L-酪氨酸的酶法合成及分析
- 格式:ppt
- 大小:1.58 MB
- 文档页数:29
酪氨酸酶概念:酪氨酸酶(EC 1.14.18.1)是一种含铜的氧化还原酶,它与生物体合成色素直接相关.(长的黑有很大的一部分原因在自己)在人体中,它与色素障碍性疾病及恶性黑色素肿瘤的发生与治疗有关(酪氨酸酶的分布与动物的生理功能息息相关,不同动物的酪氨酸酶在体内分布的部位不同.多数昆虫在正常生理状态下,酪氨酸酶以酶原的形式存在,不同类型的酪氨酸酶存在于昆虫的特定部位,以完成特定的生理功能.美洲蜚蠊存在于血红细胞内,而麻蝇则仅存在于血浆中,并且在表皮中主要以活化形式的酪氨酸酶存在.昆虫酪氨酸酶除参与黑色素的形成外还是唯一参与角质硬化的酶.昆虫高度硬化的角质能阻断微生物和异物的入侵,并为柔软的元脊椎动物身体提供了保护.在节肢动物中,酪氨酸酶还参与其他两种重要的生理过程——防御反应和伤口愈合.哺乳动物酪氨酸酶催化产生的黑色素被分泌进入到表皮和毛发的角质细胞中,使体表着色,从而起保护皮肤和眼睛、抵御紫外线的辐射和防止内部组织过热等作用.哺乳动物酪氨酸酶常见于黑素细胞中,黑素细胞是存在于皮肤,发囊和眼睛中并产生色素的高度特异性的细胞[1“].酪氨酸酶功能减退或缺失时,即会影响黑色素代谢,从而发生疾病如白癫疯和白化病.动物与人的常染色体隐性疾病也与酪氨酸酶的缺失或活性下降有关.)作用机制:酪氨酸酶主要参与两个反应过程:催化L.酪氨酸羟基化转变为L-多巴和氧化L-多巴形成多巴醌,多巴醌经一系列反应后,形成黑色素,与人体雀斑、褐斑等黑色素过度沉积等疾病的发生有关,并与昆虫的蜕皮(蝉蜕可以入药)和(苹果)果蔬的褐化有很大关系(黑色素生物合成过程可大体分为两个阶段,第一阶段是由酪氨酸酶催化酪氨酸被羟化反应形成L_3,4一二羟基丙氨酸(L_多巴)(单酚酶活性),并进步将L_多巴氧化生成多巴醌(二酚酶活性)。
这两步反应都是由酪氨酸酶催化的,酪氨酸酶在这里显示了独特的双重催化功能.第二阶段从多巴醌(DOPAqui—non)为原料从两个不同途径分别生成真黑素和褪黑素的过程.真黑素生成,多巴醌经多聚化反应等一系列反应生成无色多巴色素,极不稳定的无色多巴色素被另一分子多巴醌氧化为多巴色素,多巴色素经异构、脱羧生成5,6一二羟基吲哚(DHI),5,6一二羟基吲哚(DHI)由酪氨酸酶催化氧化为真黑色素的前体吲哚一5,6一醌(IndQu);褪黑素生成,多巴醌(DOPAquinon)与半胱氨酸(Cys)反应生成产生5-Cys一多巴及5-Cys一多巴醌,然后成环、脱羧变成苯肼噻嗪的衍生物,最后形成褪黑素.在第二阶段,只有少数几步反应由酪氨酸酶、异构酶或金属离子催化,大部分反应都是自发的,因此酪氨酸酶是整个黑色素生成反应的限速酶,第一阶段的两步反应是限速步骤.)活性中心:酪氨酸酶的活性中心是由两个含铜离子位点构成.在催化过程中,双核铜离子位点以3种形态存在,分别是氧化态、还原态和脱氧态.研究表明与酪氨酸酶结合的双核铜离子活性中心与在血蓝蛋白中发现的活性中心非常相似、白化病概念:白化病是由黑色素合成相关基因突变导致黑色素沉着减少或缺失引起的一类遗传性疾病的总称。
课程:实验日期:2012年月日专业班级:组别交报告日期:2102年月日姓名:学号报告退发:(订正、重做)同组者:教师审批签字:实验名称:酪氨酸酶的粗提取、分离纯化、纯度鉴定及活性测定实验目的:1.自行查阅资料,选取原材料,设计合理的酪氨酸酶提取、分离、纯化鉴定以及活性测定的方案;2.按照实验方案,自主进行实验并对实验方案进行评价和改进;3.通过酪氨酸酶的分离过程,了解并熟悉生物工程下游分离工程的一些常规操作;4.对实验结果进行总结,分析和汇总展示,培养分析问题和自我展示的能力。
