
椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程 12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系求椭圆标准方程的常用方法:①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数c b a ,,的值。
其主要步骤是“先定型,再定量”;②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。
知识点三:直线与椭圆问题(韦达定理的运用)弦长公式:若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则 弦长221221)()(y y x x AB -+-=221221)()(kx kx x x -+-= 2121x x k -+=2122124)(1x x x x k-++=1.椭圆11692522=+y x 的焦点坐标是 , 离心率是________,准线方程是_________. 2.已知F 1、F 2是椭圆191622=+y x 的两个焦点,过F 1的直线与椭圆交于M 、N 两点,则△MNF 2的周长为( )A .8B .16C .25D .323.椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.104.已知椭圆方程为1112022=+y x ,那么它的焦距是 ( ) A.6 B.3 C.331 D.315.如果方程222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)6.设21,F F 为定点,|21F F |=6,动点M 满足6||||21=+MF MF ,则动点M 的轨迹是( )A.椭圆B.直线C.圆D.线段7.已知方程12-m x +my -22=1,表示焦点在y 轴上的椭圆,则m 的取值范围为 .8.已知椭圆的两个焦点坐标是F 1(-2,0),F 2(2,0),并且经过点P (23,25-),则椭圆标准方程是 __ ___9.过点A (-1,-2)且与椭圆19622=+y x 的两个焦点相同的椭圆标准方程是__ __10.过点P (3,-2),Q (-23,1)两点的椭圆标准方程是_ __ ___11.若椭圆19822=++y k x 的离心率是21,则k 的值等于 .12.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC 的周长是 .13.F 1、F 2分别为椭圆22a x +22b y =1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是14.设M 是椭圆1162522=+y x 上一点,F 1、F 2为焦点,621π=∠MF F ,则=∆21F MF S15.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(A)2 (B)22 (C) 21 (D)4216.设11229(,),(4,),(,)5A x y B C x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的( )(A )充要条件 (B )必要不充分条件 (C )充分不必要条件 (D )既非充分也非必要17.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=18、已知定点A (a ,0),其中30<<a ,它到椭圆14922=+y x 上的点的距离的最小值为1,求a 的值。
椭圆的知识点总结一、椭圆的定义椭圆是平面上的一种特殊曲线,它的定义可以有多种方式。
在解析几何中,我们通常采用焦点-直线之和等于常数的定义来描述椭圆。
具体而言,椭圆定义为到两个固定点(焦点)的距离之和等于常数的点的集合。
这个常数被称为椭圆的长轴长度。
另外,椭圆还有一个短轴,它垂直于长轴且通过长轴的中点。
椭圆的长轴和短轴的长度决定了椭圆的形状。
二、椭圆的性质1. 焦点性质:椭圆有两个焦点,它们位于长轴上,且椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。
2. 直径性质:椭圆的直径是经过焦点的直线段,并且它恰好与椭圆相交于椭圆上的两点。
3. 周长性质:椭圆的周长可以用椭圆的半长轴和半短轴的长度来表示,即2πb+4aE(e),其中a和b分别为椭圆的长轴和短轴的长度,E(e)为第二类椭圆积分。
4. 质心性质:椭圆的质心位于椭圆的中心,且与椭圆的几何中心重合。
椭圆的质心满足椭圆上所有点到该质心的距离之和等于椭圆的长轴长度。
5. 对称性质:椭圆具有关于长轴和短轴的对称性,且同时具有关于两个焦点的对称性。
6. 离心率性质:椭圆的离心率e是一个重要的参数,它刻画了椭圆的形状。
椭圆的离心率满足0<e<1,且e=√(1-b²/a²)。
7. 焦点和直角坐标系的关系:椭圆在直角坐标系中的方程形式可以用来描述椭圆的形状,其一般方程为(x²/a²)+(y²/b²)=1。
三、椭圆的方程椭圆的方程通常以长轴和短轴的长度来表示,其一般方程为(x²/a²)+(y²/b²)=1。
在给定长轴和短轴的情况下,可以通过椭圆的方程来确定椭圆的形状和位置。
四、椭圆的焦点椭圆有两个焦点,它们分别位于长轴的两端。
椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。
焦点是椭圆的重要特性,它们的位置决定了椭圆的形状和方向。