实验原理:酪氨酸酶是一种含铜的氧化还原酶,广泛存在于动植物和微生物体内。
与生物体黑色素的合成直接相关。
近年来,有学者已经从各种植物中提取得到酪氨酸酶,如马铃薯,蘑菇,香蕉,苹果,桑叶以及香樟等。
相关资料显示,L-多巴和邻苯二酚测定体系都说明香蕉,马铃薯及蘑菇中酪氨酸酶的活性较高。
因此,本实验选取香蕉为实验原材料,通过简单的提取分离以及纯化,初步得到了酪氨酸酶的样品(溶液),并用邻苯二酚为底物对其活性做了定性鉴定。
酪氨酸酶的粗提取包括研磨(匀浆),过滤,离心,盐析和透析等过程。
盐析蛋白质在高离子强度的溶液中溶解度降低、发生沉淀的现象。
随着溶液中离子强度的增大,蛋白质表面的双电层厚度降低,静电排斥作用减弱。
同时由于盐的水化作用使蛋白质表面的疏水区附近的水化层脱离蛋白质,暴露出来,增大了蛋白质表面的疏水相互作用,容易发生凝集,进而沉淀。
盐析的方法有K s盐析法和β盐析法,前者是改变体系的离子强度,而后者的则通过改变温度和pH实现。
由于蛋白质对离子强度的变化十分敏感,所以常采用K s盐析法。
常用的盐有硫酸铵等。
通过查阅资料,本实验中采用饱和度为55%的硫酸铵进行酪氨酸酶的盐析沉淀。
透析是一种膜分离的方法,利用的是浓度引起的自由扩散,在透析袋内盛放盐析后酪氨酸酶的溶解液,放入缓冲液内透析,目的是除去盐析过程带入的离子。
透析袋在使用前一般需要进行预处理。
碱性蛋白酶及各种蛋白酶活力测定方法及测定有感因长期测定碱性蛋白酶酶活力与角蛋白酶活力与胶原酶活力和弹性蛋白酶活力,碱性蛋白酶活力测定还好,因有国家标准,测定按照国标来便可大大减少误差。
其余酶活力测定过程中因无统一标准且底物差异大,导致长期酶活力测定的混乱,各种酶活力测定方法与各种试剂添加,最后实际测定的酶活力只能仅作参考。
以下是各种蛋白酶活力测定方法及标曲绘制:碱性蛋白酶测定方法根据国标GB/T 23527-2009 附录B 蛋白酶活力测定福林法以下是方法碱性蛋白酶的测定方法参考 GB/T 23527-2009 附录 B 中福林酚法进行,即 1 个酶活力单位(U/mL)定义为 1 mL 酶液在 40℃、pH= 10.5 条件下反应 1 min 水解酪蛋白产生 1 μg 酪氨酸所需要的酶量,主要步骤如下。
2.2.6.1 标准曲线的绘制(1)L-酪氨酸标准溶液:按表 2-6 配制。
表 2-6 L-酪氨酸标准溶液配置表Table 2-6 L-Tyrosine standard solution form管号酪氨酸标准溶液的浓度/(μg/mL)取 100 μg/mL 酪氨酸标准溶液的体积/(mL)取水的体积/(mL)0 0 0 101 10 1 92 20 2 83 30 3 74 40 4 65 50 5 5(2)分别取上述溶液各 1.00 mL,各加 0.4 mol/L 碳酸钠溶液 5.0 mL,福林试剂使用液 1.00 mL,置于 40 ℃±0.2 ℃水浴锅中显色 20 min,用分光光度计于波长 680 nm,10mm 比色皿,以不含酪氨酸的反应管作为空白,分别测定其吸光度值,以吸光度值 A 为纵坐标,酪氨酸浓度 C 为横坐标,绘制 L-酪氨酸标准曲线。
图 2-1 L-酪氨酸标准曲线Fig. 2-1 L-tyrosine standard curve根据作图或用回归方程计算出当吸光度为 1 时的酪氨酸的量(μg),既为吸光度常数 K 值。
酶样品待测酶液制备方法磷酸缓冲液的制备中性蛋白酶(pH=7.5)准确称取磷酸氢二钠6.02g和磷酸二氢钠0.5g,加水定容至1000ml,配好后用pH计校正。
淀粉酶(pH=6)称取磷酸氢二钠45.23g,柠檬酸8.07g,用水溶解并定容于1000ml,配好后用pH计校正。
脂肪酶(pH=7.5)称取磷酸二氢钾1.96g,十二水磷酸氢二钠39.62g,用水溶解并定容于500ml,配好后用pH计校正。
酶液的制备称取样品1.000g至10ml试管中,加入磷酸缓冲液5ml,置于高速匀浆机捣碎,然后连残渣一起倒入100ml容量瓶中定容,室温静置1h,期间反复震荡3次,然后取4ml在16000r/min下离心5分钟,取上清液4℃保存待测。
酶活测定淀粉酶、脂肪酶、胰蛋白酶采用建成生物工程研究所试剂盒测定,中性蛋白酶采用福林酚法测定。
淀粉酶原理:淀粉酶能水解淀粉生成葡萄糖、麦芽糖及糊精,在底物浓度已知并且过量的情况下,加入碘液与未水解的淀粉结合生成蓝色复合物,根据蓝色的深浅可推算出水解的淀粉量,从而计算出淀粉酶的活力。
单位定义:在37℃、pH6.0下,与底物作用30分钟,水解10mg淀粉定义为1个淀粉酶活力单位。
分析方法:计算:酶活力(U/g)= (空白管吸光度-测定管吸光度)/空白管吸光度×(0.4×0.5/10) ×(30分钟/7.5分钟) ÷(取样量×酶液浓度)脂肪酶原理:甘油三酯和水制成乳化液,因其胶束对入射光的吸收及散射而具有乳浊性状,胶束中的甘油三酯在脂肪酶的作用下发生水解,使胶束分裂,散射光或浊度因而降低,降低的速率与脂肪酶活力有关。
单位定义:在37℃条件下,在反应体系中与底物反应1分钟,每消耗lμmol 底物为1个脂肪酶活力单位。
分析方法:1、将分光光度计在420nm处以Tris缓冲液调零。
2、将底物缓冲液在37℃预温5分钟。
3、在试管中加入0.025ml待测样本,再加入试剂四0.025ml,然后加入4ml预温的底物缓冲液,盖住管口,颠倒混合5次,在420nm处比浊,读取吸光度值A1。
酪氨酸酶的提取及其催化活性研究路环 08生化制药技术2班指导教师张业实验目的人是生物体中酶的存在和作用催化,使学生了解生物体系中在酶存在下的合成或分解与普通的有机合成的不同和相同之处认识一些生物化学过程的特殊性。
掌握生物活性物质的提取和保存方法,学会使用仪器分析手段研究催化反应特别是生物化学体系中催化过程的基本思想和方法。
实验原理在实验室里,复杂的有机合成与分解往往要求在高温、强酸、强碱、减压等剧烈条件下才能进行。
而在生物体内,虽然条件温和(常温、常压和接近中性的溶液等),许多复杂的化学反应却进行的十分顺利和迅速,而且基本没有副产物,其根本原因就是由于生物催化剂-酶的存在。
酶是具有催化作用的蛋白质。
按照酶的组成,可将其分为两种:(1)简单蛋白质其活性仅决定于它的蛋白质结构。
如脲酶、淀粉酶;(2)结合蛋白这种酶需要加入非蛋白质组分(称之为辅助因子)后,才能表现出酶的活性。
酶蛋白质与辅酶因子结合形成的复合物称为全酶。
例如酪氨酸酶就是以Cu+或Cu2+为辅助因子的全酶。
辅助因子谁然本身无催化作用,但参与氧化还原或其运载酰基载体的作用。
若将全酶中的辅助因子除去,则酶的活性就失去了。
通常把被酶作用的物质称为该酶的底物。