五、椭圆的参数方程椭圆还可以用参数方程来描述。
高中椭圆知识点归纳一、椭圆的定义1. 椭圆的数学定义- 椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。
- 椭圆的标准方程。
2. 椭圆的基本要素- 焦点(F1, F2)- 长轴(2a)- 短轴(2b)- 焦距(2c)- 离心率(e)二、椭圆的性质1. 焦点性质- 焦点位于主轴上。
- 焦点到椭圆上任意一点的距离之和是常数,等于长轴的长度。
2. 离心率- 离心率是衡量椭圆形状的一个参数。
- 离心率的计算公式:e = c/a。
3. 椭圆的对称性- 椭圆关于长轴和短轴具有对称性。
三、椭圆的几何关系1. 长轴和短轴的关系- b^2 = a^2 - c^2。
2. 焦点与椭圆的关系- 焦点到椭圆上任意一点的距离之和等于长轴的长度。
四、椭圆的方程1. 标准方程- 椭圆的标准方程形式为:(x^2/a^2) + (y^2/b^2) = 1。
2. 椭圆的参数方程- 参数方程的形式:x = a * cos(t), y = b * sin(t),其中t为参数。
五、椭圆的应用1. 天文学- 行星轨道的描述。
2. 工程学- 轮轴和凸轮设计。
3. 物理学- 电场和磁场中的某些路径。
六、椭圆的图形绘制1. 绘制方法- 使用绘图工具(如圆规)绘制椭圆。
2. 椭圆的变换- 平移和旋转椭圆。
七、椭圆与圆的关系1. 特殊情形- 当离心率为0时,椭圆变为圆。
- 当两个焦点重合时,椭圆退化为抛物线。
八、练习题1. 椭圆方程的求解。
2. 焦点性质的应用。
3. 椭圆的几何关系计算。
以上是关于高中椭圆知识点的归纳文档的大纲和示例内容。
在实际编写文档时,每个部分都应包含详细的解释、公式推导、图示和实例。
此外,文档应使用专业的排版和格式,确保清晰易读,并且方便编辑和打印。
椭圆知识点总结一、椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别代表椭圆长轴和短轴的一半。
椭圆的焦点到中心的距离是c,满足c^2 = a^2 - b^2。
二、椭圆的性质1. 椭圆对称性:椭圆关于x轴和y轴对称。
2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数2a。
3. 长短轴性质:椭圆的长轴和短轴互相垂直,长轴的长度是2a,短轴的长度是2b。
4. 离心率:椭圆的离心率e定义为c/a,表示椭圆拉伸的程度,离心率介于0到1之间。
5. 参数方程:椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。
6. 弦长:椭圆上任意一点到两个焦点的距离之和等于常数2a,因此椭圆上任意一条弦的长度小于或等于2a。
7. 焦准线性质:椭圆上任意一点到两个准线的距离之差等于常数2a。
三、椭圆与圆的关系1. 圆是椭圆的特殊情况:当椭圆的长轴和短轴相等时,椭圆就变成了圆。
2. 椭圆的离心率介于0到1之间,当离心率等于0时,椭圆就是一个圆。
因此,椭圆和圆可以看作是同一种几何图形的不同特例。
四、椭圆的应用1. 天体运动:椭圆轨道是描述天体运动的重要数学工具,如行星绕太阳运动、卫星绕地球运动等。
2. 光学:椭圆镜片和椭圆抛物面反射器是光学领域常用的元件,用于聚焦和成像。
3. 工程设计:椭圆的性质在设计椭圆形建筑、椭圆形机械零件、椭圆形轨迹等方面有重要应用。
4. 地理测量:椭圆在地图投影和地理测量中有广泛应用,如椭球面测量、椭圆地图投影等。
五、椭圆的求解1. 椭圆的参数方程可以通过消除参数t来得到椭圆的标准方程。
2. 根据椭圆的焦点性质和准线性质,可以求解椭圆的焦点和准线方程。
3. 椭圆的面积可以通过积分求解,面积公式为S = πab。
4. 椭圆的周长可以通过椭圆的参数方程求解,周长公式为L = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分。
六、椭圆的变换1. 平移变换:椭圆的平移变换可以用矩阵形式表示,通过平移变换可以将椭圆移动到任意位置。
【椭圆】
一、椭圆的定义
1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121
F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。
这两
个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;
若)(2121F F PF PF <+,则动点P 的轨迹无图形。
二、椭圆的方程
1、椭圆的标准方程(端点为a 、b ,焦点为c )
(1)当焦点在x 轴上时,椭圆的标准方程:122
22=+b
y a x )0(>>b a ,其
中222b a c -=;
(2)当焦点在y 轴上时,椭圆的标准方程:122
22=+b
x a y )0(>>b a ,其
中222b a c -=;
2、两种标准方程可用一般形式表示:22
1x y m n += 或者 mx 2+ny 2=1
三、椭圆的性质(以122
22=+b
y a x )0(>>b a 为例)
1、对称性:
对于椭圆标准方程122
22=+b
y a x )0(>>b a :是以x 轴、y 轴为对称轴的轴
对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2、范围:
椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
3、顶点:
①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆122
22=+b
y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶
点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,
b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
4、离心率:
① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作
a
c
a c e ==
22。
② 因为)0(>>c a ,所以e 的取值范围是)10(<<e 。
e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,
c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。
当且仅
当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22。
③ 离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
注意:椭圆122
22=+b
y a x 的图像中线段的几何特征(如下图):
e
PM PF PM PF ==2
21
1
)2(21a PF PF =+
)2(22
1c
a PM PM =+ 5、椭圆的第二定义:
平面内与一个定点(焦点)和一条定直线(准线)的距离的比为常数e ,(0<e <1)的点的轨迹为椭圆(
e d
PF =|
|)。
即:到焦点的距离与到准线的距离的比为离心率的点所构成的图形,也即上图中有
e PM PF PM PF ==2
21
1。
①焦点在x 轴上:122
22
=+b
y a x (a >b >0)准线方程:c a
x 2±=
②焦点在y
轴上:122
22=+b
x a y (a >b >0)准线方程:c a y 2
±
=
6、椭圆的内外部
(1)点00(,)P x y 在椭圆22
221(0)x y a b a b +=>>的内部22
00221x y a b ⇔+<
(2)点00(,)P x y 在椭圆22
221(0)x y a b a b
+=>>的外部2200221x y a b ⇔+>
四、椭圆的两个标准方程的区别和联系 标准方程
12
2
22=+b y a x )0(>>b a 12
2
22=+b x a y )0(>>b a
图形
性质
焦点 )0,(1c F -,)0,(2c F
),0(1c F -,),0(2c F
焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤
b x ≤,a y ≤
对称性 关于x 轴、y 轴和原点对称
顶点 )0,(a ±,),0(b ±
),0(a ±,)0,(b ±
轴长 长轴长=a 2,短轴长=b 2
离心率 )10(<<=
e a
c
e 准线方程 c
a x 2
±=
c
a y 2
±=
焦半径 01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=
五、其他结论
1、若000(,)P x y 在椭圆22
221x y a b +=上,则过0P 的椭圆的切线方程是
00221x x y y
a b
+= 2、若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为
P 1、P 2,则切点弦P 1P 2的直线方程是
00221x x y y
a b
+= 3、椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆
上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1
2
2tan 2
F PF S b γ
∆=
4、椭圆22
221x y a b +=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y )
5、设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF 。
6、过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF 。
7、AB 是椭圆22
221x y a b
+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,
则2
2OM AB
b k k a ⋅=-,即0
202y a x b K AB -=。
8、若000(,)P x y 在椭圆22
221x y a b +=内,则被Po 所平分的中点弦的方程是
22
00002222x x y y x y a b a b
+=+ 9、若000(,)P x y 在椭圆22
221x y a b +=内,则过Po 的弦中点的轨迹方程是
22002222x x y y
x y a b a b
+=+ 10、点P 处的切线PT 平分△PF 1F 2在点P 处的外角
11、PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 12、以焦点弦PQ 为直径的圆必与对应准线相离
13、以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切。