一种酶催化特定的一个或一类底物的反应,具有很高的选着性和灵敏性,因而引起了广大分析工作者的兴趣。
目前,酶已经作为一种分析试剂得到广泛应用。
特别在生化、医学方面。
例如一些生命物质和液体中的特殊有机成分,用其他方法测定有困难,用酶法分析却有其独到之处。
本实验拟通过从土豆中提取酪氨酸酶并测定其活性,使同学们对酶有个初步的了解。
我们都见过,当土豆、香蕉、苹果、蘑菇受损伤时限棕色的现象,这是由于土豆、苹果等含有酪氨酸酶。
酶存在于物质内部,当内部物质暴露出来后,在空气中的氧参与下,发生了如图31-1所示的一系列反应,生成黑色素。
HONH 2COOHHNN HHO HOCOOHNH 2HOHONHOOOO酪氨酸多巴多巴醌多巴红二羟基吲哚吲哚醌黑色素O 2图31-1 酶参与的多巴转换反应酪氨酸酶可用比色法测定。
熟地黄提取液对酪氨酸酶的抑制作用研究一、仪器和药品:仪器:分光光度计、微量移液器(1ml)、电子天平、容量瓶(10ml、50ml、250ml)、回流装置一套、沸石、抽滤装置、旋转蒸发仪、水浴恒温箱、烧杯和量筒若干。
药品:熟地黄粉末(约50g)、体积分数50%的乙醇(200ml)、磷酸氢二钠、磷酸二氢钠、L-酪氨酸、酪氨酸酶、去离子水若干。
二、实验方案:A、熟地黄有效成分的提取:1、干燥熟地黄粉末10.0 g + 体积分数50%的乙醇100mL,室温浸泡24 h。
2、烧瓶+沸石+上述浸泡液,回流提取3 h,冷却后抽滤取滤液。
残渣再次加50%乙醇100mL 回流提取3 h,冷却抽滤取滤液,合并两次滤液。
(回流温度约80℃。
)3、将滤液置于旋转蒸发仪上60-65℃浓缩回收溶剂,得膏状提取物。
4、称取适量膏状提取物+去离子水配置成1 mg/mL 溶液备用。
B、磷酸缓冲溶液(PBS)的配制:1、称取磷酸氢二钠13.3984 g,加去离子水溶解,转移至250mL 容量瓶中定容得a液;另称取磷酸二氢钠6.9011 g,加去离子水溶解,转移至250mL容量瓶中定容得b液。
2、分别移取a、b两溶液各50mL至250mL容量瓶中,加去离子水定容,即得pH=6.8的磷酸缓冲溶液。
C、L-酪氨酸溶液和酪氨酸酶溶液的配制:1、称取L-酪氨酸25.6 g,用PBS缓冲液定容于50mL容量瓶中,即得L-酪氨酸溶液。
2、称取酪氨酸酶0.3502 g,用PBS缓冲液定容于10mL容量瓶中,即得酪氨酸酶溶液。
(冰水浴中操作、保存。
)D、酪氨酸酶活力的测定:(分光光度法测A475)用微量移液器分别按表一剂量准确移取a、b、c、d四组样液,置于37℃水浴中恒温10 min后,各加入0.40mL酪氨酸酶溶液,混匀,37℃温育反应10 min,迅速移入比色皿中,测得在475nm处的吸光度A a、A b、A c、A d ,然后按下面的公式计算熟地提取液对酪氨酸酶的抑制率:抑制率=[1-(A d-A c)/(A b-A a)]×100%其中:a:既无底物也无提取物的待测液;b:有底物但无提取物的待测液;c:无底物但有提取物的待测液;d:既有底物也有提取物的待测液。
酪氨酸激酶底物的筛选与特征分析酪氨酸激酶是一类重要的信号转导分子,在细胞生命活动中扮演着重要的角色。
酪氨酸激酶可以磷酸化其底物,导致底物的活性、稳定性、亲和力和定位等方面的变化。
由于底物的活性、稳定性和亲和力的变化,酪氨酸激酶的底物特异性是非常重要的。
因此,酪氨酸激酶底物的筛选与特征分析是酪氨酸激酶研究的重要方向之一。
一、酪氨酸激酶底物筛选目前,常用的酪氨酸激酶底物筛选方法主要包括化学筛选、生物筛选和生物信息学筛选三种方式。
化学筛选:化学筛选的主要优点在于速度快,操作简便,一次可以筛选出大量潜在的底物。
其基本操作流程为:首先,化学修饰底物,使其具有磷酸化背景(如添加亚硝基硫代甘氨酸)。
接下来,将修饰后的底物加入已知的激酶反应体系中,经过一定的反应时间后,采用质谱或放射性测定等手段检测出与激酶相结合的底物。
然后,通过质谱分析确定底物的化学结构,最后由生物学实验验证其是否真是酪氨酸激酶底物。
生物筛选:生物筛选的主要优点是筛选出的底物具有生物活性,适用于分析酪氨酸激酶催化的生物效应。
其基本操作流程为:首先,挑选具有代表性的组织或细胞,提取其中酪氨酸激酶。
接下来,向酪氨酸激酶反应液中加入不同的底物组分,反应一定时间后,通过生化方法检测出与酪氨酸激酶反应的底物。
然后,对筛选出的底物进行进一步的生物学,生物化学和分子生物学研究。
生物信息学筛选:生物信息学筛选是一种虚拟筛选技术,可预测成百上千的可能酪氨酸激酶底物。
该方法基于计算机分析酪氨酸激酶底物信息学特征。
具体操作为先确定酪氨酸激酶的保守序列,然后基于该序列进行分析预测其底物。
具体可以通过计算机模拟和数据挖掘等方式实现。
二、酪氨酸激酶底物特征分析酪氨酸底物特征的分析可从底物序列特点、磷酸化区域、细胞定位、生物功能等角度进行。
底物序列特点:研究发现,不同酪氨酸激酶对底物序列的特异性不同。
一般情况下,酪氨酸磷酸化靶标包括酪氨酸和苏氨酸,有的酪氨酸激酶还可以催化龙胆氨酸的磷酸化。
酪氨酸酶活性抑制实验方法一、试剂:酪氨酸酶、酪氨酸、磷酸二氢钠、磷酸氢二钠、阳性对照(熊果苷粉末)、样品、去离子水二、试剂配制:1、磷酸盐缓冲溶液(PH=6.8):先分别配制0.2M的磷酸二氢钠和0.2M的磷酸氢二钠。
0.2M磷酸二氢钠:称取 71.6g Na2HPO4-12H2O,溶于 1000ml 去离子水;0.2M磷酸氢二钠:称取 31.2g NaH2PO4-2H2O,溶于1000ml 去离子水;取51ML磷酸二氢钠+49ML磷酸氢二钠即得0.2M、PH=6.8的磷酸缓冲液。
2、L-酪氨酸溶液:称取L-酪氨酸25.6 g,用磷酸缓冲液定容于50mL容量瓶中,即得L-酪氨酸溶液。
3、酪氨酸酶溶液:将马铃薯洗净,于4℃预冷4h左右。
去皮,切成约1.0 cm3丁状,于-20℃冷冻过夜。
称重,按1:1(W:V )的比例加入4℃预冷的磷酸钠缓冲液,用组织捣碎机制成匀浆,3层纱布过滤,滤液于4000 r/min离心10min,上清液即为所得的酪氨酸酶粗酶液,4℃保存,2h内用完。
4、受试液的配制:将原先所配5mg/ml的溶液用甲醇稀释到1mg/ml.。
5、阳性对照:取熊果苷粉末0.01g,溶于10ml的甲醇溶液,即得1mg/ml的对照品溶液。
三、实验方法:依下表所示向试管中依次加入磷酸盐缓冲溶液、样品溶液、酪氨酸溶液,于35℃水浴10分钟。
然后加入酪氨酸酶液,混匀,再在35 ℃下孵育30min,迅速转移至比色皿中,在475nm处测定吸光值。
受试组用空白对照组1调零,阴性对照组用空白对照组2调零,阳性对照组用空白对照组3调零。
受试组吸光值为A1,阴性对照组吸光值为A2,阳性对照组吸光值为A3。
抑制率=1-[(A1-A2)/(A3-A2)]×100%=(A3-A1)/(A3-A2)×100% 注:受试液组共四种样品。
酪氨酸酶的提取及其酶促反应动力学研究一、实验目的1.认识生物体中酶的存在和催化作用,了解生物体系中在酶促反应的特点,认识一些生物化学过程的特殊性。
2.掌握生物活性物质的提取和保存方法,了解研究催化反应特别是生物化学体系中催化过程的基本思想和方法。
二、实验原理酶(enzyme)是由生物细胞合成的、对特定底物(substrate)起高效催化作用的蛋白质,是生物催化剂。
生物体内所有的化学反应几乎都是在酶的催化作用下进行的。
只要有生命活动的地方就有酶的作用,生命不能离开酶的存在。
在酶的催化下,机体内物质的新陈代谢有条不紊地进行着;同时又在许多因素的影响下,酶对代谢发挥着巧妙的调节作用。
生物体的许多疾病与酶的异常密切相关;许多药物也可通过对酶的作用来达到治疗的目的。
随着酶学研究的深入,必将对人类社会产生深远影响和作出巨大贡献。
酶的化学本质是蛋白质。
结构上,同样具有一、二、三级结构,有些酶还具有四级结构。
分子的化学组成上,有单纯酶和结合酶之分。
单纯酶分子是仅由蛋白质构成的酶,不含其他物质,如脲酶、活化蛋白酶、淀粉酶、核糖核酸酶等等。
结合酶分子是由蛋白质分子和非蛋白质部分组成,前者称为酶蛋白(apoenzyme),后者称辅助因子(cofactor)。
辅助因子是金属离子或有机小分子。
酶蛋白与辅助因子结合形成的复合物称全酶(holoenzyme),酶蛋白和辅助因子各自独立存在时,均无催化活性,只有全酶才有催化活性。
在酶促反应中酶蛋白决定着反应的专一性和效率,而辅助因子则决定着反应的种类和性质。
辅助因子按其与酶蛋白结合的紧密程度和作用特点,一般分为辅酶(coenzyme)和辅基(prosthetic group)。
辅酶是指辅助因子与酶蛋白结合松弛,没有固定的组成比,往往可用透析或超滤法除去,在反应中作为底物接受质子或基团后离开酶蛋白,参加另一酶促反应并将所携带的质子或基团转移出去,或者相反。
而辅基是指与酶蛋白结合比较紧密,与酶蛋白有一定的组成比,不能通过透析或超滤法除去,在反应中辅基不能离开酶蛋白。
酪氨酸酶溶液的制备
酪氨酸酶是一种能够水解酪氨酸及其衍生物的酶类物质,广泛应用于食品、医药、化学等领域。
本文将介绍酪氨酸酶溶液的制备方法。
一、实验仪器和材料
1.分散酪蛋白
2.75mmol/L的Tris-HCl缓冲液(PH7.0)
3.酪氨酸酶
4.活化剂
5.浓盐酸
6.氨水
7.异丙醇
8.离心管
9.定量管
二、实验步骤
1.酶活性的检测
首先,要对酪氨酸酶的活性进行检测,以保证制备出的酶溶液具有一定的水解能力。
方法如下:
(1)取适量的分散酪蛋白放入离心管中,加入适量的75mmol/L的Tris-HCl缓冲液,振荡均匀后,将其加温至37℃。
(2)向管内加入一定量的酪氨酸酶和一定量的活化剂,混匀后再次放置于37℃下反应。
(3)反应一定时间后取出样品,加入50%的异丙醇,离心沉淀。
离心上清取出,并进行紫外吸收光度计检测。
(2)缓慢加入浓盐酸或氨水,调节溶液的PH值至适宜范围。
(3)反复冷水浴加温,使反应液温度达到37℃,继续搅拌,使酶能够快速发挥作用。
(4)反应一定时间后,离心样品,并留取上清液即为酶溶液。
三、实验注意事项
1.最好将酶制备在无菌条件下进行。
2.Tris-HCl缓冲液的浓度和PH值应先进行调节,确保溶液稳定性。
3.调节PH值时应缓慢加入酸碱,注意避免过度调节。
4.反应温度过高或时间过久会影响酶的活性。
5.制备好的酶溶液需要在低温下保存,避免酶的降解。